ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2020, том 65, № 8, с. 1044–1054

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 544.723+546.62

НОВЫЙ КОМПЛЕКСООБРАЗУЮЩИЙ МИНЕРАЛЬНО-ОРГАНИЧЕСКИЙ НОСИТЕЛЬ НА ОСНОВЕ ОКСИГИДРОКСИДА АЛЮМИНИЯ, МОДИФИЦИРОВАННОГО НИТРИЛТРИ(МЕТИЛЕНФОСФОНОВОЙ) КИСЛОТОЙ

© 2020 г. Т. Н. Кропачева^{*a*, *}, А. Р. Газизянова^{*a*}, Ф. З. Гильмутдинов^{*b*}

^аУдмуртский государственный университет, ул. Университетская, 1, Ижевск, 426034 Россия

^bУдмуртский федеральный исследовательский центр УрО РАН, ул. им. Татьяны Барамзиной, 34, Ижевск, 426067 Россия *e-mail: krop@uni.udm.ru Поступила в редакцию 14.01.2020 г. После доработки 11.03.2020 г. Принята к публикации 31.03.2020 г.

Предложен способ химического модифицирования поверхности оксигидроксида алюминия (бемит γ -AlO(OH)) комплексообразующим лигандом – нитрилтри(метиленфосфоновой) кислотой (НТФ). Методами РФА, РФЭС, ИК-спектроскопии исследован исходный и НТФ-модифицированный бемит, изучены кислотно-основные и комплексообразующие свойства НТФ на поверхности. Установлено, что в связывании с поверхностью бемита принимает участие одна из трех фосфоновых групп НТФ. Определена поверхностиа концентрация и ступенчатые константы диссоциации привитой НТФ. Изучение зависимости сорбции Ni(II) от кислотности среды показывает, что модифицирующее покрытие увеличивает сорбционную способность бемита (смещение pH₅₀ на одну единицу в область более низких значений). Сорбция ионов Ni(II) из водных растворов с позиции теории образования поверхностных комплексов может быть описана моделями, включающими комплексы состава \equiv Al–ONi⁺ и \equiv Al–ONi(OH) в случае бемита и \equiv Al–LH_i Ni^{i–3} (*i* = 0, 1, 2, 3) в случае НТФ-бемита. Закрепление НТФ на поверхности приводит к уменьшению устойчивости комплексов Ni(II) но сравнению с их аналогами в растворах. Предложен механизм связывания ионов Ni(II) НТФ-бемитом. Полученный новый органоминеральный носитель может быть использован для закрепления ионов различных металлов, образующих устойчивые комплексы с фосфоновыми кислотами.

Ключевые слова: химическое модифицирование поверхности, оксигидроксид алюминия, фосфоновые комплексоны, комплексообразование на поверхности

DOI: 10.31857/S0044457X20080073

введение

Минеральные носители на основе оксидов. оксигидроксидов и гидроксидов кремния (SiO₂), железа (Fe₃O₄, γ -Fe₂O₃, α -FeO(OH)), алюминия $(\gamma-Al_2O_3, \gamma-AlO(OH), \alpha-Al(OH)_3)$, марганца (MnO₂), магния (MgO), цинка (ZnO), титана (TiO₂) и др. служат подложками для закрепления на их поверхности ионов различных металлов, включая тяжелые, благородные, каталитически активные. Это является основой для использования (гидр)оксидных носителей в процессах сорбшионной очистки загрязненных вод, концентрирования и разделения ионов металлов, получения нанесенных гетерогенных металлокатализаторов, синтеза фото-/электрохимически активных материалов и др. Для более эффективного удерживания ионов тяжелых металлов (Cu(II), Cd(II), Co(II), Ni(II), Pb(II), As(III), Cr(III), Zn(II), Mn(II), Hg(II) и др.) поверхность (гидр)оксидов может быть дополнительно химически модифицирована соединениями, функциональные группы которых проявляют более сильные или специфичные комплексообразующие свойства по сравнению с поверхностными ОН-группами исходных носителей [1, 2]. Одним из новых подходов к функционализации поверхности (гидр)оксидов является использование в качестве модификаторов различных фосфоновых кислот, содержащих в качестве якоря фосфоновую группу – РО(ОН)₂ [3–7]. Для получения комплексообразующих носителей наряду с различными производными алкил/арилфосфоновых кислот, содержащими одну концевую комплексообразующую группу (-NH2, -COOH) [8, 9], более перспективными модификаторами могут быть фосфоновые комплексоны, которые помимо якорной -РО(ОН)2-группы содержат не-

сколько других координационно-активных центров (-COOH, -OH, -PO(OH)₂, атомы N), при связывании которых с ионами металлов могут образовываться устойчивые хелатные циклы. Большой ассортимент коммерчески доступных фосфоновых комплексонов (имино-N-уксусная-N-метиленфосфоновая кислота/Nфосфонометилглицин (ФМГ)/глифосат, имино-N, N-диуксусная-N-метиленфосфоновая кислота (ИДУМФ), 1-гидроксиэтилидендифосфоновая кислота (ОЭДФ), иминоди(метиленфосфоновая) кислота (ИДФ), N-гидроксиэтилимино-N, N-ди(метиленфосфоновая) кислота (ГЭИДФ) нитрилтри(метиленфосфоновая) кисэтилендиамин-N,N,N',N'-тетлота $(HT\Phi),$ ра(метиленфосфоновая) кислота (ЭДТФ), диэтилентриамин N,N,N',N'-пента(метиленфосфоновая) кислота (ДТПФ) и др.) значительно упрошает синтез подобных химически модифицированных (гидр)оксидов. В литературе имеются немногочисленные сведения по функционализации поверхности (гидр)оксидов (SiO₂, Fe₃O₄, γ-Fe₂O₃, α -FeO(OH), γ -AlO(OH)) различными фосфоновыми комплексонами [10-15]. При этом не выяснены до конца вопросы о строении образующегося фосфонового покрытия, механизме связывания ионов металлов с молифицированной поверхностью и особенно о взаимосвязи межлу процессом комплексообразования ионов металлов со свободным и закрепленным на поверхности фосфоновым комплексоном. Среди различных (гидр)оксидов металлов удобными объектами для модификации являются оксиды Al₂O₃, оксигидроксиды AlO(OH) и гидроксиды Al(OH)₃ алюминия ввиду их доступности. нетоксичности. большой удельной поверхности, химической устойчивости, высокой концентрации активных поверхностных центров, участвующих в связывании модификаторов [16]. В связи с этим целью настоящей работы было изучение условий модифицирования поверхности одного из оксигидроксидов алюминия (γ-AlO(OH), бемит) нитрилтри(метиленфосфоновой) кислотой (НТФ) и комплексное исследование физико-химических свойств полученного носителя (НТФ-бемит), включая протолитические и сорбционные характеристики по отношению к ионам никеля(II).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения бемита γ -AlO(OH) использовали метод щелочного гидролиза соли алюминия, описанный в работе [17]. Для этого к водному раствору Al(NO₃)₃ · 9H₂O (20.0 г в 50 мл воды) по каплям добавляли раствор NaOH (6.49 г в 30 мл воды) при постоянном перемешивании со скоростью ~3 мл/мин. Полученный аморфный осадок выдерживали при температуре 90°C в течение 4 ч, тщательно промывали дистиллированной водой до отрицательной реакции на ионы NO_3^- с дифениламином (чувствительность реакции 1–5 мкг

