СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.47/.49

СИНТЕЗ, СТРОЕНИЕ И СВОЙСТВА КОМПЛЕКСОВ ЦИНКА(II) И КАДМИЯ(II) С КЛАСТЕРНЫМИ АНИОНАМИ БОРА [M(solv)₆][B_nH_n] (M = Zn(II), Cd(II); solv = DMF, DMSO; n = 10, 12)

© 2020 г. С. Е. Короленко^{*a*, *}, Л. В. Гоева^{*a*}, А. С. Кубасов^{*a*}, В. В. Авлеева^{*a*}, Е. А. Малинина^{*a*}, Н. Т. Кузнепов^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: korolencko0110@yandex.ru Поступила в редакцию 27.11.2019 г. После доработки 04.12.2019 г. Принята к публикации 27.01.2020 г.

Синтезированы и изучены методами физико-химического анализа (ИК-, УФ-спектроскопия, рентгенофазовый анализ) комплексные соединения [M(solv)₆][B_nH_n], где M = Zn(II), Cd(II); solv = DMF, DMSO; n = 10, 12. Строение комплексов [Cd(DMF)₆][B₁₀H₁₀] и [Zn(DMSO)₆][B₁₀H₁₀] установлено методом рентгеноструктурного анализа. На основании полученных данных определены способы синтеза координационных соединений Zn(II) и Cd(II) с азотсодержащими органическими лигандами в присутствии кластерных анионов бора [B_nH_n]²⁻ (n = 10, 12).

Ключевые слова: координационные соединения, додекагидро-*клозо*-додекаборатный анион, декагидро-*клозо*-декаборатный анион, специфические взаимодействия

DOI: 10.31857/S0044457X20060094

введение

Комплексные соединения общей формулы $[M(solv)_6][B_nH_n]$ (M = Zn(II), Cd(II); solv = H₂O, DMF, DMSO; n = 10, 12) могут быть использованы в качестве прекурсоров при синтезе координационных соединений металлов с кластерными анионами бора с заданными свойствами как в растворах, так и в твердофазных реакциях [1-7]. Ранее [8] были синтезированы и исследованы косвенными методами анализа комплексные соединения $[M(DMF)_6][B_{10}H_{10}]$ (M = Zn(II), Cd(II)). Эти соединения показали свою эффективность в твердофазных реакциях с азагетероциклическими лигандами. Кроме того, в реакциях комплексообразования металлов М(II) (Zn(II), Cd(II), Cu(II) и др.) при недостатке или в отсутствие конкурентоспособных лигандов молекулы растворителя могут участвовать в формировании координационного полиэдра металла-комплексообразователя с образованием смешанолигандных комплексов вплоть до $[M(solv)_6][B_nH_n]$, окружение металла в которых полностью образовано молекулами растворителя. Так, в работе [9] был охарактеризован ряд смешанолигандных моноядерных комплексов Cu(II), координационный полиэдр которых содержит молекулы растворителя: $[CuL_2(solv)_2][B_{12}H_{12}]$, $[CuL(solv)_4][B_{12}H_{12}]$. Учитывая вышеперечисленное, данные об особенностях образования комплексов и их строении могут быть использованы при объяснении возможных механизмов реакций комплексообразования.

В настоящей работе синтезированы и исследованы физико-химическими методами анализа (ИК-, УФ-спектроскопия, РФА) комплексы общей формулы [M(solv)₆][B_nH_n] (M = Zn(II), Cd(II); solv = DMF, DMSO; n = 10, 12). Методом PCA определено строение комплексов [Cd(DMF)₆][B₁₀H₁₀] и [Zn(DMSO)₆][B₁₀H₁₀].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Декагидро-*клозо*-декаборат триэтиламмония (Et₃NH)₂[B₁₀H₁₀] синтезировали из декаборана-14 через стадию образования 1,6-*бис*(триэтил-амин)декаборана по методике [10].

Додекагидро-*клозо*-додекаборат триэтиламмония (Et₃NH)₂[B₁₂H₁₂] получили в результате пиролиза раствора декаборана в триэтиламинборане по методике [11].

Клозо-додекаборат дибутиламмония $(Bu_2NH)_2[B_{12}H_{12}]$ синтезировали из $K_2[B_{12}H_{12}]$ по реакции с Bu_2NH_2Cl в воде. Клозо-додекаборат калия $K_2[B_{12}H_{12}]$ образуется при кипячении $(Et_3NH)_2[B_{12}H_{12}]$ в водном растворе КОН до полного удаления триэтиламина.

