ТЕРМОДИНАМИКА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

УДК 544.31

ОПИСАНИЕ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ АЛЮМОСИЛИКАТОВ С ЦЕОЛИТОПОДОБНЫМ СОСТАВОМ СУММАМИ ФУНКЦИЙ ЭЙНШТЕЙНА–ПЛАНКА

© 2020 г. А. Л. Восков*

Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

*e-mail: alvoskov@gmail.com Поступила в редакцию 15.11.2019 г. После доработки 26.11.2019 г. Принята к публикации 24.12.2019 г.

С помощью взвешенных сумм функций Эйнштейна—Планка описаны термодинамические функции девяти алюмосиликатов с цеолитоподобным стехиометрическим составом: анортита, арменита (гидратированная и дегидратированная формы), жадеита, карнегиита, кордиерита (гидратированная и дегидратированная формы), осумилита, петалита. Погрешность описания сопоставима с погрешностью эксперимента, а число отдельных функций Эйнштейна—Планка в сумме составляет от 4 до 6. Существующая аддитивная модель термодинамических свойств цеолитов, основанная на функциях Эйнштейна—Планка, согласуется с экспериментальными данными для всех рассмотренных алюмосиликатов, кроме жадеита, осумилита и кордиерита, в широком интервале температур (от 0 до 1800 K). В случае кордиерита и осумилита расхождения связаны с большим содержанием в них магния, а в случае жадеита – с его структурным отличием от остальных рассмотренных алюмосиликатов.

Ключевые слова: алюмосиликаты, термодинамические модели, теплоемкость, теплосодержание **DOI:** 10.31857/S0044457X20050268

введение

Термодинамическое моделирование индивидуальных алюмосиликатов необходимо для расчета геохимических процессов с их участием, поэтому описание их термодинамических свойств в широком интервале температур является актуальной задачей. В настоящее время существует несколько термодинамических баз данных алюмосиликатов, включающих в себя аддитивные модели их свойств [1–4]. Важную роль среди алюмосиликатов играют цеолиты – каркасные алюмосиликаты, которые широко используются как молекулярные сита, катализаторы, адсорбенты. Их состав описывается следующей формулой:

$$(AO_{1.5})_{x}(BO)_{y}(AlO_{1.5})_{z}(SiO_{2})_{l-z}(H_{2}O)_{w},$$
 (1)

где А и В – одно- и двухвалентные металлы (обычно щелочные и щелочноземельные), а *x* и *y* – вектора составов. При этом переменные, описывающие состав, подчиняются соотношению $\sum_i x_i + 2\sum_i y_i = z$ [5]. Для цеолитов существуют специализированные базы данных и термодинамические модели их аддитивных свойств [6–8]. Более подробный обзор баз данных термодинамических свойств как алюмосиликатов вообще, так и цеолитов в частности, дан в работе [9].

Большинство термодинамических баз данных и адлитивных моделей для алюмосиликатов. в том числе цеолитов, использует разные модели для теплоемкости и энтропии. Одна из моделей термодинамических свойств цеолитов, разработанная в лаборатории химической термодинамики Химического факультета МГУ им. М.В. Ломоносова, использует единую модель для теплоемкости и энтропии во всем интервале температур [9]. Она основана на использовании взвешенных сумм функций Эйнштейна-Планка для описания теплоемкости, предложенных Ворониным с соавт. [10]. Такие суммы применяли ранее для аппроксимации изобарных теплоемкостей широкого круга соединений, в том числе алюмосиликатов [11, 12]. В [9] предложены как термодинамические функции индивидуальных цеолитов, так и аддитивная модель функциональных вкладов, позволяющая предсказывать теплоемкости и энтропии цеолитов по их составам с относительной погрешностью ~5% при 298.15 К. Однако пригодность этой модели не тестировалась на алюмосиликатах, не являющихся цеолитами.

Цель настоящей работы — проверка пригодности взвешенной суммы функций Эйнштейна— Планка для описания термодинамических свойств