 NO_3^- в пробе), отфильтровывали, сушили на воздухе при 20°С и далее в сушильном шкафу при 220°С в течение 4 ч. Образование бемита происходит в результате дегидратации по схеме: $Al(OH)_3 \cdot nH_2O \rightarrow байерит \alpha$ - $Al(OH)_3 \rightarrow$ гиббсит γ - $Al(OH)_3 \rightarrow$ псевдобемит \rightarrow бемит γ -AlO(OH).

В работе использовали коммерческий препарат НТФ (продукт AP 1, серия Cublen®, Zschimmer and Schwarz). Раствор комплексона (0.1 моль/л) готовили путем растворения навески препарата в дистиллированной воде с последующей стандартизацией методом потенциометрического титрования раствором щелочи. Модифицирование поверхности бемита проводили методом иммобилизации путем обработки навески бемита (1.0 г) раствором НТФ (0.1 моль/л, 10 мл) при 60°С в течение 3 ч. Далее сорбент отфильтровывали, тщательно промывали дистиллированной водой до рН 7 и сушили на воздухе (60°С, 2 ч). Для определения содержания привитой НТФ определяли остаточную концентрацию НТФ в фильтрате после предварительного окисления НТФ до фосфата. Для этого полученный фильтрат разбавляли в 10⁴ раз, к полученному раствору объемом 50 мл добавляли 1 мл 30%-ной H₂SO₄, 0.4 г (NH₄)₂S₂O₈ и медленно упаривали на водяной бане до объема ~10 мл. Далее раствор переносили в колбу на 50 мл и определяли содержание фосфат-ионов спектрофотометрическим методом по реакции образования фосфорномолибденовой сини. Измерение оптической плотности окрашенных растворов проводили на спектрофотометре UNICO 1201 при $\lambda = 882$ нм в кювете 5 см. Рассчитанное содержание НТФ на поверхности бемита составляет 0.83 (± 0.02) ммоль/ г.

Для определения содержания гидроксогрупп на поверхности бемита использовали реакцию замещения фторид-ионами: \equiv Al–OH + F⁻ $\rightarrow \equiv$ Al–F + + OH⁻. Для этого навеску бемита (0.05 г) помещали в раствор NaF (1 ммоль/л) объемом 50 мл (pH 5, установлен добавлением HNO₃). Полученную суспензию перемешивали в течение 24 ч, затем сорбент отфильтровывали, а остаточную концентрацию фторид-ионов определяли с помощью фторид-селективного электрода ЭЛИТ 221 методом многократных стандартных добавок. Рассчитанная концентрация OH-групп на поверхности бемита равна 0.92 (±0.01) ммоль/ г.

Изучение кислотно-основных свойств бемита/НТФ-бемита проводили методом потенциометрического титрования (иономер И-160 МИ) суспензии (концентрация 1 г/л) стандартным раствором КОН при температуре $(20 \pm 1)^{\circ}$ С и постоянной ионной силе раствора (I = 0.1 моль/л, КСІ). Математическую обработку кривых потенциометрического титрования проводили с использованием программы Hyperquad 2008 [18].

Для изучения зависимости сорбции Ni(II) на бемите/НТФ-бемите от кислотности среды к растворам NiCl₂ (0.1 ммоль/л) с предварительно установленными исходными значениями рН (добавлением HCl/KOH) в присутствии фонового электролита (KCl) с общей ионной силой I = 0.1 моль/л добавляли навески сорбента (содержание 1 г/л). Суспензии встряхивали в течение 24 ч при температуре $(20 \pm 1)^{\circ}$ С, затем сорбент удаляли центрифугированием, измеряли рН центрифугата (равновесный раствор) и определяли в нем остаточную концентрацию Ni(II) спектрофотометрическим методом по реакции образования окрашенного комплекса с диметилглиоксимом в щелочной среде в присутствии окислителя (йод). Измерение оптической плотности проводили на спектрофотометре UNICO 1201 при $\lambda = 470$ нм в кювете 5 см. Относительная погрешность методики определения составляет 10% [19]. Степень сорбции Ni(II) рассчитывали по формуле: $\Gamma(\%) = 100(C_0 - C)/C_0$, где C_o и C – исходная и равновесная концентрация раствора соответственно. Моделирование сорбционных кривых с позиций теории комплексообразования на поверхности было проведено с использованием программ Hyss и HypSpec [18].

Статическая обменная емкость $HT\Phi$ -бемита по ионам Ni(II) была определена по изотерме сорбции, полученной для серии растворов с исходной концентрацией Ni(II) в диапазоне 10^{-4} — 10^{-3} моль/л при pH 6.5.

Рентгенодифракционные спектры порошков получали на рентгеновском дифрактометре ДРОН-3.0 в монохроматическом FeK_{α} -излучении в интервале брэгговских углов 25° —115° в режиме пошагового сканирования с шагом 0.1° и временем экспозиции в точке 10 с. Для оценки среднего размера кристаллитов использовали формулу Дебая—Шеррера.

