_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 541.49:548.73

ГИДРАТЫ 2-ТИОБАРБИТУРАТОВ ЛАНТАНОИДОВ(III): СИНТЕЗ, СТРУКТУРА И ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ¹

© 2020 г. Н. Н. Головнев^{а, *}, М. С. Молокеев^{а, b, c}, М. К. Лесников^а, А. С. Самойло^а

^аСибирский федеральный университет, пр-т Свободный, 79, Красноярск, 660041 Россия

^bИнститут физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН, Академгородок, 50, стр. 38, Красноярск, 660036 Россия ^cДальневосточный государственный университет путей сообщения, ул. Серышева, 47, Хабаровск, 680021 Россия *e-mail: ngolovnev@sfu-kras.ru

Поступила в редакцию 24.12.2019 г. После доработки 17.02.2020 г. Принята к публикации 27.02.2020 г.

Кристаллизацией из водных растворов получены гидраты состава $Ln(Htba)_3 \cdot 3H_2O$ (Ln = Yb (I), Er (II), Ho (III); $H_2tba = 2$ -тиобарбитуровая кислота), $Ln(Htba)_3 \cdot 2H_2O$ и $Ln(Htba)_3 \cdot 8H_2O$. По данным монокристального рентгеноструктурного анализа, моноклинные кристаллы изоструктурных соединений I–III имеют строение $[Ln_2(H_2O)_6(\mu_2-Htba-O,O')_4(Htba-O)_2]_n$. Образование изоструктурных соединений $Ln(Htba) \cdot 2H_2O$ (Ln = La, Ce, Eu, Yb, Lu), $Ln(Htba)_3 \cdot 8H_2O$ (Ln = Eu, Tb, Ho, Yb) и Y(Htba)_3 \cdot nH_2O (n = 2, 8) подтверждено сравнением соответствующих порошковых рентгенограмм, а состав установлен методами элементного и термического анализа. Изучена устойчивость кристаллических гидратов при нагревании в воздушной атмосфере и в контакте с их насыщенными растворами.

Ключевые слова: лантаниды(III), тиобарбитураты, гидраты, строение, устойчивость **DOI:** 10.31857/S0044457X20070090

ВВЕДЕНИЕ

Тиобарбитуровая кислота (H₂tba) как полифункциональный N,N',O,O',S-донорный лиганд с расходящимися центрами связывания (рис. 1) образует с ионами металлов координационные полимеры различного строения [1, 2]. Заслуживают внимания нейтральные однородные комплексы (НОК), содержащие только лиганды одного сорта и молекулы воды, так как в них нет противоионов, которые часто заполняют потенциально полезные каналы или полости в кристаллической решетке. С учетом различных способов координации ионов Htba⁻ и молекул H₂O (табл. S1) [3] при кристаллизации НОК из водной среды можно получить несколько соединений, содержащих разное число координированных молекул воды. Так, нами получены гидраты НОК тиобарбитуровой, барбитуровой (H₂ba) и 1,3-диэтил-2-тиобарбитуровой (HDetba) кислот с ионами s-, p- и dметаллов (табл. S1) [2, 3]. Представляет интерес изучить структурное и гидратное разнообразие соединений этого класса для практически значимых редкоземельных элементов (РЗЭ) [4-7]. Сведения о синтезе, строении и свойствах тиобарбитуратных комплексов РЗЭ, которые могут обладать люминесцентными свойствами и служить прекурсорами для получения оксисульфатов [8] и оксидов [9], ограничены пятью изоструктурными соединениями состава Ln(Htba)₃ · 3H₂O [9]. В настоящей работе получены гидраты состава Ln(Htba)₃ · 3H₂O, Ln(Htba)₃ · 2H₂O, Ln(Htba)₃ · 8H₂O и Y(Htba)₃ · nH₂O (n = 2, 8). Они исследованы методами порошковой рентгенографии и термического анализа. Структуры Ln(Htba)₃ · 3H₂O (Ln = = Yb (I), Er (II), Ho (III)) определены методом PCA. Следует отметить, что для каждого HOK охарактеризовано только по одной кристаллической структуре [10].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В синтезах использовали LuCl₃ · 6H₂O, YbCl₃ · 6H₂O, Er₂O₃, Ho₂O₃, YCl₃ · 6H₂O, Eu(CH₃COO)₃ · 4H₂O, TbCl₃ · 6H₂O, GdCl₃ · 6H₂O, CeCl₃ · 7H₂O, La(NO₃)₃ · 6H₂O, H₂tba, HCl и NaOH (все марки "х. ч.") без дополнительной очистки. Оксиды Er₂O₃ и Ho₂O₃ растворяли в концентрированной HCl, затем осторожно выпаривали досуха до хлоридных солей.