Общая методика синтеза $[M(solv)_6][B_{10}H_{10}]$ (M = Zn(II), solv = DMF (1), DMSO (2); M = = Cd(II), solv = DMF (3), DMSO (4)). К раствору, содержащему (Et₃NH)₂[B₁₀H₁₀] (3 ммоль) в DMF или DMSO (10 мл), при перемешивании добавляли в твердом виде соль соответствующего металла $M(NO_3)_2$ (M = = Zn(II), Cd(II)) (3 ммоль). В ходе гетерогенной реакции наблюдалось полное растворение осадка. Изотермическое упаривание реакционных растворов на воздухе при комнатной температуре в течение недели приводит к формированию бесцветных кристаллических осадков, которые отфильтровывали и высушивали. Выход 1-4~55-65%.

1 (NaCl, cM^{-1}): $v(BH)_{a\Pi}$ 2558, 2530, 2519, 2504; $v(BH)_{3KB}$ 2433; $\delta(BBH)$ 1010; v(C=O) 1636.

2 (NaCl, cm⁻¹): ν(BH)_{aπ} 2525; ν(BH)_{экв} 2462, 2425; δ(BBH) 1010; ν(S=O) 1008.

3 (NaCl, cm⁻¹): v(BH)_{aπ} 2525, 2515, 2504; v(BH)_{экв} 2430; δ(BBH) 1010; v(C=O) 1650.

4 (NaCl, cm⁻¹): ν(BH)_{aπ} 2514; ν(BH)_{экв} 2455, 2429, 2411; δ(BBH) 1010; ν(S=O) 1010.

	С	Н	Ν	Zn	Cd	В
Найдено для 1 , %:	34.65;	8.37;	13.23;	10.46;	_	17.1.
Для $C_{18}H_{52}N_6B_{10}ZnO_6$						
вычислено, %:	34.75;	8.42;	13.51;	10.51;	_	17.4.
Найдено для 2 , %:	21.98;	7.07;	_	9.98;	_	16.1.
Для $C_{12}H_{46}S_6B_{10}ZnO_6$						
вычислено, %:	22.09;	7.11;	_	10.02;	_	16.6.
Найдено для 3, %:	31.98;	7.75;	12.42;	_	16.73;	15.8.
Для $C_{18}H_{52}N_6B_{10}CdO_6$						
вычислено, %:	32.31;	7.83;	12.56;	_	16.80;	16.2.
Найдено для 4 , %:	20.52;	6.55;	-	_	16.02;	15.2.
Для $C_{12}H_{46}S_6B_{10}CdO_6$						
вычислено, %:	20.61;	6.63;			16.07;	15.5.

Синтез [Zn(DMF)₆][B₁₀H₁₀] (1) в присутствии азагетероциклических лигандов. Первоначально смешивали растворы, содержащие $(Et_3NH)_2[B_{10}H_{10}]$ (0.966 г, 3 ммоль) и Zn(NO₃)₂ · 6H₂O (0.891 г, 3 ммоль) в 10 мл DMF каждый. К полученному реакционному раствору добавляли раствор Віру (1.404 г, 9 ммоль) или ВРА (1.539 г, 9 ммоль) в 10 мл DMF каждый. При этом наблюдали появление ярко-желтой окраски. В результате изотермического упаривания на воздухе из реакционного раствора в качестве основного продукта были выделены бесцветные кристаллы, которые затем отфильтровывали и высушивали. Выход ~80%.

Синтез [Cd(DMSO)₆][B₁₂H₁₂] (5). К раствору, содержащему (Bu₂NH₂)₂[B₁₂H₁₂] (3 ммоль) в DMSO (10 мл), добавляли раствор соответствующей соли Cd(NO₃)₂ (3 ммоль) в том же растворителе. В результате изотермического упаривания реакционных растворов на воздухе при комнатной температуре в течение недели выпадали бесцветные кристаллы, которые отфильтровывали и высушивали на воздухе. Выход ~70%. ИК-спектр (NaCl, см⁻¹): v(BH) 2491, 2477, 2459, 2441; δ(BBH) 1007; v(S=O) 1010.

