_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ ____

УДК 546.271

ПЕРБРОМИРОВАННЫЕ СУЛЬФОНИЛ-клозо-ДЕКАБОРАТЫ С ЭКЗОПОЛИЭДРИЧЕСКИМИ АМИНОГРУППАМИ $[2-B_{10}Br_9S((CH_2)_nNH_2)_2]^-$ (n = 1-3)

© 2020 г. А. В. Голубев^{*a*}, А. С. Кубасов^{*a*}, *, Е. С. Турышев^{*a*}, А. Ю. Быков^{*a*}, К. Ю. Жижин^{*a*}, ^{*b*}, Н. Т. Кузнецов^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bРоссийский технологический университет, пр-т Вернадского, 86, Москва, 119571 Россия

> **e-mail: fobosax@mail.ru* Поступила в редакцию 15.04.2020 г. После доработки 28.04.2020 г. Принята к публикации 30.04.2020 г.

Разработан метод получения полностью бромированных сульфониевых производных клозо-декаборатного аниона с функциональными аминогруппами $(n-Bu_4N)[2-B_{10}Br_9S((CH_2)_nNH_2)_2]^-$ (n = 1-3). Метод основан на взаимодействии сульфониевых производных клозо-декаборатного аниона с фталимидными группами $(n-Bu_4N)[2-B_{10}Br_9S((CH_2)_npht)_2]^-$ (n = 1-3) с элементарным бромом в ацетонитриле в инертной атмосфере с последующим снятием фталимидной защиты метиламином.

Ключевые слова: клозо-декаборатный анион, сульфониевые производные, бромирование **DOI:** 10.31857/S0044457X20090044

введение

Кластерные анионы бора представляют собой необычный класс соединений, которые могут выступать как слабокоординирующиеся лиганды и образовывать различные комплексы металлов с "мягкими кислотами" Льюиса [1-3]. Кроме того, благодаря замещению экзополиэдрических атомов водорода борного кластера возможно образование большого числа производных с различными типами экзополиэдрических заместителей [4-8], что, в свою очередь, позволяет сушественно изменить свойства борного остова. Следует отметить, что введение экзополиэдрического заместителя позволяет понизить общий заряд молекулы, что также существенно влияет на координационную способность соединений этого класса [9–12]. Синтез комплексов на основе производных клозо-декаборатного аниона является актуальной задачей, решение которой позволит существенно расширить области практического применения производных кластерных анионов бора благодаря возможности получать вещества, сочетающие свойства катионной и анионной частей соединения [13-16].

Другим способом изменения физико-химических свойств кластерных анионов бора, таких как растворимость, полярность, электрохимические потенциалы и др., является галогенирование борного остова [17, 18]. При этом полное замещение атомов водорода в борном кластере можно проводить различными галогенами, что также позволяет существенно варьировать свойства кластерных соединений бора [19–23].

Среди большого разнообразия производных *клозо*-декаборатного аниона особо можно отметить производные со связью бор—сера [24—26]. Данные анионы обладают высокой химической устойчивостью [27], что очень важно для дальнейшей модификации этих соединений, особенно для полного замещения атомов водорода в борном остове.

Ранее в работе [28] мы представили методы получения сульфониевых производных *клозо*-декаборатного аниона с экзополиэдрическими аминогруппами, а также их перхлорированных аналогов. В настоящей работе мы исследовали и описали методы получения пербромированных аналогов этих соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 $(n-Bu_4N)[2-B_{10}H_9S(R)_2]$ (R = CH₂pht, (CH₂)₂pht, (CH₂)₃pht) получали по методике [28]. Элементарный бром использовали без дополнительной очистки.

Ацетонитрил кипятили с гидридом кальция в течение 2 ч и затем перегоняли. Полученный ацетонитрил хранили над молекулярными ситами 4 Å.

1199

Элементный анализ на углерод, азот, водород и серу выполняли на CHNS-анализаторе Eurovector EuroEA 3000.