N⁰	Соединение	Формула	Источник
1	Анортит	CaAl ₂ Si ₂ O ₈	[13-17]
2	Арменит	$Ba_{0.90}Ca_{2.01}Na_{0.05}Al_{5.87}Si_{9.13}O_{30} \cdot 2H_2O **$	[18]
3	Арменит-бв*	$Ba_{0.90}Ca_{2.01}Na_{0.05}Al_{5.87}Si_{9.13}O_{30}**$	[18]
4	Жадеит	NaAlSi ₂ O ₆	[19, 20]
5	Карнегиит	NaAlSiO ₄	[20, 21]
6	Кордиерит	$Mg_{1.97}Al_{3.94}Si_{5.06}O_{18} \cdot 0.625H_2O^{**}$	[22]
7	Кордиерит	$Mg_2Al_4Si_5O_{18} \cdot xH_2O (x = 0.13, 0.34, 0.45, 0.68, 0.82)$	[23]
8	Кордиерит-бв*	$Mg_{1.97}Al_{3.94}Si_{5.06}O_{18}^{**}$	[24]
	Кордиерит-бв*	$Mg_2Al_4Si_5O_{18}$	[23]
9	Осумилит	$\mathrm{KMg}_{2}\mathrm{Al}_{5}\mathrm{Si}_{10}\mathrm{O}_{30}\cdot\mathrm{H}_{2}\mathrm{O}$	[19]
10	Петалит	LiAlSi ₄ O ₁₀	[19, 26, 27]

Таблица 1. Названия и формулы исследуемых алюмосиликатов, а также экспериментальные данные (термодинамические свойства)

* Сокращение бв означает безводный.

** Идеализированные стехиометрические формулы арменита $BaCa_2Al_6Si_9O_{30} \cdot xH_2O(x = 0, 2)$, кордиерита $Mg_2Al_4Si_5O_{18} \cdot xH_2O(x = 0-1)$.

алюмосиликатов, не являющихся цеолитами, а также проверка на них существующей модели аддитивных функциональных вкладов, разработанной для цеолитов.

РАСЧЕТНАЯ ЧАСТЬ

Для этого выбрали несколько алюмосиликатов, состав которых отвечает формуле (1). При выборе основным критерием была доступность для них экспериментальных данных по изобарной теплоемкости и теплосодержанию в широком интервале температур, а также отсутствие в этом интервале аномалий теплоемкости и фазовых переходов. Значимую роль играло наличие данных в низкотемпературной области, полученных методом адиабатической калориметрии, так как они позволяют рассчитать значение энтропии $S_{298,15}^{\circ}$. Перечень рассмотренных алюмосиликатов, их формулы, а также ссылки на первоисточники с экспериментальными данными приведены в табл. 1.

Для всех веществ в табл. 1, кроме осумилита и некоторых составов гидратированного кордиерита, имеются данные по изобарной теплоемкости, полученные методом адиабатической калориметрии. В случае анортита, арменита-бв (дегидратированного, т.е. безводного арменита), осумилита, петалита, кордиерита-бв (дегидратированного, т.е. безводного кордиерита) есть значения C_p , полученные методом дифференциальной сканирующей калориметрии (**ДСК**). Для карнегиита, жадеита и пенталита существуют данные по теплосодержанию, полученные дроп-калориметрией. Более подробная информация об экспериментальных данных из табл. 1, включая число точек и температурные интервалы, приведена в разделе "результаты и обсуждение".

В случае арменита и кордиерита их составы (табл. 1) отклоняются от идеализированных формул $BaCaAl_6Si_9O_{30} \cdot xH_2O$ (x = 0, 1) и $Mg_2Al_4Si_5O_{18} \cdot xH_2O$ (x = 0-1) соответственно. Для кордиерита в разных работах предлагаются различающиеся несколько составы: $Mg_{1.97}AI_{3.94}Si_{5.06}O_{18} \cdot xH_2O$ (x = 0 или 0.625) у Пау-кова с соавт. [22, 24], $Mg_{1.95}AI_{4.01}Si_{5.01}O_{18}$ и $Mg_{1,97}Al_{3,98}Si_{5,02}O_{18} \cdot xH_2O (x = 0.13, 0.34, 0.45, 0.68,$ 0.82) у Carey [23]. При дальнейшей обработке экспериментальных данных безводный кордиерит из работ [23, 24] рассматривался как одно соединение, и данные по изобарной теплоемкости обрабатывались совместно. Поскольку для гидратированного кордиерита, исследованного в [23], отсутствуют сведения по термодинамическим свойствам при T < 295 K, данные [23] для этих соединений в дальнейшем не обрабатывались. Проведение низкотемпературной экстраполяции нецелесообразно из-за имеющихся данных по термодинамическим свойствам гидратированного и дегидратированного кордиерита близкого состава [22, 24].