	С	Н	Cd	В
Найдено для 5, %:	19.89;	6.62;	15.49;	17.2.
Для $C_{12}H_{48}S_6B_{12}CdO_6$				
вычислено, %:	19.93;	6.69;	15.55;	17.9.

Определение содержания бора, кадмия и цинка выполнено методом ICP MS на атомно-эмиссионном спектрометре с индуктивно-связанной плазмой iCAP 6300 Duo.

ИК-спектры соединений записывали на ИКфурье-спектрометре ИНФРАЛЮМ ФТ-02 (НПФ АП "Люмекс") в области 4000–600 см⁻¹ с разрешением 1 см⁻¹. Исследовали суспензии твердых образцов в вазелиновом (Aldrich) масле. Для записи спектров использовали пластинки NaCl.

Электронные спектры поглощения (ЭСП) получены на спектрофотометре СФ 103 в УФ- и видимой области 13000—50000 см⁻¹ от образцов, растворенных в CH₃CN, и в виде суспензий в глицерине. Результаты исследований приведены в табл. 1.

Соединение	$\pi ightarrow \pi^*$	B-HH-C
1, суспензия	215	350
1, раствор	215	250
2, суспензия	210	350
2, раствор	210	260
3, суспензия	215	350
3, раствор	215	250
4, суспензия	210	350
4, раствор	210	260
DMF	230	_
DMSO	225	—

Таблица 1. Электронные спектры поглощения комплексов 1-4 (v, нм)

Рентгенофазовый анализ проводили на рентгеновском дифрактометре Bruker D8 Advance в Центре коллективного пользования ИОНХ РАН в Си K_{α} -излучении в низкофоновых кюветах с подложкой из ориентированного монокристалла кремния в интервале углов 20 5°-80° с шагом 0.01125°. Для получения дифрактограмм образцы тщательно истирали в агатовой ступке.

РСА. Набор дифракционных отражений для кристаллов **2** и **3** получен в ЦКП ИОНХ РАН на автоматическом дифрактометре Bruker SMART АРЕХ2 и Bruker APEX2 CCD (λ Mo K_{α} , графитовый монохроматор, ω – ϕ -сканирование). Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Все неводородные атомы уточнены в анизотропном приближении. Все атомы водорода уточнены по модели наездника с тепловыми параметрами $U(H) = 1.2U_{экв}$ (1.5 $U_{экв}$ для CH₃-групп) соответ-

ствующих неводородных атомов. Анализ списка отражений кристалла **3** с наибольшим расхождением между F_o^2 и F_c^2 показывает, что исследованный кристалл содержит двойниковый компонент. Кристаллографически независимая половина аниона $[B_{10}H_{10}]^{2-}$ в структуре **2** разупорядочена с заселенностью 0.5/0.5. Атом S1 разупорядочен по двум позициям с заселенностью 0.12/0.88.

При сборе и обработке массива отражений использовали программы APEX2, SAINT и SADABS [12]. Структура расшифрована и уточнена с помощью комплекса программ OLEX2 [13]. Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структур **2** и **3** приведены в табл. 2. Длины связей и валентные углы — в табл. 3.

Кристаллографические данные депонированы в Кембриджском банке структурных данных (№ 1962992 (**3**) и 1962993(**2**)).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В настоящей работе были синтезированы и исследованы, в том числе методом PCA, комплексы $[M(DMF)_6][B_{10}H_{10}]$ (1, 3), $[M(DMSO)_6][B_{10}H_{10}]$ (2, 4) (M = Zn(II), Cd(II)) и $[Cd(DMSO)_6][B_{12}H_{12}]$ (5). Для комплексов $[Zn(DMSO)_6][B_{10}H_{10}]$ (2) и $[Cd(DMF)_6][B_{10}H_{10}]$ (3), описанных в работе [8], выполнено рентгеноструктурное исследование.

Комплексы $[M(solv)_6][B_{10}H_{10}]$ (1–4) образуются при взаимодействии *клозо*-декабората триэтиламмония с солями цинка(II) или кадмия(II) в DMF или DMSO в результате гетерогенной реакции (схема 1):

Схема 1. Синтез соединений 1-4.