Рентгенофотоэлектронные спектры (РФЭС) измеряли на электронном спектрометре SPECS с использованием возбуждающего MgK_α-излучения (hv = 1253.6 эB) в режиме постоянной энергии пропускания 15 эВ энергоанализатора Phoibos-150. Измерения проводили при остаточном давлении в камере анализатора 2×10^{-9} Торр с использованием безмасляного насоса при температуре 293 К. Исследуемые порошки без какой-либо предварительной обработки наносили тонким слоем на поверхность чистого индия и устанавливали на молибденовом держателе таким образом, чтобы в зону РФЭС-анализа попадала только поверхность исследуемого порошка (окружность пятна диаметром 5 мм). Калибровку шкалы энергии связи спектрометра проводили по положению линии $Au4f_{7/2}$ $(E_{cB} = 84.0 \text{ эВ})$. Погрешность в измерении энергии

Рис. 1. Порошковые дифрактограммы бемита (*1*), НТФ-бемита (*2*).

связи составляла ± 0.1 эВ. Обработку результатов выполняли с использованием программного обеспечения CasaXPS. Линии спектров при разложении на компоненты аппроксимировали смешанной функцией Гаусса–Лоренца.

ИК-Фурье-спектры полученных образцов регистрировали на ИК-спектрометре ФСМ-2201 в диапазоне частот $400-4000 \text{ см}^{-1}$ (шаг 2 см⁻¹) в таблетках КВг. Для этого 2.5 мг образца измельчали в агатовой ступке с 250 мг КВг и прессовали таблетку с помощью ручного гидравлического пресса.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Положение и относительная интенсивность линий на дифрактограмме синтезированного оксигидроксда алюминия указывают на то, что его кристаллическая структура соответствует бемиту γ -AlO(OH) (ICPDS card 3-65). Химическая модификация поверхности бемита НТФ не приводит к изменению кристаллической решетки бемита (рис. 1). Рассчитанный по формуле Дебая—Шеррера размер кристаллитов бемита и НТФ-бемита одинаковый и составляет 23 ± 3 нм.

В ИК-спектре полученного бемита (рис. 2) присутствуют полосы при 476 и 623 см⁻¹, обусловленные валентными колебаниями связи Al–O. Интенсивные полосы при 3600–3000 и 1635 см⁻¹ относятся соответственно к валентным и деформационным колебаниям связей O–H (OH-группы бемита и сорбированная вода). Характерный для бемита узкий пик при 1070 см⁻¹ относится к деформационным колебаниям водородных связей OH⁻⁻⁻OH межплоскостных гидроксогрупп [17]. Посторонний пик при 1384 см⁻¹ связан с хемо-

сорбированными NO_3^- -ионами, поскольку прекурсором синтеза бемита является $Al(NO_3)_3$. В

Рис. 2. ИК-спектры бемита (1), НТФ-бемита (2), НТФ (3).

ИК-спектрах чистого препарата НТФ в области колебаний фосфоновой группы (900–1400 см⁻¹) присутствуют характеристические полосы, относящиеся к валентным колебаниям фосфорильной группы P=O (1147 см⁻¹) и валентным асимметричным (1002 см⁻¹) и симметричным (939 см⁻¹) колебаниям связи P–O протонированных фосфоновых групп ($-H_2PO_3$, $-HPO_3^-$). Широкие полосы в области 2100–2300 и 2600–2800 см⁻¹ относятся к валентным колебаниям P–OH [20]. В спектре бемита, модифицированного НТФ, по сравнению с исходным образцом наблюдается усиление поглощения в области колебаний фосфоновых групп с максимумом около 1145 см⁻¹ (колебания связей P=O и P–OAI [21]).

РФЭ-спектры образцов НТФ. бемита и НТФбемита представлены на рис. 3. Из сопоставления обзорных спектров отчетливо видно, что при закреплении НТФ на поверхности бемита наблюдается появление новых характерных линий, соответствующих углероду (C1s), фосфору (P2p) и азоту (N1s). Связывание $HT\Phi$ с поверхностью бемита отражается в появлении в спектре Al2p спектральной компоненты с энергией связи $E_{cb} = 75.1 \ \Im B$ (связь Al-OP) в дополнение к компоненте 74.3 эВ, характерной для связи Al–O в оксидах [20]. Для чистого препарата НТФ спектр Р2р представлен одной линией с *E*_{св} = 134.1 эВ, отвечающей эквивалентному состоянию атомов фосфора во всех трех фосфоновых группах молекулы НТФ. Спектр фосфора для НТФ, закрепленной на поверхности бемита, содержит две компоненты с энергиями связи 134.1 и 133.3 эВ с приблизительно равным вкладом. Два близких по положению пика в спектре Р2р наблюдали ранее для различных сорбированных фосфоновых комплексонов (глицин-N,N-ди(метиленфосфоновая) кислота на стали

[22], имино-N, N-диуксусная-N-метиленфосфоновая кислота на Fe_3O_4 [12], $HT\Phi$ на алюминии [23]). Можно допустить, что появление низкоэнергетической составляющей при закреплении $HT\Phi$ на поверхности бемита связано с образованием нового состояния атомов фосфора при образовании химической связи P-OAl. Спектр N1s для препарата кристаллической НТФ состоит из одной компоненты 402.5 эВ, относящейся к протонированному третичному атому азота бетаиновой структуры комплексона. Для НТФ на поверхности бемита в спектре N1s присутствуют две близкие по интенсивности компоненты с $E_{\rm cB} = 402.5$ и 400.1 эВ. Появление дополнительной спектральной компоненты с $E_{\rm cB} = 400.1$ эВ может быть связано с образованием донорно-акцепторной связи между атомом азота НТФ и атомами алюминия поверхности, являющимися сильными центрами Льюиса. Схожие по положению спектральные компоненты в спектрах N1s наблюдались ранее для поверхностно-связанных фосфоновых комплексонов [12, 22, 23]. Пик N1s с E_{св} = 407.8 эВ в спектре чистого бемита относится к азоту хемосорбированных нитрат-ионов. При разложении спектра углерода C1s HTФ (свободной и связанной с поверхностью) выделено несколько компонент, главная из которых (285.1 эВ) отвечает метиленовым CH₂-группам НТФ, а компоненты 286.5 и 288.9 эВ связаны с присутствием С-О- и С=О-состояний (загрязнение поверхности углеродсодержащими соединениями). Спектр кислорода O1s для чистого бемита может быть описан двумя составляющими: 531.0 эВ (Al-O) и 532.8 эВ (Al-OH) [20]. Два неэквивалентных состояния кислорода фиксируются для чистой НТФ: 531.5 эВ (Р=О) и 533.0 эВ (Р-ОН). Основная компонента спектра О1*s* для НТФ-бемита $E_{cB} = 532.5$ эВ, вероятно, связана с образованием на поверхности новой связи P-OAl; при этом остальные компоненты отвечают связям Р-ОН (533.4 эВ) и Al-O (531.2 эВ).