ИК-спектры соединений записывали на ИКфурье-спектрофотометре Инфралюм ФТ-08 (НПФ АП "Люмекс") в области 4000–400 см⁻¹ с разрешением 1 см⁻¹. Образцы готовили в виде суспензии исследуемого вещества в тетрахлорметане.

Спектры ЯМР ¹H, ¹¹B, ¹³С растворов исследуемых веществ в DMSO-D6 записывали на импульсном фурье-спектрометре Bruker MSL-300 (ФРГ) на частотах 300.3, 96.32 и 75.49 МГц соответственно с внутренней стабилизацией по дейтерию. В качестве внешних стандартов использовали тетраметилсилан.

РСА. Пригодные для РСА монокристаллы соединения $[Ag(PPh_3)_4][2-B_{10}H_9S(CH_2N(CO)_2C_6H_4)_2]$ (I) были получены в результате смешивания растворов $[Ag(PPh_3)_4]NO_3$ в дихлорметане и $(n-Bu_4N)[2-B_{10}H_9S(CH_2N(CO)_2C_6H_4)_2]$ в ацетонитриле в молярном соотношении 1 : 1. После этого раствор оставляли медленно упариваться на несколько дней в холодильнике.

Наборы дифракционных отражений для кристаллов I и IV получены в Центре коллективного пользования ИОНХ РАН на автоматическом дифрактометре Bruker SMART APEX2 (λ Mo K_{α} , графитовый монохроматор, ω -ф-сканирование). Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Все неводородные атомы уточнены в анизотропном приближении. Все атомы водорода уточнены по модели "наездника" с тепловыми параметрами $U(H) = 1.2U_{3KB} (1.5U_{3KB} для CH_3$ -групп) соответствующих неводородных атомов. Одна из фталимидных групп в структуре I разупорядочена по трем позициям с заселенностью 0.4 : 0.4 : 0.2 с тремя общими атомами: N1, C3 и O2.

При сборе и обработке массива отражений использованы программы APEX2, SAINT и SAD-ABS [29]. Структура расшифрована и уточнена с помощью комплекса программ OLEX2 [30].

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структуры приведены в табл. 1.

Кристаллографические данные депонированы в Кембриджском банке структурных данных (№ 1996448, 1996449).

Синтез $(n-Bu_4N)[2-B_{10}Br_9S(CH_2N(CO)_2C_6H_4)_2]$ (II). Соль $(n-Bu_4N)[2-B_{10}H_9S(CH_2N(CO)_2C_6H_4)_2]$ (0.5 г, 0.7 ммоль) помещали в круглодонную колбу на 25 мл и приливали 5 мл ацетонитрила. Полученный раствор охлаждали до 0°С на ледяной бане и прикапывали к нему 10-кратный избыток брома (360 мл, 7 ммоль) в атмосфере аргона при постоянном перемешивании. Затем реакционную смесь медленно нагревали до комнатной температуры и оставляли перемешиваться в течение 24 ч. Далее раствор упаривали на пластинчатороторном насосе до полного удаления летучих продуктов реакции. К полученному твердому остатку приливали 30 мл гексана и обрабатывали на ультразвуковой бане в течение 10 мин. Полученный мелкокристаллический порошок отфильтровывали и промывали дистиллированной водой (2 × 30 мл) и диэтиловым эфиром (2 × 30 мл). Выход 88%.

	С	Н	Ν	S
Найдено, %:	28.64;	3.45;	2.92;	2.23.
Для $C_{34}H_{48}B_{10}Br_9N_3O_4S_1$				
вычислено, %:	28.71;	3.40;	2.95;	2.25.

¹¹В ЯМР (DMSO-D6, δ, м.д.): -0.5 (s, 1B, B1), -4.7 (s, 1B, B10), -13.3 (s, 8B, B2–B9).

¹H \Re MP (DMSO-D6, δ , м.д.): 7.80 (m, 8H, Ph), 5.21 (s, 4H, SC<u>H</u>₂), 3.10 (m, 8H, *n*-Bu₄N⁺), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.97 (m, 8H, *n*-Bu₄N⁺).