Комплекс кадмия(II) с додекагидро-*клозо*-додекаборатным анионом во внешней сфере [Cd(DMSO)₆][B₁₂H₁₂] (5) был выделен в результате гомогенной реакции додекагидро-*клозо*-додекабората дибутиламмония с нитратом кадмия в DMSO (схема 2):

$$Cd(NO_3)_2 \cdot 4H_2O + (Bu_2NH_2)_2 \xrightarrow{OMSO} [Cd(DMSO)_6]$$

Схема 2. Синтез соединения 5.

Селективное выделение комплекса $[Zn(DMF)_6][B_{10}H_{10}]$ (1) в качестве основного продукта было обнаружено при проведении реакции комплексообразования цинка(II) в присутствии азагетероциклических лигандов L (L = Bipy, BPA) в DMF (схема 3):

Соединение	2	3
Брутто-формула	$C_{12}H_{46}B_{10}O_6S_6Zn$	$C_{18}H_{52}B_{10}N_6O_6Cd$
Μ	669.15	652.32
Т, К	299	296
Сингония	Тетрагональная	Моноклинная
Пр. гр.	P4cc	C2/c
<i>a</i> , Å	13.6256(5)	13.9489(10)
b, Å	13.6256(5)	13.1227(9)
<i>c</i> , Å	18.3063(10)	17.6737(12)
β, град	90	90.110(2)
<i>V</i> , Å ³	3398.7(3)	3235.1(4)
Ζ	4	4
$ρ_{pacy}$, r/cm^3	1.308	1.339
μ, мм ⁻¹	0.682	1.172
<i>F</i> (000)	1392.0	1368.0
Размеры кристалла, мм	0.6 imes 0.4 imes 0.03	0.8 imes 0.6 imes 0.5
Излучение, λ, Å	0.71073	0.71073
Интервал углов 20, град	2.988-61.124	4.842-60.494
Число отражений:		
измеренных	31589	18484
независимых (<i>N</i>) [R _{int}]	5192 [0.0541]	4804 [0.0383]
R_1 , wR_2 по N_0	0.0404, 0.0995	0.0468, 0.1260
R_1 , wR_2 по по всем отражениям	0.0962, 0.1223	0.0693, 0.1411
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}, e / {\rm \AA}^3$	0.95/-0.33	0.57/-0.38

Таблица 2. Основные кристаллографические данные, параметры эксперимента и уточнения структур 2 и 3

Схема 3. Синтез комплекса 1 в присутствии азагетероциклических лигандов.

Следует отметить существенную растворимость комплексов $[M(solv)_6][B_{12}H_{12}]$ по сравнению с аналогичными комплексами $[M(solv)_6][B_{10}H_{10}]$. Так, комплекс $[Cd(DMSO)_6][B_{12}H_{12}]$ образуется в реакционном растворе в ходе упаривания в течение недели. В свою очередь, соединения $[M(solv)_6][B_{12}H_{12}]$ образуются в виде высокосольватных соединений $[M(solv)_6][B_{12}H_{12}] \cdot n$ solv. Состав продуктов реакций идентифицировали на основании данных элементного анализа, ИК-, УФ-спектроскопии и РФА.

В ИК-спектрах комплексов $[M(solv)_6][B_{10}H_{10}]$ (M = Zn(II), Cd(II); solv = DMF, DMSO) полосы валентных колебаний v(C=O) и v(S=O) соответствующих лигандов-растворителей проявляются в более низкочастотном интервале ($\Delta v \sim 30-40 \text{ cm}^{-1}$) по сравнению с таковыми в спектрах некоординированных молекул растворителей solv, что указывает на их координацию атомами металлов. Известно, что в области валентных колебаний связей бор-водород свободного аниона $[B_{10}H_{10}]^{2-}$ (например, солей щелочных металлов Na₂[B₁₀H₁₀], $K_2[B_{10}H_{10}])$ с учетом его геометрии проявляются две полосы v(BH)_{ап} апикальных и v(BH)_{экв} экваториальных ВН-связей в интервале 2550-2400 см⁻¹ [14]. Отсутствие полос поглощения в интервале 2400-2100 см⁻¹, характерных для аниона $[B_{10}H_{10}]^{2-}$, координированного к центральному атому металла-комплексообразователя трехцентровыми двухэлектронными связями, указывает на положение аниона во внешней сфере комплексов [15, 16]. В спектрах исследуемых комплексов в области валентных

Рис. 1. Вид ИК-спектров комплексов $[Co(DMF)_6][B_{10}H_{10}]$ (1), $[Zn(DMF)_6[B_{10}H_{10}]$ (2), $[Cd(DMF)_6][B_{10}H_{10}]$ (3) в области валентных колебаний связи ВН.