Таким образом, результаты исследований ИКи РФЭ-спектров воздушно-сухих образцов бемита и НТФ-бемита показывают, что состояние $HT\Phi$ на поверхности характеризуется наличием как связанных с поверхностью, так и свободных фосфоновых групп. Дальнейшие исследования свойств носителей проводили с образцами, находящимися в контакте с водной фазой, что не исключало изменения характера взаимодействия модификатора с поверхностью. Важнейшей характеристикой комплексообразующих носителей являются протолитические свойства привитых лигандов, для изучения которых используют титриметрические методы. Математическая обработка кривых кислотно-основного титрования носителей с привитыми соединениями является сложной задачей, решение которой должно учи-

Рис. 3. РФЭ-спектры и их разложение на компоненты бемита (1), НТФ (2), НТФ-бемита (3).

Рис. 4. Кривые кислотно-основного титрования бемита (1), НТФ-бемита (2).

тывать наличие на поверхности электрического заряда, связанного с диссоциацией привитых групп, а также возможный вклад остаточных поверхностных групп, взаимодействие между привитыми группами, энергетическую неоднородность поверхности и др. [3, 11]. В настоящей работе моделирование кривых кислотно-основного титрования бемита и НТФ-бемита в условиях постоянной ионной силы раствора (I = 0.1 моль/л) выполнено с использованием простейшей неэлектростатической модели поверхности, т.е. без учета электростатического фактора, связанного с наличием на поверхности заряда. Подобная "псевдогомогенная" модель используется в литературе для описания протолитических свойств различных носителей наряду с более сложными моделями, учитывающими наличие двойного электрического слоя. При моделировании кривой потенциометрического титрования суспензии бемита стандартным раствором щелочи (рис. 4) учитывали амфотерные свойства поверхностных OH-групп [16]: \equiv AlOH + H⁺ $\leftrightarrow \equiv$ AlOH₂⁺; \equiv AlOH \leftrightarrow $\leftrightarrow = AlO^- + H^+$. Рассчитанные константы равновесий (табл. 1), а также точка нулевого заряда поверхности (р H_{TH3} 8.5 ± 0.2) находятся в пределах значений, приводимых для бемита в литературе [16].

Химическое модифицирование бемита НТФ, подобно модификации других (гидр)оксидов металлов фосфоновыми кислотами [4–6], происходит за счет реакции лигандного замещения поверхностных ОН-групп. Поскольку установленное содержание привитой НТФ на поверхности бемита близко к концентрации поверхностных ОН-групп исходного бемита (см. выше), можно предположить, что закрепление молекулы НТФ, являющейся в водных растворах шестиосновной кислотой (H₆L), происходит с образованием только моноядерных (включающих один атом алюминия поверхности) комплексов по схеме:

$$\equiv AI - OH + H_n L^{n-6} \rightarrow$$
$$\rightarrow \equiv AI - LH_{n-i}^{n-i-5} (i-1)H^+ + H_2O$$

Ранее авторами работ, исследовавших адсорбцию НТФ на гетите [10, 24] и бемите [13], было сделано аналогичное предположение. Результаты математической обработки кривых титрования НТФ-бемита (рис. 4) показывают, что при закреплении НТФ на поверхности происходит понижение основности кислоты; привитая к поверхности НТФ ведет себя как четырехосновная

кислота ≡Al-LH₄, что можно логично объяснить участием одной из фосфоновых групп НТФ во взаимодействии с поверхностью. Сопоставление констант лиссоциации привитых к поверхности групп НТФ с соответствующими константами для свободной НТФ в растворе (табл. 1) показывает, что связывание с поверхностью уменьшает основность атома азота, как это наблюдалось ранее для привитых к кремнезему аминогрупп [3, 11]. Причиной понижения основности атома азота может быть его координационное взаимодействие с поверхностными атомами алюминия, установленное по данным РФЭС. Кислотность фосфоновых групп НТФ при закреплении на поверхности немного уменьшается по сравнению с аналогом в растворе аналогично поведению закрепленных на кремнеземе аминоди(метиленфосфоновых) групп [11, 15].

Таким образом, на основании полученных нами данных и литературных сведений по возможным механизмам взаимодействия фосфоновой группы с оксидными носителями [4-6] можно сделать предположение о строении привитого слоя НТФ на бемите. Спектральные данные (ИК-, РФЭС), относящиеся к воздушно-сухим образцам, указывают на наличие свободных и связанных с поверхностью фосфоновых групп. Установленная стехиометрия между содержанием ОН-групп в исходном бемите и привитой НТФ (1.1:1.0), а также протолитические характеристики привитой НТФ, характеризующие гидратированный образец, где НТФ является четырехосновной кислотой, указывают на то, что в связывании с поверхностью принимает участие одна фосфоновая группа молекулы НТФ, образующая связь с одним атомом алюминия. Аналогичное предположение было сделано ранее при изучении сорбции НТФ на бемите [13] и гетите [10]. При этом свободные фосфоновые группы НТФ, а также атом азота являются функционально-активными центрами, которые могут участвовать в координации ионов различных металлов.