Синтез Ln(Htba)₃ · $3H_2O$ (Ln = Yb (I), Er (II), Но (III)). Гидраты солей лантанидов (0.11 ммоль)

¹ Дополнительная информация для этой статьи доступна по doi 10.31857/S0044457X20070090 для авторизованных пользователей.

ГОЛОВНЕВ и др.

Сокращенная формула	Брутто-формула	Содержание элементов найдено/вычислено, мас. %			
		С	Н	Ν	S
$Yb(Htba)_3 \cdot 3H_2O$	$C_{12}H_{15}N_6O_9S_3Yb$	22.42/21.95	2.17/2.30	13.04/12.80	14.90/14.65
$Er(Htba)_3 \cdot 3H_2O$	$\mathrm{C_{12}H_{15}ErN_6O_9S_3}$	22.29/22.15	2.12/2.32	13.20/12.91	15.01/14.78
$Ho(Htba)_3 \cdot 3H_2O$	$\mathrm{C_{12}H_{15}HoN_6O_9S_3}$	22.48/22.23	2.20/2.33	13.35/12.96	15.12/14.84
$La(Htba)_3 \cdot 2H_2O$	$\mathrm{C_{12}H_{13}LaN_6O_8S_3}$	23.53/23.85	1.90/2.17	13.78/13.90	15.43/15.92
$Ce(Htba)_3 \cdot 2H_2O$	$C_{12}H_{13}CeN_6O_8S_3$	24.01/23.80	2.06/2.16	14.16/13.88	16.11/15.89
$Eu(Htba)_3 \cdot 2H_2O$	$\mathrm{C_{12}H_{13}EuN_6O_8S_3}$	22.94/23.34	2.30/2.12	13.39/13.61	15.42/15.58
$Yb(Htba)_3 \cdot 2H_2O$	$C_{12}H_{13}N_6O_8S_3Yb$	23.06/22.57	1.87/2.05	13.45/13.16	15.44/15.07
$Lu(Htba)_3 \cdot 2H_2O$	$C_{12}H_{13}LuN_6O_8S_3$	22.22/22.51	2.01/2.05	12.76/13.12	14.63/15.02
$Y(Htba)_3 \cdot 2H_2O$	$C_{12}H_{13}N_6O_8S_3Y$	25.84/26.00	2.17/2.36	15.56/15.16	17.67/17.35
$Eu(Htba)_3 \cdot 8H_2O$	$\mathrm{C_{12}H_{25}EuN_6O_{14}S_3}$	20.15/19.87	3.30/3.47	11.69/11.58	13.56/13.26
$Tb(Htba)_3 \cdot 8H_2O$	$C_{12}H_{25}N_6O_{14}S_3Tb$	19.97/19.68	3.56/3.44	11.32/11.47	13.10/13.13
$Ho(Htba)_3 \cdot 8H_2O$	$C_{12}H_{25}HoN_6O_{14}S_3$	19.32/19.52	3.63/3.41	11.16/11.38	12.74/13.03
$Yb(Htba)_3 \cdot 8H_2O$	$C_{12}H_{25}N_6O_{14}S_3Yb$	19.66/19.31	3.21/3.38	11.67/11.26	13.28/12.89
$Y(Htba)_3 \cdot 8H_2O$	$C_{12}H_{25}N_6O_{14}S_3Y$	22.33/21.76	3.57/3.80	12.89/12.67	14.76/14.52