колебаний связей ВН *клозо*-декаборатного аниона в интервале 2400—2550 см⁻¹ присутствует интенсивная полоса, характерная для внешнесферного аниона. Следует отметить мультиплетное расщепление указанной полосы. Так, в спектрах комплексов с DMF наблюдается расщепление полосы v(BH)_{ап} на несколько компонент (рис. 1); в спектрах комплексов с DMSO — расщепление полосы v(BH)_{экв} на несколько компонент, при этом полоса v(BH)_{ап} остается синглетной (рис. 2). Такое характерное изменение в области валентных колебаний связей BH было ранее обнаружено в соответствующих комплексах кобальта(II) и никеля(II) [M(DMF)₆][B₁₀H₁₀] [17, 18].

Согласно данным ИК-спектра комплекса $[Cd(DMSO)_6][B_{12}H_{12}]$ (5), додекагидро-*клозо*-додекаборатный анион, находясь в качестве противоиона, участвует в образовании дальних контактов B–H....H–C с метильными группами координированных молекул DMSO. В спектре комплекса присутствует уширенная полоса v(BH) колебаний с максимумами при 2491, 2477, 2459 и 2441 см⁻¹ вместо синглетной полосы при 2460 см⁻¹, харак-

Рис. 2. Вид ИК-спектров комплексов [Co(DMSO)₆][B₁₀H₁₀] (*1*), [Zn(DMSO)₆[B₁₀H₁₀] (*2*), [Cd(DMSO)₆][B₁₀H₁₀] (*3*) в области валентных колебаний связи ВН.

терной для спектра соли K₂[B₁₂H₁₂] [14], в которой отсутствуют подобные взаимодействия.

Ранее достаточно широко были изучены специфические взаимодействия N-H...H-B в ониевых солях $[B_{10}H_{10}]^{2-}$, а также в анионных комплексах металлов с алкиламмониевыми катионами [19].

Таблица 3. Длины связей и валентные углы для соединений 2 и 3

Сразі	2	3		
Связв	<i>d</i> , Å			
M-01	2.0723(16)	2.239(4)		
M-O2	2.1094(17)	2.280(6)		
M-O3	2.1172(16)	2.246(5)		
Угол	ω, град			
O1MO2	89.35(7)	86.0(3)		
O1MO3	88.62(7)	92.8(2)		
O2MO3	89.59(7)	85.9(2)		

Рис. 3. Фрагмент структуры 2.

Данные электронных спектров поглощения комплексов $[M(solv)_6][B_{10}H_{10}]$ (M = Zn(II), Cd(II)) были получены в УФ- и видимой областях.

В электронных спектрах поглощения образцов в интервале 200-225 нм присутствует интенсивная полоса, отвечающая внутрилигандному переносу заряда в молекулах координированных лигандов DMSO и DMF. Следует отметить, что в спектрах наблюдается небольшой гипсохромный сдвиг указанной полосы — $\Delta v \sim 10$ нм (2000 см⁻¹). Анализ электронных спектров поглощения (ЭСП) указывает на полную диссоциацию комплексов на комплексный катион $[M(solv)_6]^{2+}$ и клозо-декаборатный анион. Так. если в спектрах твердых образцов комплексов, записанных в виде суспензии в глицерине, наблюдается только одна вышеуказанная полоса внутрилигандного переноса заряда, то в спектрах растворов в CH₃CN появляется дополнительная полоса слабой интенсивности около 255 нм, которую можно отнести к контактам аниона $[B_{10}H_{10}]^{2-}$ с молекулами ацето-нитрила B-H...H-C. Следует отметить, что в ЭСП комплексов $[M(solv)_6][B_{10}H_{10}]$ (M = Zn(II), Cd(II)) в интервале 350-450 нм полоса переноса заряда с внешнесферного клозо-декаборатного аниона на молекулы координированного лиганда (solv) ($[B_{10}H_{10}]^{2-} \rightarrow$ solv), свойственная подобным комплексам Co(II) [20], слабо выражена, что, вероятно, обусловлено слабыми специфическими взаимодействиями. В УФ-спектрах комплексов 2 и 3 в интервале 350—450 нм наблюдается широкая полоса переноса заряда с внешнесферного *клозо*-декаборатного аниона на молекулы координированного лиганда ($[B_{10}H_{10}]^{2-} \rightarrow solv$), которая исчезает в спектрах растворов данных комплексов в CH₃CN, что обусловлено их диссоциацией в указанных растворителях.