¹³C ЯМР (DMSO-D6, δ, м.д.): 167.6 (<u>C</u>O), 135.8, 132.6, 124.4 (Ph), 59.3 (*n*-Bu₄N⁺), 57.6 (S<u>C</u>H₂), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 13.8 (*n*-Bu₄N⁺).

ИК-спектр (CCl₄, v, см⁻¹): 3374, 3309, 3241, 3179, 2950, 2908, 2845, 1764, 1734, 1615, 1541, 1460, 1421, 1369, 1180, 1153, 1110, 1071, 1010, 830, 841, 784, 760, 724, 624, 665, 650, 580, 524.

(*n*-Bu₄N)[2-B₁₀Br₉S(CH₂CH₂N(CO)₂C₆H₄)₂] (III) получали аналогично II. Выход 86%.

	С	Н	Ν	S
Найдено, %:	29.76;	3.70;	2.87;	2.17.
Для C ₃₆ H ₅₂ B ₁₀ Br ₉ N ₃ O ₄ S ₁				
вычислено, %:	29.81;	3.61;	2.90;	2.21.

¹¹В ЯМР (DMSO-D6, δ, м.д.): -0.5 (s, 1B, B1), -4.6 (s, 1B, B10), -13.4 (s, 8B, B2–B9).

¹H ЯМР (DMSO-D6, δ , м.д.): 7.80 (m, 8H, Ph), 4.13 (t, 4H, C<u>H</u>₂N), 3,96 (t, 2H, SC<u>H</u>_aH_b), 3.80 (t, 2H, SCH_a<u>H</u>_b), 3.10 (m, 8H, *n*-Bu₄N⁺), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.97 (m, 8H, *n*-Bu₄N⁺).

¹³C ЯМР (DMSO-D6, δ , м.д.): 167.6 (<u>C</u>O), 135.8, 132.6, 124.4 (Ph), 59.3 (*n*-Bu₄N⁺), 40.5 (S<u>C</u>H₂), 35.4 (<u>C</u>H₂N), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 13.8 (*n*-Bu₄N⁺).

ИК-спектр (CCl₄, см⁻¹): 3367, 3304, 3245, 3182, 2945, 2907, 2845, 1760, 1732, 1621, 1545, 1460, 1419, 1370, 1185, 1147, 1104, 1068, 1003, 834, 780, 761, 730, 624, 648, 579, 526.

Соединение	Ι	IV
Брутто-формула	$C_{90}H_{81}AgB_{10}N_2O_4P_4S$	$C_{39.5}H_{59.5}B_{10}Br_9N_{3.5}O_{4.5}S$
M	1626.47	1514.75
<i>Т</i> , К	150	296.0
Сингония	Триклинная	Триклинная
Пр. гр.	$P\overline{1}$	$P\overline{1}$
a, Å	13.8921(6)	12.4399(5)
b, Å	14.4311(7)	12.7882(8)
<i>c</i> , Å	23.5375(11)	22.4401(8)
α, град	91.759(2)	99.485(2)
β, град	106.042(2)	90.6220(10)
ү, град	90.135(2)	119.1000(10)
<i>V</i> , Å ³	4532.6(4)	3059.4(3)
Ζ	2	2
$\rho_{\text{расч}}, r/cm^3$	1.192	1.644
μ, мм ⁻¹	0.364	5.969
<i>F</i> (000)	1680.0	1476.0
Размеры кристалла, мм	0.4 imes 0.3 imes 0.05	$0.8 \times 0.15 \times 0.02$
Излучение, λ, Å	0.71073	0.71073)
Интервал углов 20, град	3.084-52	3.702-54
Число отражений:		
измеренных	45109	25485
независимых (N)	$16643 [R_{int} = 0.0345]$	13047 [$R_{\rm int} = 0.0490$]
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i> ₀	0.0853, 0.2442	0.0489, 0.1200
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i>	0.1015, 0.2636	0.1143, 0.1454

Таблица 1. Основные кристаллографические данные, параметры эксперимента и уточнения структур для I и IV

(*n*-Bu₄N)[2-B₁₀Br₉S(CH₂CH₂CH₂N(CO)₂C₆H₄)₂] (IV) получали аналогично II. Выход 90%.