В качестве модельного катиона для изучения комплексообразующих свойств НТФ-бемита был выбран двухзарядный катион Ni(II), комплексы которого с НТФ исследованы в водных растворах [25-27] и в кристаллическом состоянии [27, 28]. Одним из важнейших параметров, влияющих на сорбцию ионов металлов комплексообразующими сорбентами, является кислотность среды. Сорбция ионов Ni(II) бемитом с увеличением pH раствора увеличивается (рис. 5), как это наблюдается для различных ионов металлов на (гидр)оксидах алюминия [16]. Величина рН, при которой в данных условиях сорбируется 50% ионов Ni(II), составляет pH_{50} 7.0, а полное связывание Ni(II) бемитом происходит в условиях щелочной реакции среды. В целом сорбционная способность Ni(II) на (гидр)оксидах алюминия значительно ниже, чем для двухзарядных ионов других тяжелых металлов, которая изменяется в их ряду следующим образом (для аморфного Al(OH)₃)): Cu(II) > Pb(II) > Zn(II) > Cd(II) > Ni(II), Co(II)[29]; Cu(II) > Pb(II) > Zn(II) > Ni(II) > Co(II) >> Cd(II) [30].

Полученные экспериментальные данные по связыванию Ni(II) бемитом были рассмотрены с позиции теории комплексообразования на поверхности (Surface Compexation Modelling, SCM [31]) в применении к взаимодействию ионов металлов с поверхностью оксидов. В частности, при сорбции ионов двухзарядных металлах на (гидр)оксидах алюминия возможны следующие поверхностные реакции [16]:

$$\begin{split} &\equiv Al-OH + Ni^{2+} \leftrightarrow \equiv Al-ONi^{+} + H^{+}, \\ &\equiv Al-OH + Ni^{2+} + H_2O \leftrightarrow \equiv Al-ONi(OH) + 2H^{+}, \\ &2 \equiv Al-OH + Ni^{2+} \leftrightarrow (\equiv Al-O)_2 Ni + 2H^{+}. \end{split}$$

В ходе расчетов была использована определенная нами концентрация поверхностных ОНгрупп бемита ($C_{=Al-OH} = 0.92$ ммоль/г), а также рассчитанные константы их протонирования/диссоциации (табл. 1). Значения констант гидролиза Ni(II) для I = 0.1 моль/л ($\lg K_{r1} = -8.0$, $\lg K_{r^2} = -16.76$) были взяты из [25]. При моделировании использовали неэлектростататическую модель поверхности (Non-Eletrostatic Model, NOM), которая наряду с электростатическими моделями применяется для описания сорбционных процессов с участием ионов металлов и оксидов [31]. Установлено, что сорбционная кривая Ni(II) на бемите может быть описана образованием двух типов поверхностных комплексов: резкий рост сорбции связан с образованием комплекса \equiv Al-ONi⁺, который в щелочной среде гидролизуется с образованием комплекса ≡Al-ONi(OH) (рис. 5, табл. 2). Аналогичные по составу поверхностные комплексы были использованы при описании сорбции ионов Ni(II) на поверхности аморфного

Таблица 1. Протолитические свойства бемита и бемита, содержащего привитые группы НТФ (0.1 моль/л KCl, $(20 \pm 1)^{\circ}$ C)

Равновесие	lg <i>K</i>	
Бемит		
$\equiv Al - OH_2^+ \leftrightarrow \equiv Al - OH + H^+$	-7.2 ± 0.1	
$\equiv Al - OH \leftrightarrow \equiv Al - O^- + H^+$	-9.8 ± 0.1	
НТФ на поверхности бемита		
$\equiv Al - L^{5-} + H^+ \leftrightarrow \equiv Al - LH^{4-}$	9.7 ± 0.1	
$\equiv Al - L^{5-} + 2H^+ \leftrightarrow \equiv Al - LH_2^{3-}$	18.9 ± 0.1	
$\equiv Al - LH^{4-} + H^+ \leftrightarrow \equiv Al - LH_2^{3-}$	9.2 ± 0.1	
$\equiv Al - L^{5-} + 3H^+ \leftrightarrow \equiv Al - LH_3^{2-}$	26.2 ± 0.1	
$\equiv \mathrm{Al} - \mathrm{LH}_2^{3-} + \mathrm{H}^+ \leftrightarrow \equiv \mathrm{Al} - \mathrm{LH}_3^{2-}$	7.3 ± 0.1	
$\equiv Al - L^{5-} + 4H^+ \leftrightarrow \equiv Al - LH_4^-$	30.0 ± 0.2	
$\equiv Al - LH_3^{2-} + H^+ \leftrightarrow \equiv Al - LH_4^-$	3.8 ± 0.2	
НТФ в растворе (0.1 моль/л KNO ₃ , 25°С) [25, 26]		
$L^{6-} + H^+ \leftrightarrow HL^{5-}$	12.5	
$L^{6-} + 2H^+ \leftrightarrow H_2 L^{4-}$	19.72	
$\mathrm{HL}^{5-} + \mathrm{H}^+ \leftrightarrow \mathrm{H}_2 \mathrm{L}^{4-}$	7.22	
$L^{6-} + 3H^+ \leftrightarrow H_3 L^{3-}$	25.62	
$H_2L^{4-} + H^+ \leftrightarrow H_3L^{3-}$	5.90	
$L^{6-} + 4H^+ \leftrightarrow H_4 L^{2-}$	30.21	
$H_3L^{3-} + H^+ \leftrightarrow H_4L^{2-}$	4.59	
$L^{6-} + 5H^+ \leftrightarrow H_5L^-$	31.8	
$H_4L^{2-} + H^+ \leftrightarrow H_5L^-$	1.6	
$L^{6-} + 6H^+ \leftrightarrow H_6L$	32.3	
$H_5L^- + H^+ \leftrightarrow H_6L$	0.5	

Al(OH)₃ [29] и бемита [32]. Полученные значения констант равновесий образования сорбционных комплексов составляют: $\lg K = -4.0 ~(\equiv Al - ONi^+)$, $\lg K = -13.8 ~(\equiv Al - ONi(OH))$ [32], что близко к полученным нами данным.