Строение комплексов $[Zn(DMSO)_6][B_{10}H_{10}]$ (2) $u [Cd(DMF)_6][B_{10}H_{10}]$ (3)

Кристаллы [Zn(DMSO)₆][$B_{10}H_{10}$] (2) (рис. 3) и [Cd(DMF)₆][$B_{10}H_{10}$] (3) (рис. 4) построены из комплексных катионов [M(solv)₆]²⁺ и анионов [$B_{10}H_{10}$]²⁻. Кристаллы подобных соединений [Zn(DMF)₆][$B_{10}H_{10}$] (1) и [Cd(DMSO)₆][$B_{10}H_{10}$] (4) изоструктурны комплексам 3 и 2 соответственно.

В структуре **3** комплексный катион находится на поворотной оси второго порядка, а в **2** расположен в центре симметрии. Координационное окружение атомов М формируют шесть атомов кислорода от соответствующих молекул (solv), образуя октаэдры, последние искажены мало. Длины связей М–О и валентные углы в октаэдрах приведены в табл. 3.

Рис. 4. Фрагмент структуры 3.

структуре 3 комплексные R катионы $[Cd(DMF)_{6}]^{2+}$ образуют трехмерные сетки с каналами квадратного сечения, направленными вдоль оси c (рис. 5). Анионы $[B_{10}H_{10}]^{2-}$ занимают две кристаллографически независимые позиции на поворотных осях четвертого порядка, проходящих вдоль центра каналов. Каждый анион состоит из двух кристаллографически независимых апикальных и экваториальных В-Н-групп. Атомы H анионов [B₁₀H₁₀]²⁻ образуют специфические контакты с атомами Н метильных групп молекул DMF. Длины контактов Н...Н с участием апикальных групп составляют 2.51, 2.58 и 2.65 Å, длина самых коротких контактов экваториальных групп находится примерно в том же диапазоне и составляет 2.53, 2.55, 2.56 и 2.70 Å. Следует отметить, что в аналогичном комплексе кобальта [Co(DMF)₆][B₁₀H₁₀] наименьшая длина контактов равна 2.27 Å.

В структуре 2 анион $[B_{10}H_{10}]^{2-}$ расположен на поворотной оси второго порядка и разупорядочен с заселенностью 0.5 : 0.5. Ось симметрии проходит через середины двух ребер между экваториальными поясами: B5–B5' и B2A–B2A' в первом случае и B5–B5' и B3B–B3B' – во втором. В кристалле 2, как и в 3, комплексные катионы упакованы в трехмерные сетки с каналами вдоль оси *с* (рис. 5). Наиболее короткие контакты H...H, образуемые группами B–H с метильными группами молекул DMSO составляют 2.23, 2.32, 2.34 и 2.44 Å. В аналогичном комплексе кобальта(II) $[Co(DMSO)_6][B_{10}H_{10}]$ наименьшая длина контактов составляет 2.17 и 2.21 Å.

На рис. 6 приведены дифрактограммы комплексов $[M(DMF)_6][B_{10}H_{10}]$ (M = Zn(II), Cd(II) и Co(II)). Согласно данным РФА, комплексы изоструктурны.

ЗАКЛЮЧЕНИЕ

Анализируя полученные результаты, следует отметить существенное различие растворимости в однотипных растворителях соединений $[M(solv)_6][B_nH_n]$ в зависимости от природы кластерного аниона бора. Именно этим обстоятельством объясняется факт выделения в качестве основного продукта в реакции комплексообразования Zn(II) с азагетероциклическими лигандами L (L = Bipy, BPA) в DMF комплексного соединения $[Zn(DMF)_6][B_{10}H_{10}]$.

Что касается комплексов с додекагидро-*клозо*додекаборатным анионом $[B_{12}H_{12}]^{2-}$, они формируются в виде высокосольватных соединений $[M(solv)_6][B_{12}H_{12}] \cdot nsolv.$ В качестве монокристаллов выделено соединение $[Cd(DMSO)_6][B_{12}H_{12}].$ Полученные в работе данные следует учитывать при синтезе координационных соединений Zn(II) и Cd(II) с азотсодержащими органическими лигандами в органических растворителях в присутствии кластерных анионов бора $[B_nH_n]^{2-}$.