	С	Н	Ν	S
Найдено, %:	30.84;	3.79;	2.85;	2.16.
Для C ₃₈ H ₅₆ B ₁₀ Br ₉ N ₃ O ₄ S ₁				
вычислено, %:	30.87;	3.81;	2.84;	2.17.

¹¹В ЯМР (DMSO-D6, δ, м.д.): -0.5 (s, 1B, B1), -4.5 (s, 1B, B10), -13.2 (s, 8B, B2–B9).

¹H 9MP (DMSO-D6, δ , M.A.): 7.80 (m, 8H, Ph), 3.70 (t, 4H, CH₂N), 3.48 (t, 2H, SCH_aH_b), 3.28 (t, 2H, SCH_aH_b), 3.10 (m, 8H, *n*-Bu₄N⁺), 2.22 (m, 4H, SCH₂CH₂), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.97 (m, 8H, *n*-Bu₄N⁺).

¹³C ЯМР (DMSO-D6, δ , м.д.): 167.6 (<u>C</u>O), 135.8, 132.6, 124.4 (Ph), 59.3 (n-Bu₄N⁺), 39.0 (S<u>C</u>H₂), 36.6 (<u>C</u>H₂N), 26.8 (SCH₂<u>C</u>H₂), 24.3 (n-Bu₄N⁺), 20.3 (n-Bu₄N⁺), 13.8 (n-Bu₄N⁺).

ИК-спектр (CCl₄, v, см⁻¹): 3360, 3315, 3240, 3183, 2951, 2903, 2846, 1761, 1728, 1629, 1547, 1458, 1423, 1370, 1181, 1150, 1107, 1068, 1006, 830, 780, 758, 734, 621, 647, 571, 531.

Монокристаллы **IV**, пригодные для PCA, получали путем насыщения раствора данного соединения в диметилформамиде водой в эксикаторе.

Синтез (*n*-Bu₄N)[2-B₁₀Br₉S(CH₂NH₂)₂] (V). Соль II (0.2 г, 0.28 ммоль) помещали в круглодонную колбу на 50 мл и приливали 20 мл абсолютного этанола и MeNH₂ (40%, 65.23 мкл, 0.84 ммоль). Реакционную смесь нагревали в течение 4 ч при 70°С, затем добавляли эквимолярное количество H₂O, подкисляли соляной кислотой до pH < 2 и нагревали еще 1 ч при 70°С. Далее реакционную смесь охлаждали до комнатной температуры, к суспензии приливали раствор КОН до pH > 10 и помещали на ультразвуковую баню на 10 мин. Полученный осадок отфильтровывали и промывали дистиллированной водой (2 × 10 мл). Выход 82%.

	С	Н	Ν	S
Найдено, %:	18.68;	3.94;	3.57;	2.72.
Для $C_{18}H_{44}B_{10}Br_9N_3S_1$				
вычислено, %:	18.61;	3.81;	3.61;	2.76.

¹¹В ЯМР (DMSO-D6, δ, м.д.): -0.5 (s, 1B, B1), -4.4 (s, 1B, B10), -13.3 (s, 8B, B2-B9).

Рис. 1. Схема бромирования анионов $[2-B_{10}H_9S((CH_2)_nN(CO)_2C_6H_4)_2]^-$ (*n* = 1, 2, 3).

¹H ЯМР (DMSO-D6, δ, м.д.): 3.50 (s, 4H, SC<u>H</u>₂), 3.10 (m, 8H, *n*-Bu₄N⁺), 2.17 (brs, 4H, N<u>H</u>₂), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.97 (m, 8H, *n*-Bu₄N⁺).