Таблица 1. Результаты элементного анализа синтезированных соединений

растворяли в 10 мл воды и добавляли 0.05 г (0.35 ммоль) твердой H_2 tba, затем смесь нейтрализовали 1 М раствором NaOH до pH 4. Образовавшиеся мелкокристаллические осадки, состоящие, по данным РФА, преимущественно из соответствующих октагидратов, растворяли при нагревании в большом избытке дистиллированной воды (200–300 мл) и оставляли испаряться в течение нескольких недель при комнатной температуре до образования пригодных для PCA кристаллов. Выход соединений I–III увеличивался по мере испарения воды и при объеме воды 100–150 мл составлял 20–30%. Результаты элементного анализа соединений I–III представлены в табл. 1.

Основным фактором, влияющим на состав синтезированных изоструктурных гидратов $M(Htba)_3 \cdot 2H_2O$ и $M(Htba)_3 \cdot 8H_2O$ (M = Ln, Y), является температура. Как правило, при взаимодействии соли РЗЭ с нейтрализованным NaOH раствором H_2 tba (pH 4–5) при комнатной темпе-

Рис. 1. Графическая формула молекулы 2-тиобарбитуровой кислоты (H₂tba).

ратуре образуются бесцветные октагидраты $M(Htba)_3 \cdot 8H_2O$, а при $90^{\circ}C$ — бледно-желтые дигидраты $M(Htba)_3 \cdot 2H_2O$. В общем виде методики их получения представлены ниже.

Синтез М(Htba)₃ · 2H₂O (M = La, Ce, Eu, Yb, Lu, Y). К 0.20 г (1.4 ммоль) H₂tba в 5 мл воды добавляли 0.056 г (1.4 ммоль) NaOH, затем смесь выдерживали при 90°С в течение 5 мин до полного растворения тиобарбитуровой кислоты. К горячему желто-оранжевому раствору при перемешивании добавляли 1 мл водного раствора, содержащего 0.46 ммоль соли М(III). Образовавшийся вначале белый объемный осадок (M(Htba)₃ · 8H₂O) становился более компактным и окрашивался в желтый цвет. Его отфильтровывали, промывали 2 мл ацетона и сушили на воздухе до постоянной массы. Выход соединений составил 40–50%. Результаты их элементного анализа согласуются с предложенным составом (табл. 1).

Синтез $M(Htba)_3 \cdot 8H_2O$ (M = Eu, Tb, Ho, Yb, Y). Методики синтеза этих изоструктурных соединений отличались от предыдущей тем, что синтез проводили при комнатной температуре и для более быстрого растворения 2-тиобарбитуровой кислоты использовали небольшой избыток NaOH (1.6 ммоль). Выход соединений составил 50–60%. Их состав подтвержден данными химического анализа (табл. 1).

РСА. Исследованы желтые кристаллы I (Ln = Yb) размером $0.3 \times 0.3 \times 0.2$ мм, II (Ln = Er) размером $0.35 \times 0.35 \times 0.3$ мм и III (Ln = Ho) размером $0.3 \times 0.2 \times 0.2 \times 0.2$ мм при 296 К. Интенсивности отраже-