Рис. 5. Проекция структуры 3 вдоль оси с.

Рис. 6. Дифрактограммы комплексов общей формулы [M(DMF)₆][B₁₀H₁₀] (M = Zn(II) (1), Co(II) (2), Cd(II) (3). ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 6 2020

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы сообщают, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1673. https://doi.org/10.1134/S0036023617130022
- Malinina E.A., Avdeeva V.V., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2148. https://doi.org/10.1134/S0036023610140032
- 3. Nguyen Duc Van New salt-like dodecahydro-*closo*-dodecaborates and efforts for the partial hydroxylation of $[B_{12}H_{12}]^{2-}$ anions. Stuttgart: Institut fur anorganische Chemie der Universitat, 2009.
- Tiritiris I., Schleid Th. // Z. Anorg. Allg. Chem. 2005. V. 631. P. 1593.
- Tiritiris I., Schleid Th. // Z. Anorg. Allg. Chem. 2007. V. 634. P. 317.
- 6. *Malinina E.A., Goeva L.V., Buzanov G.A. et al.* // Dokl. Chem. 2019. V. 487. № 1. Р. 180. [*Малинина Е.А., Го-ева Л.В., Бузанов Г.А. и др.* // Докл. АН. 2019. Т. 487. № 2. С. 154.]

https://doi.org/10.1134/S0012500819070061

- Malinina E.A., Goeva L.V., Buzanov G.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 11. Р. 1325. [Малинина Е.А., Гоева Л.В., Бузанов Г.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 11. С. 1136.] https://doi.org/10.1134/S0036023619110123
- Malinina E.A., Korolenko S.E., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 12. Р. 1552. [Малинина Е.А., Короленко С.Е., Гоева Л.В. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1543.] https://doi.org/10.1134/S0036023618120148

- 9. Malinina E.A., Kochneva I.K., Avdeeva V.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. Р. 1210. [Малинина Е.А., Кочнева И.К., Авдеева В.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1031.] https://doi.org/10.1134/S0036023619100085
- 10. *Miller H.C., Miller N.E., Muetterties E.L.* // J. Am. Chem. Soc. 1963. № 11. P. 338.
- Greenwood N.N., Morris J.H. // Proc. Chem. Soc. 1963. № 11. P. 338.
- APEX2 (V. 2009, 5-1), SAINT (V7.60A), SADABS (2008/1). Bruker AXS Inc., Madison, Wisconsin, USA, 2008–2009.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
- 14. *Канаева О.А., Сосновская О.О., Гоева Л.В. и др. //* Журн. неорган. химии. 1980. Т. 25. № 9. С. 2380.
- Dobrott R.D., Lipscomb W.N. // J. Chem. Phys. 1962.
 V. 37. № 6. P. 1779.
- Polyakova I.N., Malinina E.A., Drozdova V.V. et al. // J. Chem. Crystallogr. 2008. V. 53. № 2. Р. 253. [Полякова И.Н., Малинина Е.А., Дроздова В.В. и др. // Кристаллография. 2008. Т. 53. № 2. С. 279.] https://doi.org/10.1134/S1063774508020132
- Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Inorg. Chim. Acta. 2016. V. 451. P. 129. https://doi.org/10.1016/j.ica.2016.07.016
- Avdeeva V.V., Polyakova I.N., Vologzhanina A.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 9. Р. 1125. [Авдеева В.В., Полякова И.Н., Вологжанина А.В. и др. // Журн. неорган. химии. 2016. Т. 61. № 9. С. 1182.] https://doi.org/10.1134/S0036023616090023
- Malinina E.A., Goeva L.V., Avdeeva V.V. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 5. Р. 687. [Малинина Е.А., Гоева Л.В., Авдеева В.В. и др. // Журн. неорган. химии. 2011. Т. 56. № 5. С. 735.] https://doi.org/10.1134/S0036023611050160
- 20. Goeva L.V., Avdeeva V.V., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 8. Р. 1050. [Гоева Л.В., Авдеева В.В., Малинина Е.А. и др. // Журн. неорган. химии. 2018. Т. 62. № 8. С. 1015.] https://doi.org/10.1134/S0036023618080089