¹³С ЯМР (DMSO-D6, δ, м.д.): 59.3 (*n*-Bu₄N⁺), 43.2 (S<u>C</u>H₂), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 13.8 (*n*-Bu₄N⁺).

ИК-спектр (CCl₄, v, см⁻¹): 3587, 3366, 3294, 2965, 2928, 2882, 1651, 1588, 1520,1464, 1389, 1302, 1154, 998, 881, 850, 740, 725, 526.

(*n*-Bu₄N)[2-B₁₀Br₉S(CH₂CH₂NH₂)₂] (VI) получали аналогично V. Выход 81%.

	С	Н	Ν	S
Найдено, %:	20.25;	4.16;	3.52;	2.67.
Для $C_{20}H_{48}B_{10}Br_9N_3S_1$				
вычислено, %:	20.19;	4.06;	3.53;	2.69.

¹¹В ЯМР (DMSO-D6, δ, м.д.): -0.5 (s, 1B, B1), -4.5 (s, 1B, B10), -13.3 (s, 8B, B2–B9).

¹H \Re MP (DMSO-D6, δ , м.д.): 3.45 (s, 4H, C<u>H</u>₂N), 3.10 (m, 8H, *n*-Bu₄N⁺), 2.68 (t, 4H, SC<u>H</u>₂) 2.18 (brs, 4H, N<u>H</u>₂), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.97 (m, 8H, *n*-Bu₄N⁺).

¹³C ЯМР (DMSO-D6, δ, м.д.): 59.3 (*n*-Bu₄N⁺), 42.5 (S<u>C</u>H₂), 36.9 (<u>C</u>H₂N), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 13.8 (*n*-Bu₄N⁺).

ИК-спектр (CCl₄, v, см⁻¹): 3584, 3359, 3300, 2964, 2921, 2879, 1641, 1589, 1518,1460, 1395, 1299, 1150, 1001, 880, 847, 742, 720, 531.

(*n*-Bu₄N)[2-B₁₀Br₉S(CH₂CH₂CH₂NH₂)₂] (VII) получали аналогично V. Выход 83%.

	С	Н	Ν	S	
Найдено, %:	21.72;	4.40;	3.50;	2.61.	

С Н Для С₂₂H₅₂B₁₀Br₉N₃S₁

вычислено, %:

Ν

S

¹¹ВЯМР (DMSO-D6, δ, м.д.): -0.5 (s, 1B, B1), -4.4 (s, 1B, B10), -13.4 (s, 8B, B2–B9).

¹H ЯМР (DMSO-D6, δ , м.д.): 3.35 (t, 4H, C<u>H</u>₂N), 3.10 (m, 8H, *n*-Bu₄N⁺), 2.60 (t, 4H, SC<u>H</u>₂) 2.17 (brs, 4H, N<u>H</u>₂), 1.88 (m, 4H, SCH₂C<u>H</u>₂), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.97 (m, 8H, *n*-Bu₄N⁺).

¹³С ЯМР (DMSO-D6, б, м.д.): 59.3 (*n*-Bu₄N⁺), 41.5 (S<u>C</u>H₂), 36.0 (<u>C</u>H₂N), 29.4 (SCH₂<u>C</u>H₂), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 13.8 (*n*-Bu₄N⁺).

ИК-спектр (CCl₄, v, см⁻¹): 3580, 3361, 3301, 2959, 2923, 2881, 1638, 1593, 1524,1454, 1383, 1304, 1147, 1004, 879, 852, 738, 718, 521.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работе [28] описан метод получения перхлорированных производных *клозо*-декаборатного аниона с экзополиэдрическими аминогруппами с использованием сульфурилхлорида в качестве хлорирующего агента.