916

Параметр		Значение	
Кристалл	Ι	II	III
Брутто-формула	$C_{24}H_{30}N_{12}O_{18}S_6Yb_2$	C ₂₄ H ₃₀ Er ₂ N ₁₂ O ₁₈ S ₆	C ₂₄ H ₃₀ Ho ₂ N ₁₂ O ₁₈ S ₆
М	1313.04	1301.48	1296.82
Пр. гр., Z	P2/n, 2	<i>P</i> 2/ <i>n</i> , 2	P2/n, 2
<i>a</i> , Å	13.9302 (4)	13.9848 (6)	13.9917 (9)
b, Å	9.9688 (3)	10.0106 (4)	10.0182 (7)
<i>c</i> , Å	15.4215 (5)	15.4161 (6)	15.3907 (10)
β, град	109.4421 (7)	109.541 (1)	109.6202 (16)
<i>V</i> , Å ³	2019.43 (11)	2033.89 (14)	2032.1 (2)
ρ _{выч} , г/см ³	2.159	2.125	2.119
μ, мм ⁻¹	5.002	4.495	4.262
Всего отражений	29917	44856	20957
2θ _{max} , град	61.938	78.088	53.004
Независимых отражений $N_1(R_{int})$	6426 (0.0638)	11253 (0.0410)	4205 (0.0989)
Число отражений с $F > 4\sigma(F), N_2$	5006	9307	2964
Диапазон индексов h, k, l	$-20 \le h \le 20,$ $-14 \le k \le 14,$ $-22 \le l \le 22$	$-24 \le h \le 24,$ $-17 \le k \le 17,$ $-26 \le l \le 26$	$-17 \le h \le 17,$ $-12 \le k \le 12,$ $-19 \le l \le 19$
Весовая схема по F ²	$w = 1/[\sigma^2(F_o^2) + (0.0167P)^2 + 5.348P]$	$w = 1/[\sigma^2(F_o^2) + (0.0162P)^2 + 2.9638P]$	$w = 1/[\sigma^2(F_o^2) + (0.0205P)^2 + 8.8779P]$
		$P = \max(F_{\rm o}^2 + 2F_{\rm c}^2)/3$	
Число уточняемых параметров	299	299	299
R (по N ₁ рефлексам)	0.0532	0.0506	0.0732
<i>R</i> (по N ₂ рефлексам)	0.0318	0.0368	0.0394
<i>wR</i> (<i>F</i> ²) (по N ₁ рефлексам)	0.0741	0.0654	0.0903
<i>wR</i> (<i>F</i> ²) (по N ₂ рефлексам)	0.0625	0.0618	0.0732
GOOF	1.068	1.011	1.033
Коэффициент экстинкции		Не уточнялся	
$(\Delta/\sigma)_{\rm max}$	< 0.001	<0.001	< 0.001
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e / \text{Å}^3$	1.580/-2.535	1.196/-2.980	1.598/-1.308

Таблица 2. Параметры эксперимента и результаты уточнения структур I-III

ний измерены на монокристальном дифрактометре SMART APEX II с CCD-детектором (Bruker AXS, Mo K_{α} -излучение). Экспериментальные поправки на поглощение введены с помощью программы SADABS [11] методом мультисканирования. Модель структуры установлена прямыми методами и уточнена с помощью комплекса программ SHELXTL [12]. Из разностных синтезов электронной плотности определены положения атомов водорода, которые затем были идеализированы и уточнены в связанной с основными атомами форме. В табл. 2 приведены параметры экспериментов и результаты уточнения структур. Структуры I–III депонированы в Кембриджском банке структурных данных (№ 1971780–1971782; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

Порошковые рентгенограммы соединений отсняты при комнатной температуре на дифрактометре D8 Advance фирмы Bruker с использованием линейного детектора Vantec и Cu K_{α} -излучения. Для подтверждения фазовой чистоты порошков комплексов I—III использовали параметры ячеек из монокристального эксперимента, для подгон-

Рис. 2. Экспериментальные, теоретические и разностные рентгенограммы кристаллов: $a - Y(Htba)_3 \cdot 8H_2O$; $6 - Ho(Htba)_3 \cdot 3H_2O$; $B - Yb(Htba)_3 \cdot 2H_2O$.

ки профиля уточнения параметров ячеек — метод Ле Бэйла при помощи программы TOPAS 4.2 [13]. Уточнение шло стабильно и дало хорошие разностные рентгенограммы (рис. 2).

Термический анализ соединений проводили на приборе SDT-Q600 (TA Instruments, USA) в токе воздуха (50 мл/мин) в интервале 22–850°С при скорости нагревания 10 град/мин. Состав газообразных продуктов определяли с помощью совмещенного с термическим анализатором ИК-спектрометра Nicolet380 (Thermo Scientific, USA).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Образование трех групп гидратов состава $M(Htba)_3 \cdot 8H_2O$, $M(Htba)_3 \cdot 3H_2O$ и $M(Htba)_3 \cdot 2H_2O$ согласуется с результатами химического и термического анализа. Изоструктурность гидратов одного химического состава подтверждается совпадением соответствующих рентгенограмм порошков и вычисленных кристаллографических параметров (табл. 2–4). Для сравнения на рис. 2 приведены экспериментальные рентгенограммы трех гидратов тиобарбитуратов РЗЭ разного состава, которые существенно отличаются друг от друга.