Для аппроксимации теплоемкостей и теплосодержаний индивидуальных алюмосиликатов использовали взвешенную сумму функций Эйнштейна—Планка, которая имеет следующий вид для изобарной теплоемкости:

$$C_{p}\left(T,\vec{\alpha},\vec{\theta}\right) = \sum_{i=1}^{m} \alpha_{i} C_{E}\left(\frac{\theta_{i}}{T}\right); \quad \frac{C_{E}\left(x\right)}{R} = \frac{3x^{2}e^{x}}{\left(e^{x}-1\right)^{2}}, \quad (2)$$

BOCKOB

N⁰	Соединение	Параметры $\vec{\alpha}$ и $\vec{\theta}$
1	Анортит	$\vec{\alpha} = [3.61345 \pm 0.36; 5.31392 \pm 0.25; 3.34106 \pm 0.17; 1.12028 \pm 0.070; 0.112805 \pm 0.0063];$
		$\vec{\theta} = [1487.30 \pm 79; 672.102 \pm 33; 290.708 \pm 9.7; 136.589 \pm 2.9; 60.8776 \pm 0.79]$ K
2	Арменит	$\vec{\alpha} = [21.8377 \pm 0.95; 14.3199 \pm 0.95; 6.92375 \pm 0.45; 1.24349 \pm 0.13; 0.0455167 \pm 0.0062];$
		$\vec{\theta} = [835.835 \pm 47; 357.991 \pm 18; 165.654 \pm 5.3; 83.7584 \pm 2.3; 31.791 \pm 1.2]$ K
3	Арменит-бв	$\vec{\alpha} = [21.6693 \pm 0.60; 10.7326 \pm 0.53; 5.60220 \pm 0.39; 1.11990 \pm 0.11; 0.0314798 \pm 0.0043];$
		$\vec{\Theta} = [740.006 \pm 24; 313.764 \pm 15; 153.271 \pm 5.0; 80.2685 \pm 2.0; 30.8041 \pm 1.2]$
4	Жадеит	$\vec{\alpha} = [5.39301 \pm 0.22; 3.76810 \pm 0.24; 0.246575 \pm 0.021; 0.0204722 \pm 0.0077];$
		$\vec{\Theta} = [829.326 \pm 45; 328.239 \pm 8.7; 110.163 \pm 6.2; 45.0502 \pm 6.1] \text{ K}$
5	Карнегиит	$\vec{\alpha} = [2.58918 \pm 0.15; 2.63381 \pm 0.11; 1.74098 \pm 0.097; 0.722384 \pm 0.11; 0.192848 \pm 0.014];$
		$\vec{\Theta} = [1517.31 \pm 82; 627.726 \pm 37; 283.233 \pm 17; 152.773 \pm 7.3; 81.1370 \pm 1.0]$ K
6	Кордиерит	$\vec{\alpha} = [10.0359 \pm 0.53; 9.09459 \pm 0.44; 6.67614 \pm 0.57; 2.62014 \pm 0.16; 0.525655 \pm 0.024; 0.0605089 \pm \pm 0.0083];$
		$\vec{\theta} = [1160.30 \pm 68; 576.469 \pm 37; 304.534 \pm 13; 150.310 \pm 3.8; 64.9067 \pm 1.9; 25.1859 \pm 1.4]$ K
8	Кордиерит-бв	$\vec{\alpha} = [12.1596 \pm 0.32; 10.2475 \pm 0.28; 4.34961 \pm 0.23; 1.01035 \pm 0.14; 0.0516239 \pm 0.0031];$
		$\vec{\theta} = [1074.00 \pm 30; 457.631 \pm 14; 219.259 \pm 7.5; 125.533 \pm 3.4; 45.4410 \pm 0.95]$ K
9	Осумилит	$\vec{\alpha} = [18.0863 \pm 0.58; 29.4486 \pm 0.61; 3.79031 \pm 0.31; 0.0481713 \pm 0.00095];$
		$\vec{\Theta} = [1718.68 \pm 81; 397.407 \pm 9.4; 158.276 \pm 3.0; 33.9330 \pm 0.19]$ K
10	Петалит	$\vec{\alpha} = [4.76257 \pm 0.67; 5.58991 \pm 0.42; 4.31852 \pm 0.60; 1.45498 \pm 0.10; 0.628575 \pm 0.069; 0.0529402 \pm \pm 0.0090];$
		$\vec{\theta} = [1620.70 \pm 130; 763.366 \pm 80; 379.733 \pm 26; 159.935 \pm 9.4; 81.2123 \pm 3.3; 36.4018 \pm 1.5]$ K

Таблица 2. Оптимизированные параметры для взвешенных сумм функций Эйнштейна–Планка для индивидуальных соединений (уравнение (2))

где m — число функций (вкладов) в сумме, α_i и θ_i неотрицательные параметры модели, оптимизируемые на основе экспериментальных данных методом наименьших квадратов, $C_{\rm E}(x)$ — функция Эйнштейна—Планка. Выражения для энтропии и приращения энтальпии могут быть получены аналитическим интегрированием уравнения (2). Более подробную информацию об этих выражениях, а также о нахождении доверительных интервалов параметров α_i и θ_i можно найти в работе [12].