Получение пербромированных аналогов сульфониевых производных с N-алкилфталимидными группами $[2-B_{10}Br_9S((CH_2)_nN(CO)_2C_6H_4)_2]^-$ (n = 1, 2, 3) протекает в схожих условиях: в ацетонитриле в инертной атмосфере с использованием Br₂ в качестве галогенирующего агента. Реакция протекает при комнатной температуре, и полное замещение атомов водорода на бром происходит примерно за 24 ч (рис. 1).

В отличие от исходных соединений и хлорированных производных, их бромированные аналоги гораздо хуже растворяются в ацетонитриле и дихлорметане.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 9 2020

Рис. 2. Спектры ¹¹В ЯМР анионов [2-B₁₀Cl₉S(CH₂CH₂CH₂N(CO)₂C₆H₄)₂)₂]⁻ (1) и IV (2).

Сигналы в спектрах ¹¹В ЯМР соединений II–IV существенно вырождены по сравнению с хлорированными аналогами (рис. 2), поэтому мы наблюдаем только два сигнала от апикальных вершин при -0.5 и -4.7 м.д. и один широкий сигнал от экваториальных атомов бора при -13.2 м.д. В спектрах ¹Н ЯМР наблюдается картина, аналогичная и для хлорированных производных: сигналы от α -метиленовых групп в соединениях II—IV смещаются на 0.8 м.д. в слабое поле по сравнению с исходным небромированным про-изводным *клозо*-декаборатного аниона, сигналы от остальных групп существенно не меняются (рис. 3).

В спектрах ¹³С ЯМР наблюдается смещение сигналов от α -метиленовых групп на 2 м.д. в область слабого поля, смещения остальных сигналов практически не происходит (рис. 4).

Аналогично хлорированным производным (n-Bu₄N)[2-B₁₀Cl₉S((CH₂)_nPht)₂] снять защитную группу можно метиламином (рис. 5).

В спектрах ¹¹В ЯМР соединений V–VII существенных изменений не происходит, в ¹H, ¹³С ЯМР и ИК-спектрах исчезают сигналы от фталимидных групп и появляются сигналы от аминогруппы.

Кристаллографически независимая часть триклинной элементарной ячейки ($P\overline{1}$) I включает комплексный катион [Ag(PPPh₃)₄]⁺ и анион [2-B₁₀H₉S(CH₂N(CO)₂C₆H₄)₂]⁻ (рис. 6). Одна из фталимидных групп экзополиэдрического заместителя I разупорядочена и уточнена в трех позициях с заселенностью 0.4 : 0.4 : 0.2 (рис. 7). При этом разупорядоченная фталимидная группа развернута относительно второй таким образом, что углы между плоскостями, в которых лежат эти группы, находятся в диапазоне от 77.4° до 87.6°. Следует отметить, что данный угол увели-

Рис. 3. Спектр 1 Н ЯМР соединения IV.

Рис. 4. Спектр ¹³С ЯМР соединения IV.

Рис. 5. Схема процесса снятия фталимидной защиты метиламином.

Рис. 6. Фрагмент структуры соединения І.

Рис. 7. Разупорядочение одной из фталимидных групп в соединении І.

Рис. 8. Строение аниона в структуре IV.

чивается с уменьшением спейсерной цепи. Так, в анионе $[2-B_{10}H_9S(CH_2CH_2N(CO)_2C_6H_4)_2]^$ этот угол составляет 57.0°, в анионе $[2-B_{10}Cl_9S(CH_2CH_2CH_2N(CO)_2C_6H_4)_2]^- - 34.9°$ [26], а в соединении IV – 41.2°. Расстояние от плоскости неразупорядоченной группы до ближайшего атома кислорода О2 второй группы составляет 2.944 Å.

Кристаллографически независимая часть триклинной элементарной ячейки (*P*1) IV со-

Рис. 9. Фрагмент упаковки І.

стоит из катиона $(Bu_4N)^+$, аниона $[2-B_{10}Br_9S(CH_2CH_2CH_2N(CO)_2C_6H_4)_2]^-$ и молекулы DMF (рис. 8). При этом молекула растворителя находится между двумя фталимидными группами и разупорядочена, молекулу удалось локализовать только с заселенностью 0.5.