Кривая зависимости сорбции Ni(II) НТФ-модифицированным бемитом от кислотности среды смещена в область более низких значений pH (pH₅₀ 6.0) по сравнению с кривой для исходного бемита. Из литературы известно, что в водных растворах в системе Ni(II)–НТФ образуются комплексы мольного состава 1 : 1 с различной степенью протонирования NiH_iL^{*i*-4} (*i* = 0, 1, 2, 3) [25–27]. Аналогичный по составу набор комплексов был использован при моделировании взаимодействия Ni(II) с закрепленной на поверхности α.%

100

Эксперимент Расчет 80 80 60 60 40 40 20 20 2 0 0 4 5 6 7 8 9 10 pН Γ, % α, % (б) 100 100 Эксперимент Расчет 80 80 60 60 40 40 20 20 3 0 0 3 5 6 7 8 9 10 4 pН

(a)

Γ, %

100

Рис. 5. Зависимость степени сорбции Ni(II) на бемите от кислотности среды (Γ , %) и диаграмма распределения комплексов (α , %) на поверхности. $1 - \equiv$ Al-ONi⁺, $2 - \equiv$ Al-ONi(OH). $C_{\text{Ni(II)}} = 10^{-4}$ моль/л, $C_{\text{бемит}} = = 1$ г/л (a).

Зависимость степени сорбции Ni(II) на НТФ-бемите от кислотности среды (Г, %) и диаграмма распределения комплексов (α , %) на поверхности: \equiv Al–LH₃Ni (1), \equiv Al–LH₂Ni⁻ (2), \equiv Al–LHNi²⁻ (3), \equiv Al–LNi³⁻ (4). $C_{\text{Ni(II)}} = 10^{-4}$ моль/л, $C_{\text{НТФ-бемит}} = 1$ г/л (б).

НТФ. При этом в ходе расчетов были использованы константы диссоциации НТФ на поверхности, определенные ранее (табл. 1), и литературные константы гидролиза Ni(II) [25]. Полученные результаты показывают, что сорбционная кривая Ni(II) на НТФ-бемите может быть удовлетворительно описана образованием набора комплексов =Al-LH_iNi^{i - 3} (i = 0, 1, 2, 3), идентичных по составу комплексам в растворах. Ранее при изучении сорбционных равновесий с участием НТФ, ионов металлов (Cu(II), Cd(II), Zn(II)) и бемита также было установлено, что на поверхности образуются комплексы состава ≡Al-LH₂M⁻, ≡Al-LHM²⁻. ≡Al-LM³⁻ [13]. При сорбшии Ni(II) на НТФ-бемите в интервале рН 6-8 образуются протонированные комплексы ≡Al-LH₃Ni и ≡Al-LH₂Ni⁻, которые далее переходят в монопротонированный комплекс ≡Al-LHNi²⁻, а в сильношелочной среде – в средний комплекс ≡Al-LNi³⁻. Устойчивость поверхностных комплексов Ni(II) состава \equiv Al-LH_iNiⁱ⁻³ (i = 0, 1, 2) ниже, чем соответствующих комплексов в растворе. Так, константы устойчивости комплексов =Al-LHNi²⁻ и =Al-LNi³⁻ на четыре-пять порядков меньше, чем их гомогенных аналогов NiHL³⁻ и – NiL⁴ (табл. 2). Полученный результат отличается от данных авторов [15], которые установили что комплексы Cu(II), Pb(II), Zn(II), Cd(II) с аминоди(метиленфосфоновой) кислотой, закрепленной на поверхности SiO_2 ($SiO_2-H_3L^-$) состава SiO₂-MH₂L и SiO₂-MHL⁻, прочнее по сравнению с их аналогами в растворах.

Исследование строения комплексов Ni(II) с НТФ в растворе [27] и в кристаллическом состоянии [28] показало, что в протонированных комплексах NiH_iL (i = 1, 2, 3) атом азота не принимает участия в координации Ni(II). Координация осушествляется за счет атомов кислорода двух/трех различных фосфоновых групп с замыканием неустойчивого восьмичленного цикла/циклов. Можно предположить, что протонированные поверхностные комплексы Ni(II) на НТФ-бемите имеют аналогичное строение с тем отличием, что в координации Ni(II) участвуют только две свободные от связывания с поверхностью фосфоновые группы (рис. 6). Нормальный (средний) комплексонат Ni(II) с НТФ состава NiL⁴⁻ в растворах и в кристаллическом состоянии имеет хелатную структуру с образованием трех пятичленных циклов с участием атома азота [27, 28]. Строение среднего комплекса на поверхности, вероятно, аналогично, а его меньшую устойчивость можно объяснить наличием только двух хелатных металлоциклов.

Представляет интерес сопоставление сорбционных свойств полученного НТФ-бемита и других комплексообразующих сорбентов, содержащих привитые фосфоновые группы, такие как комплексообразующие иониты на основе полимеров с аминометиленфосфоновыми группами $-CH_2-NH-CH_2-PO(OH)_2$ [33] и кремнеземы SiO₂ с закрепленными группами аминометиленфосфоновой и аминоди(метиленфосфоновой) $-N(CH_2-PO(OH)_2)_2$ кислот [11, 15]. Полимерные фосфоновые сорбенты, представленные различными промышленными марками (Purolite S940 и S950, Lewatit TP260 и др.), наряду с другими комплексообразующими полимерами широко используются для связывания ионов различных

Равновесие	lg K	
Бемит		
$\equiv Al - OH + Ni^{2+} \leftrightarrow \equiv Al - ONi^{+} + H^{+}$	-3.6 ± 0.1	
$\equiv Al - OH + Ni^{2+} + H_2O \leftrightarrow$	-128 ± 03	
$\leftrightarrow \equiv Al - ONi(OH) + 2H^+$	12.0 ± 0.3	
Ni(II)-НТФ-бемит		
$\equiv Al - L^{5-} + Ni^{2+} \leftrightarrow \equiv Al - LNi^{3-}$	7.0 ± 0.2	
$\equiv Al - L^{5-} + Ni^{2+} + H^+ \leftrightarrow \equiv Al - LHNi^{2-}$	14.5 ± 0.3	
$\equiv Al - LNi^{3-} + H^+ \leftrightarrow \equiv Al - LHNi^{2-}$	7.5 ± 0.3	
$\equiv Al - L^{5-} + Ni^{2+} + 2H^+ \leftrightarrow \equiv Al - LH_2Ni^-$	23.1 ± 0.1	
$\equiv Al - LHNi^{2-} + H^+ \leftrightarrow \equiv Al - LH_2Ni^-$	8.6 ± 0.3	
$\equiv Al - L^{5-} + Ni^{2+} + 3H^+ \leftrightarrow \equiv Al - LH_3Ni$	28.5 ± 0.1	
$\equiv Al - LH_2Ni^- + H^+ \leftrightarrow \equiv Al - LH_3Ni$	5.4 ± 0.2	
Ni(II)—НТФ в растворе (0.1 моль/л KNO ₃ , 25°C) [25, 26]		
$Ni^{2+} + L^{6-} \leftrightarrow NiL^{4-}$	11.3	
$Ni^{2+} + L^{6-} + H^+ \leftrightarrow NiHL^{3-}$	19.6	
$NiL^{4-} + H^+ \leftrightarrow NiHL^{3-}$	8.3	
$Ni^{2+} + L^{6-} + 2H^+ \leftrightarrow NiH_2L^{2-}$	25.3	
$NiHL^{3-} + H^+ \leftrightarrow NiH_2L^{2-}$	5.7	
$Ni^{2+} + L^{6-} + 3H^+ \leftrightarrow NiH_3L^-$	28.5	
$NiH_2L^{2-} + H^+ \leftrightarrow NiH_3L^-$	3.2	