В первую очередь при комнатной температуре из водного раствора кристаллизуются белые объемные гидраты М(Htba)₃ · 8H₂O, которые в течение 1-3 мес при комнатной температуре превращаются в M(Htba)₃ · 3H₂O. При 90°C $M(Htba)_3 \cdot 8H_2O$, как правило, переходят в более компактные желтые мелкокристаллические осалки М(Htba)₃ · 2H₂O. Такие превращения согласуются с эмпирическим правилом, согласно которому при более высокой температуре кристаллизуются соединения. содержашие меньшее число молекул воды. Все наши попытки получить эти комплексы в виде кристаллов, пригодных для монокристального РСА, оказались безуспешными. При контакте кристаллов $M(Htba)_3 \cdot 2H_2Oc$ маточным раствором в течение 1-3 мес при комнатной температуре они частично переходили в более термодинамически устойчивые в водном растворе гидраты $M(Htba)_3 \cdot 3H_2O$.

В независимой части ячеек изоструктурных комплексов $Ln(Htba)_3 \cdot 3H_2O$ (Ln = Yb, Er, Ho) содержатся два иона Ln³⁺, три иона Htba⁻ и три молекулы воды в общих позициях. Координация ионов Htba⁻ к ионам Ln³⁺ осуществляется только через атомы О. Один из ионов Ln³⁺ связан с шестью ионами Htba- (двумя терминальными и четырьмя мостиковыми) и двумя молекулами воды, другой – с четырьмя мостиковыми ионами Htba⁻ и четырьмя молекулами воды (рис. 3). Полиэдры $Ln(1)O_8$ и $Ln(2)O_8$ – квадратные антипризмы, связанные друг с другом мостиковыми ионами Htba⁻ с формированием бесконечного слоя в плоскости, перпендикулярной направлению a + c(рис. S1). С учетом разного координационного окружения двух независимых ионов Ln³⁺ и наличия в структуре как μ_2 -мостикового, так и концевого лиганда Htba⁻ строение рассматриваемых комплексов лучше передается формулой [Ln₂(H₂O)₆(Htba-O,O')₄(Htba-O)₂]_n (рис. 3) или просто $Ln_2(H_2O)_6(Htba)_6$. Они изоструктурны ранее охарактеризованным соединениям Eu₂(Htba)₆(H₂O)₆

Металл	a, Å	b, Å	c, Å	$\alpha, \beta, \gamma,$ град	<i>V</i> , Å ³
Eu	7.794(1)	9.169(1)	18.448(2)	97.25(1), 91.72(1), 112.18(1)	1206.8(2)
Tb	7.789(3)	9.152(4)	18.458(7)	97.14(2), 91.76(2), 112.15(3)	1205.0(8)
Но	7.769(1)	9.128(1)	18.434(2)	97.07(1), 91.78(1), 112.21(2)	1169.9(3)
Yb	7.781(1)	9.152(1)	18.458(2)	97.14(1), 91.76(1), 112.15(2)	1204.0(2)
Y	7.764(3)	9.120(4)	18.411(8)	97.08(2), 91.69(2), 112.27(3)	1193.1(9)

Таблица 3. Кристаллографические параметры Ln(Htba)₃ · 8H₂O (пр. гр. *P*1)

[8], Sm₂(Htba)₆(H₂O)₆, Ln₂(Htba)₆(H₂O)₆ (Ln = Tb, Gd, Nd) [9]. Длины связей Ln–O (табл. S2) в соединениях I–III (2.263(3)–2.406(3) Å) имеют типичные значения [10] и закономерно увеличиваются от соединения I к III. В структуре представлены три независимых иона Htba⁻, один концевой (C) и два мостиковых (A и B). Их соответствующие геометрические параметры удовлетворительно согласуются с литературными данными [11–19] и практически совпадают для соединений I–III, например, длины связей C–O 1.250(8)–1.274(8) Å, C(4)–C(5) и C(5)–C(6) 1.382(10)–1.402(6) Å, C–S 1.664(4)–1.697(7) Å.