Длины связей B–S в соединениях I и IV составляют 1.891(7) и 1.894(6) Å (табл. 2) соответственно, а в хлорированном анионе $[2-B_{10}Cl_9S(CH_2CH_2CH_2N(CO)_2C_6H_4)_2]^-$ – 1.890(3) Å. Таким образом, замена атомов водорода на хлор и бром практически не влияет на эту

Таблица 2. Длины связей (Å) и валентные углы (град) для соединений I и IV

Параметр	Ι	IV
B–S, Å	1.891(7)	1.894(6)
S–C, Å	1.834(7) 1.841(7)	1.812(7) 1.815(6)
C–N, Å	1.430(8) 1.44(1)	1.451(8) 1.463(8)
BSC, град	104.3(3) 103.0(3)	105.0(3) 103.8(3)
CSC, град	100.2(4)	105.3(3)

величину и согласуется с длинами связей в других сульфониевых производных [24, 26–28].

В кристалле I (рис. 9) катионы $[Ag(PPPh_3)_4]^+$ и анионы $[2-B_{10}H_9S(CH_2N(CO)_2C_6H_4)_2]^-$ образуют катионно-анионные слои, параллельные плоскости *ab*. Атомы Н *клозо*-декаборатного аниона образуют короткие контакты с протонами $[Ag(PPPh_3)_4]^+$, которые лежат в диапазоне 2.29– 2.69 Å.

В структуре IV (рис. 10) анионы [2-В₁₀Вг₉S(CH₂CH₂CH₂N(CO)₂C₆H₄)₂]⁻ обращены друг к другу экзополиэдрическими заместителями S(CH₂CH₂CH₂N(CO)₂C₆H₄)₂, образуя слой, параллельный плоскости *ab*, из фталимидных фрагментов. При этом анионы [2-B₁₀Br₉S(CH₂CH₂CH₂N(CO)₂C₆H₄)₂]⁻ располагаются между катионами Bu₄N⁺ в одном слое.

ЗАКЛЮЧЕНИЕ

В результате данного исследования разработан метод получения пербромированных сульфониевых производных *клозо*-декаборатного аниона с экзополиэдрическими аминогруппами $[2-B_{10}Br_9S((CH_2)_nNH_2)_2]^-$ (n = 1-3). Метод заключается в бромировании соответствующих фталимидов $[2-B_{10}Br_9S((CH_2)_nN(CO)_2C_6H_4)_2]^-$ (n = 1-3)

2020

Рис. 10. Фрагмент упаковки II.

элементарным бромом в ацетонитриле и последующем снятии фталимидной защиты метиламином.

ФИНАНСИРОВАНИЕ РАБОТЫ

Элементный анализ на углерод, азот, водород и серу выполнен в Центре коллективного пользования "ИРЭА".

Спектры ¹H, ¹¹B, ¹³С ЯМР и РСА полученных соединений выполнены в Центре коллективного пользования Института общей и неорганической химии им. Н.С. Курнакова РАН.

Исследование поддержано грантом Российского научного фонда (проект № 19-73-00251).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Avdeeva V.V., Polyakova I.N., Churakov A.V. et al. // Polyhedron. 2019. V. 162. P. 65. https://doi.org/10.1016/j.poly.2019.01.051
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. Р. 335. [Авдеева В.В., Малинина Е.А., Кузнецов Н.Т. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 334.] https://doi.org/10.1134/S003602362003002X
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Polyhedron. 2016. V. 105. P. 205. https://doi.org/10.1016/j.poly.2015.11.049

- Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Commun. 2010. V. 75. P. 1149. https://doi.org/10.1135/cccc2010054
- Matveev E. Yu., Akimov S.S., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1513. https://doi.org/10.1134/S003602361912009X
- Avdeeva V.V., Polyakova I.N., Vologzhanina A.V. et al. // Polyhedron. 2017. V. 123. P. 396. https://doi.org/10.1016/j.poly.2016.12.009
- Spokoyny A.M., Machan C.W., Clingerman D.J. et al. // Nature Chem. 2011. V. 3. P. 590. https://doi.org/10.1038/nchem.1088
- Kubasov A.S., Matveev E.Yu., Turyshev E.S. et al. // Dokl. Chem. 2017. V. 477. P. 257. https://doi.org/10.1134/S0012500817110088
- Zhang X., Dai H., Yan H. et al. // J. Am. Chem. Soc. 2016. V. 138. № 13. P. 4334. https://doi.org/10.1021/jacs.6b01249
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. P. 1673. https://doi.org/10.1134/S0036023617130022
- Zhizhin K.Yu., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. P. 2089. https://doi.org/10.1134/S0036023610140019
- Kubasov A.S., Matveev E.Yu., Retivov V.M. et al. // Russ. Chem. Bull. 2014. V. 63. P. 187. https://doi.org/10.1007/s11172-014-0412-2
- Drozdova V.V., Lisovskii M.V., Polyakova I.N. et al. // Russ. J. Inorg. Chem. 2006. V. 51. P. 1716. https://doi.org/10.1134/S00360236061100664
- 14. Avdeeva V.V., Malinina E.A., Zhizhin K.Yu. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 514.

 Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 563. https://doi.org/10.1134/S1070328419080098

ПЕРБРОМИРОВАННЫЕ СУЛЬФОНИЛ-КЛОЗО-ДЕКАБОРАТЫ

- 16. *Malinina E.A., Kochneva I.K., Avdeeva V.V. et al.* // Russ. J. Inorg. Chem. 2019. V. 64. P. 1210. https://doi.org/10.1134/S0036023619100085
- 17. *Shmal'ko A.V., Sivaev I.B.* // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1726. https://doi.org/10.1134/S0036023619140067
- 18. *Gu W., Ozerov O.V. //* Inorg. Chem. 2011. V. 50. P. 2726. https://doi.org/10.1021/ic200024u
- Geis V., Guttsche K., Knapp C. et al. // Dalton Trans. 2009. V. 15. P. 2649. https://doi.org/10.1039/B821030F
- 20. *Warneke J., Konieczka S.Z., Hou G.-L. et al.* // Phys. Chem. Chem. Phys. 2019. V. 21. № 11. P. 5903. https://doi.org/10.1039/c8cp05313h
- Holub J., Anwar S. El., Jelínek T. et al. // J. Inorg. Chem. 2017. V. 38. P. 4499. https://doi.org/10.1002/ejic.201700651
- 22. Kravchenko E.A., Gippius A.A., Korlyukov A.A. et al. // Inorg. Chim. Acta. 2016. V. 447. P. 22. https://doi.org/10.1016/j.ica.2016.03.025

- Sharma M., Sethio D., Lawson Daku L.M. et al. // J. Phys. Chem. A. 2019. V. 123. № 9. P. 1807. https://doi.org/10.1021/acs.jpca.8b11638
- 24. Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
- 25. *Kubasov A.S., Matveev E.Yu., Turyshev E.S. et al. //* Dokl. Chem. 2018. V. 483. P. 263. https://doi.org/10.1134/S001250081811006X
- 26. Kubasov A.S., Matveev E.Yu., Polyakova I.N. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 198. https://doi.org/10.1134/S0036023615020084
- 27. *Kubasov A.S., Matveev E.Yu., Turyshev E.S. et al.* // Inorg. Chim. Acta. 2018. V. 477. P. 277. https://doi.org/10.1016/j.ica.2018.03.013
- Kubasov A.S., Turishev E.S., Golubev A.V. et al. // Inorg. Chim. Acta. 2020. V. 507. P. 119589. https://doi.org/10.1016/j.ica.2020.119589
- APEX2 (V. 2009, 5-1), SAINT (V7.60A), SADABS (2008/1). Bruker AXS Inc., Madison, Wisconsin, USA, 2008-2009.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726