Таблица 2. Комплексообразующие свойства бемита и и бемита, содержащего привитые группы $HT\Phi$ (0.1 моль/л KCl, (20 ± 1)°C)

металлов (Cu(II), Zn(II), Ni(II), Cd(II), Fe(III)). Кремнеземы с гетерогенизированными фосфоновыми производными, напротив, мало изучены и редко используются на практике. Преимуществом всех органоминеральных носителей с привитыми фосфоновыми кислотами и их производными является их ненабухаемость в различных растворителях, механическая прочность, термическая устойчивость и высокая скорость массообмена. Так, результаты данной работы показывают, что время установления сорбционного равновесия в системе Ni(II)–НТФ-бемит составляет 30-60 мин в сравнении с 24-48 ч для фосфоновых ионитов. Сорбционные свойства НТФ-бемита по отношению к ионам металлов, включая Ni(II), не уступают таковым для фосфонового полимерного сорбента, что видно при сопоставлении коэффициентов распределения (D, мл/г): lgD = 3.4(аминометиленфосфоновый ионит, pH 5.6) [34] и lgD = 3.0 (НТФ-бемит, pH 5.6), lgD = 4.0 (НТФбемит, pH 7.5). Определенным минусом гетерогенизированных на оксидных носителях фосфоновых соединений в сравнении с полимерной под-

Рис. 6. Схемы связывания ионов Ni(II) с поверхностью HTФ-модифицированного бемита: комплекс \equiv Al-LHNi²⁻ (a), комплекс \equiv Al-LNi³⁻ (6).

ложкой является более низкая концентрация привитых групп и, как следствие, более низкая сорбционная емкость по ионам металлов. Так, для для фосфоновых полимерных ионитов (Purolite S940) она составляет ~2 ммоль/г (по ионам Cu(II)), в то время как для SiO₂-АДФК – ~0.3 ммоль/г (по ионам Cu(II)) [15], а для НТФбемита – ~0.25 ммоль/г (по ионам Ni(II)). Полученный новый органоминеральный носитель на основе оксигидроксида алюминия, поверхностно модифицированного фосфоновым комплексоном, может найти применение для извлечения ионов Ni(II) из производственных растворов и сточных вод гидрометаллургических предприятий, для регенерации никельсодержащих отходов в гальванотехнике. Модифицированный бемит благодаря своим улучшенным комплексообразующим свойствам может быть также использован в качестве эффективной подложки для получения гетерогенных катализаторов на основе Ni(II).

ЗАКЛЮЧЕНИЕ

Результаты работы впервые показали принципиальную возможность химической пришивки к поверхности оксигидроксида алюминия не только относительно простых производных фосфоновых кислот [4], но и более сложных по строению полифосфоновых комплексонов, таких как НТФ. Совокупность полученных данных позволяет заключить, что якорная функция НТФ осуществляется лишь одной фосфоновой группой комплексона, делая оставшиеся функциональные группы активными в отношении связывания ионов металлов. Выбранный для изучения комплексообразующих свойств модифицированного носителя катион Ni(II) является представителем серии двухзарядных катионов тяжелых металлов (Co(II), Fe(II), Cu(II), Zn(II), Cd(II), Pb(II)), образующих с HT Φ в растворах сходные по составу комплексы, что придает полученным результатам более общий характер. Оказалась, что устойчивость фосфонатов Ni(II), образующихся на поверхности бемита с привитыми группами НТФ, ниже, чем их аналогов в растворах, что, вероятно, связано с уменьшением дентатности НТФ при закреплении на поверхности. Дальнейшие исследования по модификации поверхности (гидр)оксидов алюминия другими фосфоновыми комплексонами позволят установить закономерности в комплексообразующих свойствах закрепленных комплексонов и получить новые комплексообразующие органоминеральные носители для более эффективного/селективного связывания ионов различных металлов.

БЛАГОДАРНОСТЬ

Авторы выражают благодарность ведущему инженеру лаборатории рентгеноструктурного анализа учебно-научного Института экспериментального естествознания, института математики, информационных технологий и физики, ФГБОУ ВО Удмуртского государственного университета, канд. физ.-мат. наук, Р.М. Закировой за помощь в проведении рентгенофазового анализа.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена с использованием оборудования ЦКП ФГБОУ ВО Удмуртского государственного университета и ЦКП "Центр физических и физико-химических методов анализа, исследования свойств и характеристик поверхности, наноструктур, материалов и изделий" УдмФИЦ УрО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Manyangadzea M., Chikuruwob N.H.M., Narsaiahc T.B. et al.* // S. Afr. J. Chem. Eng. 2020. V. 31. P. 25. https://doi.org/10.1016/j.sajce.2019.11.003