Анализ структуры показал наличие в I–III двенадцати водородных связей (**BC**) N–H···O, N–H···S, O–H···O и O–H···S (табл. S3), в которых участвуют все ионы Htba⁻ и все молекулы воды. ВС образуют трехмерный каркас, в котором можно выделить супрамолекулярные мотивы $R_2^2(8)$, S(6), $R_2^2(28)$ и $R_4^4(26)$ [20], как и в других изоструктурных тиобарбитуратах Ln(III) [8, 9]. π – π -Взаимодействия [21] между ионами Htba⁻ (табл. S4) типа "голова-к-хвосту" дополнительно стабилизируют структуру соединений.

В начале термического разложения всех синтезированных гидратов происходит их полная дегидратация, что подтверждается результатами ИК-спектроскопического анализа газообразных продуктов. Нам не удалось идентифицировать методом РФА кристаллические фазы, образуюшиеся при полном обезвоживании синтезированных веществ. Состав промежуточных и конечных продуктов термолиза в работе не изучали. Дегидратация Y(Htba)₃ · 8H₂O протекает в две стадии: первая начинается при ~80°С, а вторая – при ~100°С (рис. 4а). Они сопровождаются эндотермическими эффектами при 85 и 129°С соответственно. Потеря массы веществом ($\Delta m_{
m эксп}$) при ~200°С близка к теоретически вычисленной ($\Delta m_{\rm выч}$) в предположении полной дегидратации ($\Delta m_{
m эксп} =$ = 20.9%, ∆*m*_{выч} = 21.7%, −8H₂O). При *t* > 370°C происходит окислительное разложение образца, которому соответствуют два экзотермических эффекта на кривой ДСК при 422 и 598°С. По результатам ИК-спектроскопического анализа газообразных продуктов, ниже 370° С единственным газообразным продуктом является вода, а среди продуктов термолиза в интервале $380-800^{\circ}$ С обнаружены CO₂, CS₂ и NH₃.

Как следует из рис. 4б, дегидратация $Ho(Htba)_3 \cdot 3H_2O$ (III) начинается при $180^{\circ}C$ и заканчивается при $270-280^{\circ}C$. Экспериментальная потеря массы веществ близка к вычисленной в предположении удаления всех молекул H_2O ($\Delta m_{_{ЭКСП}} = 7.97\%$, $\Delta m_{_{ВЫЧ}} = 8.33\%$, $-3H_2O$). Дегидратация сопровождается эндотермическим эффектом при 234°C. При $t > 320^{\circ}C$ происходит окислительное разложение образца, которому на кривой ДСК соответствует экзотермический эффект при 570°C. Ниже 320°C единственным газообразным продуктом является вода, а среди продуктов термолиза в интервале $380-800^{\circ}C$ обнаружены CS_2 , NH_3 , SO_2 и CO_2 .

Дегидратация Yb(Htba)₃ · 2H₂O начинается при 230°C и практически заканчивается при 300°C (рис. 4в). Ей соответствует эндотермический эффект при 237°C. Потеря массы при 250°C больше теоретически вычисленной в предположении полной дегидратации соединения ($\Delta m_{3\kappa cn} = 6.48\%$, $\Delta m_{выч} = 5.64\%$, $-2H_2O$). Наблюдаемое различие связано, по-видимому, с гигроскопичностью вещества. При t > 370°C происходит окисление органического лиганда, которому на кривой ДСК соответствует сильный экзотермический эффект при 451°C. При t < 370°C единственным газообразным продуктом является вода, а среди продуктов термолиза в интервале 380–800°C обнаружены CS₂, NH₃, SO₂ и CO₂.

Таблица 4. Кристаллографические параметры $Ln(Htba)_3 \cdot 2H_2O$ (пр. гр. $P2_12_12_1$)

Металл	<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³
La	6.813(1)	15.064(1)	18.326(2)	1880.9(2)
Ce	6.813(2)	15.025(2)	18.253(2)	1868.9(3)
Eu	6.742(1)	15.418(2)	18.125(2)	1883.9(3)
Yb	6.709(1)	15.325(2)	17.884(2)	1838.8(3)
Lu	6.711(1)	15.338(1)	17.882(1)	1840.7(1)
Y	6.721(1)	15.378(1)	17.982(1)	1858.5(2)

Рис. 3. Строение комплексов [Ln₂(H₂O)₆(HTBA-O,O')₄(HTBA-O)₂]_n.