В настоящей работе все параметры термодинамической модели (уравнение (2)) находили методом наименьших квадратов. При этом использовали следующую целевую функцию, соответствующую минимизации относительных погрешностей:

$$RSS = \sum_{i=1}^{n_{C}} \omega_{C,i}^{2} \left(\frac{C_{p,i}^{\exp} - C_{p,i}^{\operatorname{calc}}}{C_{p,i}^{\exp}} \right)^{2} + \sum_{i=1}^{n_{H}} \omega_{H,i}^{2} \left(\frac{\Delta H_{i}^{\exp} - \Delta H_{i}^{\operatorname{calc}}}{\Delta H_{i}^{\exp}} \right)^{2} , \qquad (3)$$

где C_p и ΔH — изобарная теплоемкость и теплосодержание соответственно, n_C и n_H — число экспериментальных точек для C_p и ΔH , $\omega_{C,i}$ и $\omega_{H,i}$ — статистические веса, по умолчанию равные 1, надстрочные индексы саlс и ехр обозначают расчетные и экспериментальные значения. Все расчеты проводили в программе CpFit, описанной в [9, 12]. Эта программа доступна на сайте лаборатории химической термодинамики Химического факультета МГУ (http://td.chem.msu.ru).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные на основе экспериментальных данных параметры $\vec{\alpha}$ и $\vec{\theta}$ уравнения (2), а также их 95%-ные доверительные интервалы по Стьюденту представлены в табл. 2. С целью наилучшего описания имеющихся данных были сделаны следующие допущения относительно включения и исключения экспериментальных данных, а также их статистических весов $\omega_{C,i}$ и $\omega_{H,i}$ в уравнении (3).

Анортит. Из расчета исключены данные по теплосодержанию из работы [17], так как они представлены только в виде полиномиальной зависимости, а не отдельных экспериментальных точек. Для значений C_p при T < 10 К из работы [13] присвоен пониженный статистический вес $\omega_{C,i} = 0.25$, что связано с очень малыми абсолютными значениями теплоемкости в этой области и высокими погрешностями этих экспериментальных данных.

15

Рис. 1. Результаты аппроксимации экспериментальных данных по изобарной теплоемкости анортита: а – модель и экспериментальные точки, б – относительные отклонения модели от экспериментальных точек. Сплошная линия – модель, штриховые – $s_{MAD}(\varepsilon C_n)$. Маркеры – экспериментальные данные [14] (1) и [13] (2).

Арменит, арменит-бв, кордиерит (водный). Для значений C_p при $T \le 10$ К $\omega_{C_i} = 0.25$.

Жадеит. Для значений C_p при T < 10 K $\omega_{C,i} = 0.1$. Для всех данных [20] $\omega_{C,i} = 0.2$, $\omega_{H_i} = 0.5$, так как в использованном образце жадеита содержалось ~1.8 мас. % примесей, а в работе [19] использован синтетический жадеит.

Карнегиит и кордиерит-бв. Для значений С, при T < 10 К $\omega_{C_i} = 0.1$. Для карнегиита (гидратированного) исключена одна точка с T = 8.44 K.

Осумилит. Добавлены виртуальные точки с использованием методики [9], основанной на низкотемпературной экстраполяции теплоемкости моделью Дебая с варьированием температуры Дебая $\theta_{\rm D}$, кажущегося числа атомов $N_{\rm atom}$ и начальной температуры экстраполяции T_0 . При этом $T_0 = 160$ К, координаты виртуальных точек $\vec{T}_{\rm VP} =$ = [5,10,25,50,100,150] К. При проведении экстраполяции пяти экспериментальным точкам из [25] с самой низкой температурой был присвоен статистический вес $\omega_{C,i} = 3$; в последующих расчетах уже с участием виртуальных точек эти веса были снова установлены в 1.

Петалит. Для значений C_p при T < 10 K $\omega_{C,i} = 0.25;$ исключены также две точки при T = 4.51и 5.27 К, так как они соответствуют аномалии теплоемкости, которая не нашла подтверждения в более поздних исследованиях, где теплоемкость измерялась от 2 К [27]. К сожалению, в [27] не приведены численные значения экспериментальных данных (даны только графики), что не позволяет включить данные этой работы в оптимизацию параметров $\vec{\alpha}$ и θ .

В качестве примера успешной аппроксимации на рис. 1 и 2 показаны результаты аппроксимации изобарных теплоемкостей и теплосодержаний анортита, а на рис. 3 – аналогичные результаты для петалита. Видно, что уравнение (2) успешно описывает экспериментальные данные во всем температурном интервале с погрешностью, сопоставимой с погрешностью эксперимента, т.е. случайной погрешностью эксперимента и расхождениями между данными из разных источников. Видно также, что наибольшие относительные погрешности наблюдаются в низкотемпературной области ($T \le 20$ K), что вызывает необходимость приписывать ряду точек при низких температурах пониженные статистические веса ω_{C_i} .