- Olenin A. Y., Lisichkin G.V. // Russ. J. Gen. Chem. 2019.
 V. 89. № 7. Р. 1101. [Оленин А.Ю., Лисичкин Г.В. // Журн. общей химии. 2019. Т. 89. № 7. С. 1101.] https://doi.org/10.1134/S1070363219070168
- Химия привитых поверхностных соединений / Под ред. Лисичкина Г.В. М.: Физматлит, 2003. 592 с.
- Mihgalyov P.G., Lisichkin G.V. // Russ. Chem. Rev. 2006.
 V. 75. № 6. Р. 541. [Мингалев П.Г., Лисичкин Г.В. // Успехи химии. 2006. Т. 75. № 6. С. 604.] https://doi.org/10.1002/chin.200645245
- Queffélec C., Petit M., Janvier P. et al. // Chem.Rev. 2012. V. 112. № 7. P. 3777. https://doi.org/10.1021/cr20042121
- 6. *Pujari S.P., Scheres L., Marcelis T.M., Zuilhof H.* // Angew. Chem. Int. Ed. 2014. V. 51. № 25. P. 6322. https://doi.org/org/10.1002/anie.201306709
- 7. *Lisichkin G.V., Olenin A.Y.* // Russ. J. Appl. Chem. 2020. V. 93. № 1. Р. 1. [*Лисичкин Г.В., Оленин А.Ю.* // Журн. прикл. химии. 2020. Т. 93. № 1. С. 5. https://doi.org/10.31857/S0044461820010016]
- 8. *Mohapatra M., Pramanic P.* // Colloids and Surfaces: Physicochem Eng. Aspects. 2009. V. 339. № 1. P. 35. https://doi.org/10.1016/j.colsurfa.2009.01.009
- Wang J., Liu Y., Wang Z., Wang P. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 16575. https://doi.org/10.1016/j.ijhydene.2019.04.192
- Nowack B., Stone A. T. // J. Colloid Interface Sci. 1999. V. 214. P. 20. https://doi.org/10.1006/jcis.1999.6111
- Kholin Yu.V., Zaitsev V.N., Zaitseva G.N. et al. // Russ. J. Inorg. Chem. 1995. V. 62. № 40. Р. 275. [Холин Ю.В., Зайцев В.Н., Зайцева Г.Н. и др. // Журн. неорган. химин. 1995. Т. 40. № 2. С. 275.]
- Das M., Mishra D., Dhak P. et al. // Small. 2009. V. 5. N
 № 24. P. 2883. https://doi.org/10.1002/smll.200901219
- Zenobi M.C., E.H. Rueda // Quim. Nova. 2012. V. 35. № 3. P. 505. https://doi.org/10.1590/s0100-40422012000300012
- Kropacheva T.N., Antonova A.S., Kornev V.I. // Mendeleev Commun. 2019. V. 29. P. 358. https://doi.org/0.1016/j.mencom.2019.05.040
- 15. Костенко Л.С., Ахмедов С.А., Зайцев В.Н. // Методы и объекты химического анализа. 2006. Т. 1. № 2. С. 116. https://doi.org/10.17721/moca
- 16. The environmental chemistry of aluminum / Ed. Sposito G. CRC Press, 1996. 480 p.
- 17. *Rajabi L., Derakhshan A.* // Sci. Adv. Mater. 2010. V. 2. P. 163.
- https://doi.org/10.1166/sam.2010.1063 18. Stability Constants Computation Programs: Hyper-
- quad 2008. Hyperquad Simulation and Speciation HySS2009. www.hyperquad.co.uk
- ПНД Ф 14.1:46-9. Количественный химический анализ вод. М., 1996.
- 20. Zhao R., Rupper P., Gaan S. // Coatings. 2017. V. 7. P. 133. https://doi.org/10.3390/coatings7090133
- 21. Zenobi M.C., Luengo C.V., Avena M.J., Rueda E.H. // Spectrochim. Acta. Part A. 2010. V. 75. P. 1283. https://doi.org/10.1016/j.ssa.2009.12.059

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 8 2020

- 22. Rao B.V.A., Rao M.V., Rao S.S., Sreedhar B. // J. Surf. Eng. Mater. Adv.Technol. 2013. V. 3. P. 28. https://doi.org/10.4236/jsemat.2013.31005
- 23. *Wang S.H., Liu C.S., Shan F.J., Qi G.C.* // Acta Metall. Sin. (Engl. Lett). 2008. V. 21. № 5. P. 355. https://doi.org/10.1016/s1006-7191(08)60059-9
- 24. *Kropacheva T.N., Antonova A.S., Kornev V.I.* // Russ. J. Inorg. Chem. 2017. V. 62. № 2. Р. 150. [*Кропачева Т.Н., Антонова А.С., Корнев В.И.* // Журн. неорган. химии. 2017. Т. 62. № 2. С. 155.] https://doi.org/10.1134/S0036023617020103
- Pettit L.D., Powell H.K.J. // IUPAC Stability Constants Database. Version 4.74. Academic Software. www.acadsoft.co.uk
- Deluchat V., Bollinger J.-C., Serpaud B., Caullet C. // Talanta. 1997. V. 44. № 5. P. 897. https://doi.org/10.1016/S0039-9140(96)02136-4
- Sawada K., Araki T., Suzuki T., Doi K. // Inorg. Chem. 1989. V. 28. № 13. P. 2687. https://doi.org/10.1021/ic00312a036

- Somov N.V., Chausov F.F., Zakirova R.M., Fedotova I.V. // Crystallogr. Rep. 2016. V. 61. № 2. Р. 238. [Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М., Федотова И.В. // Кристаллография. 2016. Т. 61. № 2. С. 216.] https://doi.org/10.1134/s1063774516020243
- 29. *Pavlova P., Sigg L.* // Wat. Res. 1988. V. 22. № 12. P. 1571. https://doi.org/10.1016/0043-1354(88)90170-4
- Kinniburgh D.G., Jackson M.L., Syers J.K. // Soil Sci. Soc. Am. J. 1976. V. 40. № 5. P.796. https://doi.org/10.2136/sssaj1976.03615995004000050047x
- 31. Surface Complexation Modelling / Ed. Lutzenkirchen J. Academic Press, 2006. 652 p.
- Islam M.A., Angove M.J., Morton D.W. // J. Water Process Eng. 2019. V. 32. P. 100964. https://doi.org/10.1016/j.jwpe.2019.100964
- Зубакова Л.Б., Тевлина А.С., Даванков А.Б. Синтетические ионообменные материалы. М.: Химия, 1978. 184 с.
- Trochimczuk A.W., Jezierska J. // J. Inorg. Organomet. Polym. 2000. V. 10. № 2. P. 81. https://doi.org/10.1023/A:1009423925041