Удаление всех молекул воды из соединения $Y(Htba)_3 \cdot 8H_2O$ уже при $t < 150^{\circ}C$ позволяет их отнести к кристаллизационным. В отличие от них, молекулы воды в Ho(Htba)₃ · $3H_2O$ и Yb(Htba)₃ · $2H_2O$, скорее всего, являются координированными, так как их дегидратация начинается при более высоких температурах по сравнению с $Y(Htba)_3 \cdot 8H_2O$. Как "жесткие" кислоты ионы Ln³⁺ не склонны образовывать связи с лигандами через атом серы, что косвенно подтверждает кристаллизация их немногочисленных комплексов с S-координированными лигандами только из неполярных растворителей [4]. Поэтому при рассмотрении возможной структуры гидратов Ln(Htba)₃ · 2H₂O и $Ln(Htba)_3 \cdot 8H_2O$ можно принимать во внимание только связи Ln-O_{Htba} и Ln-O_w. Поскольку обычно KY(Ln(III)) ≥ 8, а ионы $Htba^-$ не образуют O,O'-координированные хелаты [1, 2, 10], Yb(Htba)₃ · 2H₂O и изоструктурные ему гидраты являются координационными полимерами. Учитывая сравнительно низкую температуру полной дегидратации, характерную для некоординированных молекул воды, можно также предположить полимерное строение $Y(Htba)_3 \cdot 8H_2O$ и изоструктурных ему комплексов. Тогда с учетом ранее отмеченной наибольшей термодинамической устойчивости в растворе кристаллов М(Htba)₃ · 3H₂O взаимные превращения полимерных гидратов Ln(III) в их насыщенных водных растворах можно представить схемой:

$$[\operatorname{Ln}(\operatorname{Htba})_3]_n \cdot 8n\operatorname{H}_2O \xrightarrow{1-3 \operatorname{Mec}} [\operatorname{Ln}(\operatorname{H}_2O)_3(\operatorname{Htba})_2]_n$$
90°C
$$1-3 \operatorname{Mec} 20-25°C$$

$$[\operatorname{Ln}(\operatorname{H}_2O)_2(\operatorname{Htba})_2]_n$$

Рис. 4. Кривые ТГ и ДСК при окислительной деградации соединений: $a - Y(Htba)_3 \cdot 8H_2O$; $6 - Ho(Htba)_3 \cdot 3H_2O$, $B - Yb(Htba)_3 \cdot 2H_2O$.

ЗАКЛЮЧЕНИЕ

Кристаллизацией из водного раствора в различных условиях получены три типа гидратов тиобарбитуратных комплексов РЗЭ $M(Htba)_3 \cdot nH_2O$ (n = 2, 3, 8), различающихся кристаллическим строением и термической устойчивостью в процессах дегидратации. Окислительное разложение координированных лигандов $Htba^-$ начинается при более высокой температуре, чем свободной H_2 tba, которая плавится с разложением уже при ~250°C [22].

Как уже отмечалось, гидраты различного состава и строения получены ранее для нейтральных однородных комплексов, образованных H₂tba и HDetba с *s*-, *p*- и *d*-металлами (табл. S1) [3]. Существование нескольких гидратов наряду с возможностью образования полифункциональными лигандами связевых изомеров делает богатой координационную химию комплексов металлов с барбитуровыми кислотами [2]. Выделение дигидратов, тригидратов и октагидратов 2-тиобарбитуратов РЗЭ является примером проявления структурного и гидратного разнообразия соединений этого класса.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-52-80003. Рентгенографические данные получены с использованием оборудования Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Таблица S1. Гидраты барбитуратных комплексов металлов [3].

Таблица S2. Основные длины связей (Å) и углы (град) в соединениях I–III.