В табл. 3 и 4 указаны относительные погрешности описания экспериментальных данных для полученных параметров моделей в табл. 2. Для оценки погрешности использовали две величины: относительное стандартное отклонение $s(\varepsilon Y)$ и нормированную медиану модуля относительного отклонения $s_{MAD}(\varepsilon Y)$, которые вычисляли по формулам:

$$s(\varepsilon Y) = \sqrt{\frac{\sum_{i=1}^{n} (\varepsilon Y)_{i}^{2}}{n}}; \quad (\varepsilon Y)_{i} = \frac{Y_{i}^{\exp} - Y_{i}^{\operatorname{calc}}}{Y_{i}^{\exp}}, \qquad (4)$$

$$s_{\text{MAD}}(\varepsilon Y) = \frac{1}{\Phi^{-1}(0.75)} \text{median} |\varepsilon Y|, \qquad (5)$$

BOCKOB

Рис. 2. Результаты аппроксимации экспериментальных данных по теплосодержанию анортита: а – модель и экспериментальные точки, б – относительные отклонения модели от экспериментальных точек. Сплошная линия – модель, штриховые – $s_{MAD}(\Delta H)$, пунктирная – данные [17]. Маркеры – экспериментальные данные [15] (*1*) и [16] (*2*).

Рис. 3. Результаты аппроксимации экспериментальных данных по изобарной теплоемкости и теплосодержанию петалита: а – модель и экспериментальные точки, б – относительные отклонения модели от экспериментальных точек. Сплошная линия – модель, штриховые – $s_{MAD} (\epsilon \Delta H)$. Маркеры – экспериментальные данные [26] (1) и [25] (2 и 3, адиабатическая калориметрия и ДСК соответственно).

где median обозначает медиану, а $\Phi^{-1}(x)$ — обратная функция для интегральной функции стандартного нормального распределения; $1/\Phi^{-1}(0.75) \approx 1.483$. По сравнению с $s(\varepsilon Y)$ на величину $s_{MAD}(\varepsilon Y)$ меньше влияют выбросы и грубые промахи, а также большая относительная погрешность модели в низкотемпературной области (T < 20 K). Более подробное описание формул для расчета s_{MAD} дано в [9]. Значения термодинамических функций (изобарной теплоемкости $C_{p,298.15}^{\circ}$, энтропии $S_{298.15}^{\circ}$ и теплосодержания $H_{298.15}^{\circ} - H_{0}^{\circ}$) алюмосиликатов при T = 298.15 К представлены в табл. 5. Табулированные значения для других температур, а также необходимые для их получения параметры $\vec{\alpha}$ и $\vec{\theta}$, все использованные для их оптимизации экспериментальные данные и статистические веса доступны в онлайн-репозитории Mendeley Data по адресу: https://doi.org/10.17632/hdcxctggkk.1.

Nº	Соединение	<i>Т</i> , К	<i>n</i> *	$100s(\varepsilon C_p)$	$100s_{\mathrm{MAD}}\left(\varepsilon C_{p}\right)$	Источник
1	Анортит	7.3–377	102	1.7	0.33	[13]
		349-987	92	0.55	0.35	[14]
2	Арменит	5.1-303	180	3.6	0.36	[18]
3	Арменит-бв	5.0-303	180	1.9	0.54	[18]
4	Жадеит	5.8-368	117	5.2	1.0	[19]
		54-296	29	3.0	4.5	[20]
5	Карнегиит	8.4-343	85	1.5	0.18	[21]
6	Кордиерит	6.1-299	112	0.21	0.032	[22]
8	Кордиерит-бв	295-425	27	0.32	0.42	[23]
		6.3-301	157	3.1	0.30	[24]
9	Осумилит	340-998	76	0.60	0.47	[25]
10	Петалит	5.6-381	83	1.1	0.35	[25]
		340-500	17	0.36	0.53	[25]
		10.7-302	41	0.65	0.70	[26]

Таблица 3. Относительные погрешности аппроксимации изобарных теплоемкостей функциями Эйнштейна-Планка

* *n* – число точек, $s(\varepsilon C_p)$ и $s_{MAD}(\varepsilon C_p)$ рассчитаны по уравнениям (4) и (5) соответственно.

Таблица 4. Относительные погрешности аппроксимации теплосодержаний функциями Эйнштейна-Планка

N⁰	Соединение	<i>Т</i> , К	<i>n</i> *	$100s(\epsilon\Delta H)$	$100s_{\mathrm{MAD}}\left(\mathrm{\epsilon}\Delta H ight)$	Источник
1	Анортит	802-1711	9	0.44	0.607	[15]
		373-1673	15	1.3	0.43	[16]
		300-1800	50	12	3.2	[17]
4	Жадеит	393-1190	11	2.5	3.6	[20]
5	Карнегиит	389-966**	8	1.8	1.8	[20]
		755-930	6	0.47	0.42	[21]
10	Петалит	403-1194	17	0.14	0.091	[26]

* n – число точек, s(εΔH) и s_{MAD}(εΔH) рассчитаны по уравнениям (4) и (5) соответственно.
 ** До 1697 К с учетом высокотемпературной модификации (переход между модификациями – при 980 К).

Таблица 5. Термодинамические функции алюмосиликатов при T = 298.15 К

Nº	Соединение	$C_{p,298.15}^{\circ}$	$S_{298.15}^{\circ}$	$H_{298.15}^{\circ} - H_0^{\circ}$	
		Дж/(моль К)	Дж/(моль К)	кДж/моль	
1	Анортит	211.04 ± 0.39	199.39 ± 0.30	33.362 ± 0.058	
2	Арменит	811.5 ± 5.8	795.7 ± 1.9	131.26 ± 0.39	
3	Арменит-бв	740.92 ± 4.0	737.07 ± 1.4	120.88 ± 0.29	
4	Жадеит	164.9 ± 1.2	136.65 ± 0.92	24.40 ± 0.17	
5	Карнегиит	119.14 ± 0.19	118.75 ± 0.13	19.445 ± 0.023	
6	Кордиерит	479.63 ± 0.44	454.30 ± 0.14	75.618 ± 0.027	
8	Кордиерит-бв	454.07 ± 0.60	403.94 ± 0.40	69.554 ± 0.072	
9	Осумилит	775.7 ± 5.1	744.5 ± 5.2	128.7 ± 1.1	
10	Петалит	244.99 ± 0.41	232.66 ± 0.27	38.263 ± 0.049	

Рис. 4. Сравнение значений $C_{p,298.15}^{\circ,\text{IND}}$ и $S_{298.15}^{\circ,\text{IND}}$ для индивидуальных алюмосиликатов из табл. 5 с полученными значениями $C_{p,298.15}^{\circ,\text{IND}}$ и $S_{298.15}^{\circ,\text{IND}}$ из аддитивной модели цеолитов [9]. Номер алюмосиликата см. табл. 1. Маркеры – значения из табл. 5, сплошная линия – модель из [9], штриховая линия – $s_{\text{MAD}} \left(\varepsilon C_{p,298.15}^{\circ} \right)$ или $s_{\text{MAD}} \left(\varepsilon S_{298.15}^{\circ} \right)$.

В нашей работе проведено также сравнение полученных термодинамических функций алюмосиликатов с уже существующей аддитивной моделью для цеолитов [9], в которой вклады являются зависимыми от температуры суммами функций Эйнштейна–Планка:

$$C_{p}\left(\vec{\alpha}^{(1)},\ldots,\vec{\alpha}^{(m)},\vec{\theta}^{(1)},\ldots,\vec{\theta}^{(n)},\vec{n},T\right) = \sum_{i=1}^{m} f_{i}\left(\vec{n}\right)\sum_{j=1}^{m_{i}}\alpha_{j}^{(i)}C_{E}\left(\frac{\theta_{j}^{(i)}}{T}\right),$$
(6)

где *m* – число вкладов в аддитивной модели, *m_i* – число слагаемых во вкладе *j*, $\vec{\alpha}^{(i)}$ и $\vec{\theta}^{(i)}$ – векторы параметров модели, \vec{n} – вектор состава, $f_i(\vec{n})$ – произвольные функции, выбираемые таким образом, чтобы $\sum_j \alpha_j^{(i)} \approx 1$. В данной модели составы алюмосиликатов (цеолитов) представляются как линейные комбинации составов алюминатов, диоксида кремния и воды, т.е.

$$\left(\mathsf{AAlO}_2\right)_x \left(\mathsf{BAl}_2\mathsf{O}_4\right)_y \left(\mathsf{SiO}_2\right)_{1-z} \cdot w\mathsf{H}_2\mathsf{O},\tag{7}$$

Все необходимые для расчетов с использованием уравнения (6) параметры модели, а именно $\vec{\alpha}^{(i)}, \vec{\theta}^{(i)}$ и $f_i(\vec{n})$, приведены в [9].