Таблица S3. Геометрические параметры водородных связей в структурах I-III.

Таблица S4. Параметры π – π -взаимодействий Htba[–] в кристаллах I-III.

Рис. S1. Строение слоя перпендикулярного направлению а + с. Циклический фрагмент структуры выделен широкой линией.

СПИСОК ЛИТЕРАТУРЫ

 Mahmudov K.T., Kopylovich M.N., Maharramov A.M. et al. // Coord. Chem. Rev. 2014. V. 265. P. 1. https://doi.org/10.1016/j.ccr.2014.01.002

- 2. Головнев Н.Н., Молокеев М.С. 2-Тиобарбитуровая кислота и ее комплексы с металлами: синтез, структура и свойства. Красноярск: Сиб. федер. ун-т, 2014. 252 с.
- 3. Головнев Н.Н., Молокеев М.С., Лесников М.К. // Журн. Сибирского федерального университета. Химия. 2017. № 10. С. 401. https://doi.org/10.17516/1998-2836-0036
- 4. *Cotton S.* Lanthanide and Actinide Chemistry. UK, Uppingham, Rutland: Wiley, 2006. 263 p.
- Heffern M.C., Matosziuk L.M., Meade T.J. // Chem. Rev. 2014. V. 114. P. 4496. https://doi.org/10.1021/cr400477t
- Yang Y., Zhao Q., Feng W., Li F. // Chem. Rev. 2013. V. 113. P. 192.
 - https://doi.org/10.1021/cr2004103
- Binnemans K. // Chem. Rev. 2009. V. 109. P. 4283. https://doi.org/10.1021/cr8003983
- Головнев Н.Н., Молокеев М.С. // Коорд. химия. 2014. Т. 40. № 9. С. 564. [Golovnev N.N., Molokeev M.S. // Russ. J. Coord. Chem. 2014. V. 40. № 9. Р. 648.] https://doi.org/10.1134/S1070328414090036
- 9. Головнев Н.Н., Молокеев М.С., Стерхова И.В. // Журн. неорган. химии. 2019. Т. 64. № 9. С. 965. https://doi.org/10.1134/S0044457X19090137
- 10. Cambridge Structural Database, Version 5.37. Cambridge, UK: Univ. of Cambridge, 2015.
- 11. *Sheldrick G.M.* SADABS. Version 2.01. Madison (WI, USA): Bruker AXS Inc., 2004.
- 12. *Sheldrick G.M.* SHELXTL. Version 6.10. Madison (WI, USA): Bruker AXS Inc., 2004.
- 13. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User's Manual, Bruker AXS, Karlsruhe, 2008.
- Balas V.I., Verginadis I.I., Geromichalos G.D. et al. // Eur. J. Med. Chem. 2011. V. 46. № 7. P. 2835. https://doi.org/10.5517/ccv3tc3
- Kubicki M., Owczarzak A., Balas V.I., Hadjikakou S.K. // J. Coord. Chem. 2012. V. 65. P. 1107. https://doi.org/10.1080/00958972.2012.660148
- Gong Y., Hao Z., Li J. et al. // Dalton Trans. 2013. V. 42. P. 6489. https://doi.org/10.1039/C3DT32380C
- Hützler W.M., Egert E., Bolte M. // Acta Crystallogr. C. 2016. V. 72. P. 705. https://doi.org/10.1107/S205322961601336X
- Gomathi S., Nirmalram J.S., Muthiah P.T. // Acta Crystallogr. B. 2015. V. 71. P. 144. https://doi.org/10.1107/S2052520615001729
- Wang C., Zhou M-S., Yang L.-J. et al. // Jiegou Huaxue. 2017. V. 36. P. 1210. https://doi.org/10.14102/j.cnki.0254-5861.2011-1494
- 20. *Стид Дж.В., Этвуд Дж.Л.* Супрамолекулярная химия. М.: Академкнига, 2007. 480 с.
- 21. PLATON A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands. 2008.
- 22. Roux M.V., Notario R., Segura M., Chickos J.S. // J. Chem. Eng. Data. 2011. V. 57. P. 249. https://doi.org/10.1021/je200420u