Результат применения описанной выше модели при T = 298.15 К к рассматриваемым в данной работе алюмосиликатам, не являющимся цеолитами, показан на рис. 4. Медианы модуля относительного отклонения для изобарной теплоемко-

сти и энтропии составили: $s_{MAD}\left(\varepsilon S_{298.15}^{\circ}\right) = 5.1\%$ и $s_{MAD}\left(\varepsilon C_{p,298.15}^{\circ}\right) = 7.7\%$ соответственно, что сопоставимо с аналогичными значениями, полученными в работе [9] (~5% для обеих величин). При этом относительная погрешность для $C_{p,298.15}^{\circ}$ превысила 10% для гидратированного и дегидратированного кордиерита (№ 6 и 8 в табл. 1 и на рис. 4) и осумилита (№ 9 в табл. 1 и на рис. 4). В случае $S_{298.15}^{\circ}$ относительная погрешность превысила 10% для жадеита, гидратированного и дегидратированного кордиерита (№ 4, 6 и 8 в табл. 1 и на рис. 4).

В случае кордиерита и осумилита низкая точность модели, т.е. заниженные значения C_p , может быть связана с высоким содержанием в них магния, так как в параметрах уравнения (6) для MgAl₂O₄ $\bar{\alpha}^{(Mg)} = [0.101323]$, т.е. их сумма значительно меньше 1. Для оценки вклада MgAl₂O₄ в теплоемкость алюмосиликата можно использовать следующую величину:

$$\xi = \frac{7n(\text{MgAl}_2\text{O}_4)}{4\sum_i n(\text{A}_i\text{AlO}_2) + 7\sum_i n(\text{B}_i\text{Al}_2\text{O}_4) + 3n(\text{SiO}_2) + 3n(\text{H}_2\text{O})}.$$
(8)

В [9] наибольшее содержание магния наблюдается для одного из составов клиноптилолита $Na_{0.56}K_{0.98}Mg_{1.23}Ca_{1.5}Fe_{0.3}Al_{6.7}Si_{29}O_{72} \cdot 22H_2O$, для которого $\xi = 0.048$. При этом для кордиерита $Mg_2Al_4Si_5O_{18}$ $\xi = 0.48$, а для осумилита $KMg_2Al_5Si_{10}O_{30} \cdot H_2O \xi = 0.27$, т.е. в этих алюмосиликатах содержание магния намного выше, чем в каком-либо из цеолитов, использованных в [9] при оптимизации параметров уравнения (6).

В случае жадеита низкая точность предсказания энтропии может быть связана с тем, что он принадлежит к цепочечным силикатам, а остальные — к каркасным (анортит, карнегиит), циклосиликатам (арменит, кордиерит и осумилит), слоистым (петалит) силикатам, т.е. жадеит отстоит в структурном отношении дальше от цеолитов, чем остальные рассмотренные в данной работе алюмосиликаты. Таким образом, для дальнейшего определения области применимости модели из [9] к другим алюмосиликатам и ее развития необходимо тестирование ее на более широкой выборке соединений.

ЗАКЛЮЧЕНИЕ

Метод описания термодинамических свойств индивидуальных веществ, основанный на взвешенной сумме функций Эйнштейна-Планка, показал свою пригодность в случае алюмосиликатов, не являющихся цеолитами. С его помощью удалось описать единой термодинамической моделью изобарные теплоемкости и теплосодержания индивидуальных алюмосиликатов при T = 0 - 01800 К. Разработанная ранее аддитивная модель теплоемкости цеолитов на основе функций Эйнштейна-Планка [9] оказалась пригодной и для других алюмосиликатов, но ее точность неприемлема в случае жадеита NaAlSi₂O₆, кордиеритов $Mg_2Al_4Si_5O_{18} \cdot xH_2O$ и осумилита $KMg_2Al_5Si_{10}O_{30} \cdot$ · H₂O. Проблемы с точностью описания связаны как с высоким содержанием магния в кордиеритах, так и со структурой жадеита, не содержащей слои, каналы или поры молекулярного размера. Для распространения аддитивной модели теплоемкости цеолитов из [9] на другие алюмосиликаты требуется ее тестирование на более широкой выборке алюмосиликатов, уточнение вклада, связанного с содержанием магния, а также учет структуры (а не только состава) алюмосиликатов в ней.

БЛАГОДАРНОСТЬ

Автор выражает благодарность И.Б. Куценку (лаборатория химической термодинамики Химического факультета МГУ им. М.В. Ломоносова) за предоставленную подборку экспериментальных данных по термодинамическим свойствам алюмосиликатов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках темы "Химическая термодинамика" (АААА-А16-116061750195-2).

СПИСОК ЛИТЕРАТУРЫ

- Holland T.J.B., Powell R. // J. Metamorph. Geol. 1998.
 V. 16. № 3. P. 309. https://doi.org/10.1111/j.1525-1314.1998.00140.x
- 2. *Holland T.J.B., Powell R.* // J. Metamorph. Geol. 2011. V. 29. № 3. P. 333. https://doi.org/10.1111/j.1525-1314.2010.00923.x
- 3. *Blanc P., Vieillard P., Gailhanou H. et al.* // Am. J. Sci. 2015. V. 315. № 8. P. 734. https://doi.org/10.2475/08.2015.02
- Blanc P., Vieillard P., Gailhanou H. et al. // Appl. Geochem. 2015. V. 55. P. 95. https://doi.org/10.1016/j.apgeochem.2014.12.006
- 5. *Weitkamp J., Puppe E.* (Eds.). Catalysis and Zeolites: Fundamentals and Applications. Berlin–Heidelberg: Springer-Verlag, 1999. 566 p. https://doi.org/10.1007/978-3-662-03764-5
- Vieillard P., Mathieu R. // Am. Mineral. 2009. V. 94. № 4. P. 565. https://doi.org/10.2138/am.2009.3028
- 7. *Vieillard P.* // Eur. J. Mineral. 2010. V. 22. № 6. P. 823. https://doi.org/10.1127/0935-1221/2010/0022-2026
- Mathieu R., Vieillard P. // Microporous Mesoporous Mater. 2010. V. 132. № 3. P. 335. https://doi.org/10.1016/j.micromeso.2010.03.011
- Voskov A.L., Voronin G.F., Kutsenok I.B., Kozin N.Yu. // Calphad. 2019. V. 66. (101623) https://doi.org/10.1016/j.calphad.2019.04.008
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- Kurdakova S.V., Grishchenko R.O., Druzhinina A.I., Ogorodova L.P. // Phys. Chem. Miner. 2014. V. 41. P. 75. https://doi.org/10.1007/s00269-013-0625-1
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- 13. *Robie R.A., Hemingway B.S., Wilson W.H.* // Am. Mineral. 1978. V. 63. № 1–2. P. 109.
- 14. *Krupka K.M., Robie R.A., Hemingway B.S.* // Am. Mineral. 1979. V. 64. № 1–2. P. 86.
- 15. *Richet P., Fiquet G.* // J. Geophys. Res.: Solid Earth. 1991. V. 95. № B1. P. 445. https://doi.org/10.1029/90JB02172
- White W.P. // Am. J. Sci. 1919. Ser. 4. V. 47. P. 1. https://doi.org/10.2475/ajs.s4-47.277.1
- Ferrier A. // C.R. Acad. Sci. Paris. Ser. C. 1969. T. 269. P. 951.
- Geiger C.A., Dachs E., Dalconi M.C., Gilberto A. // Geochim. Cosmochim. Acta. 2010. V. 74. № 18. P. 5202. https://doi.org/10.1016/j.gca.2010.05.033

- 19. Hemingway B.S., Bohlen S.R., Hankins W.B. et al. // Am. Mineral. 1998. V. 83. № 5-6. P. 409. https://doi.org/10.2138/am-1998-5-601
- Kelley K.K., Todd S.S., Orr R.L. et al. Thermodynamic properties of sodium-aluminium and potassium-aluminium silicates // U.S. Bureau of Mines, Report of Investigation 4955. 1953.
- Richet P, Robie R.A., Rogez J. et al. // Phys. Chem. Miner. 1990. V. 17. № 5. P. 385. https://doi.org/10.1007/BF00212206
- 22. Paukov I.E., Kovalevskaya Yu.A., Rahmoun N.-S., Geiger C.A. // Am. Mineral. 2007. V. 92. № 2–3. P. 388. https://doi.org/10.2138/am.2007.2259

- 23. *Carey J.W.* // Phys. Chem. Miner. 1993. V. 19. № 8. P. 578. https://doi.org/10.1007/BF00203057
- Paukov I.E., Kovalevskaya Yu.A., Rahmoun N.-S., Geiger C.A. // Am. Mineral. 2006. V. 91. № 1. P. 35. https://doi.org/10.2138/am.2006.1846
- 25. *Hemingway B.S., Robie R.A., Kittrick J.A. et al.* // Am. Mineral. 1984. V. 69. № 7–8. P. 701.
- Bennington K.O., Stuve J.M., Ferrante M.J. Thermodynamic Properties of Petalite (Li₂Al₂Si₈O₂₀) // U.S. Bureau of Mines, Report of investigations 8451. 1979.
- 27. *Haussühl E., Schreuer J., Winkler B. et al.* // J. Phys.: Condens. Matter. 2012. V. 24. № 34. (345402). https://doi.org/10.1088/0953-8984/24/34/345402