ТЕРМОДИНАМИКА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

УДК 536.631+544.31

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ОРТОНИОБАТА ДИСПРОЗИЯ В ИНТЕРВАЛЕ 2–1300 К

© 2020 г. Г. Е. Никифорова^{*a*, *}, А. В. Тюрин^{*a*}, М. А. Рюмин^{*a*}, К. И. Брюханова^{*a*}, А. В. Хорошилов^{*a*}, К. С. Гавричев^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: gen@igic.ras.ru Поступила в редакцию 19.11.2019 г. После доработки 20.12.2019 г. Принята к публикации 24.12.2019 г.

Теплоемкость поликристаллического ортониобата диспрозия изучена в широком температурном интервале тремя калориметрическими методами: релаксационной (2–50 K), адиабатической (9–350 K) и дифференциальной сканирующей калориметрии (308–1300 K). Ниже 9 K зафиксирована нисходящая ветвь низкотемпературной аномалии, максимум которой находится за пределами измерений. При температуре 1086 K происходит обратимый фазовый переход. Поведение теплоемкости $C_p^{\circ}(T)$ в области фазового перехода позволяет отнести его к фазовым переходам второго рода. На основании полученных данных рассчитаны температурные зависимости стандартных термодинамических функций DyNbO₄ во всем изученном интервале.

Ключевые слова: DyNbO₄, калориметрия, фазовый переход **DOI:** 10.31857/S0044457X20050189

введение

Ортониобаты редкоземельных элементов (**P3Э**) являются перспективными соединениями для создания композиционных материалов, используемых в качестве люминофоров [1, 2], электролитов топливных элементов [3, 4], датчиков влажности [5, 6] и микроволновых устройств [7, 8]. Для прогнозирования поведения этих материалов в условиях эксплуатации необходимы надежные термодинамические данные в широком температурном интервале. Настоящая работа является продолжением исследований теплоемкости и термодинамических функций ортониобатов РЗЭ [9–12].

Подобно другим ортониобатам лантаноидов, DyNbO₄ при комнатной температуре имеет моноклинную структуру типа фергусонита (пр. гр. I2/a). При повышении температуры происходит обратимое фазовое превращение в тетрагональную структуру типа шеелита (пр. гр. $I4_1/a$). Данный фазовый переход в ортониобатах LnNbO₄ достаточно хорошо изучен методом высокотемпературной рентгеновской дифракции [12–16]. Большинство авторов отмечают монотонное изменение угла моноклинности при повышении температуры, что говорит в пользу фазового перехода второго рода. В то же время синхротронные исследования порошка DyNbO4 выявили наличие двухфазной области в районе фазового перехода [14]. Рентгеновские исследования показали, что чистая тетрагональная фаза существует лишь при температуре >1126 К, однако на кривой дифференциальной сканирующей калориметрии (ДСК) того же образца замечен скачок теплоемкости при 1099 К. Структурный переход фергусонит-шеелит сопровождается изменением диэлектрических свойств и переходом из антисегнетоэлектрического в диэлектрическое состояние. Температура фазового перехода, определенная из диэлектрических измерений DyNbO₄, составила 1143 К [16]. Аналогичный разброс значений температуры фазового перехода в зависимости от метода исследования наблюдался и для LaNbO₄, для которого значение T_r варьировалось от 753 до 814 K [7, 14–16].

Информация о теплоемкости DyNbO₄ в литературе отсутствует. Результаты изучения ортониобата диспрозия методом дифференциальной сканирующей калориметрии в работе [14] представлены лишь в графическом виде в качестве подтверждения наличия фазового перехода в образце.

Цель данного исследования — экспериментальное изучение теплоемкости DyNbO₄ и расчет термодинамических функций в широком интервале температур, а также исследование фазового превращения фергусонит—шеелит калориметрическими методами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез ортониобата диспрозия проводили твердофазным способом – отжигом стехиометрической смеси оксидов при температуре 1400° С в течение 24 ч с промежуточными перетираниями. В качестве исходных реагентов использовали пентаоксид ниобия Nb₂O₅ (99.95%, Alfa Aesar) и оксид диспрозия Dy₂O₃ (99.9%, Химмед). Для удаления сорбированной влаги оксид диспрозия предварительно отжигали при температуре 1000° С в течение 3 ч.

Фазовую чистоту полученного образца контролировали методом рентгеновской дифракции на дифрактометре Bruker D8 Advance (Cu K_{α} -излучение, Ni-фильтр, LYNXEYE-детектор, геометрия на отражение) в интервале углов 10° < 20 < 70° с шагом 0.0133° и выдержкой 0.3 с. Интерпретацию полученных данных и расчет кристаллографических параметров проводили с помощью программного обеспечения TOPAS R. Все наблюдаемые рефлексы были успешно проиндексированы в пр. гр. I2/a (15). Рассчитанные параметры кристаллической решетки хорошо согласуются с данными работ [14, 16, 17]:

$$a = 5.329(1), b = 11.011(8), c = 5.088(1)\text{\AA},$$

 $\beta = 94.64(3)^{\circ}, V = 297.62(1)\text{\AA}^{3}.$

Низкотемпературную теплоемкость DyNbO₄ в интервале 2–50 К измеряли методом релаксационной калориметрии на установке PPMS-9 (Quantum Design). Образец, предварительно спрессованный в таблетку диаметром 3 мм, закрепляли на датчике с помощью криогенной высоковакуумной смазки Apiezon N. Погрешность измерений теплоемкости в изучаемом диапазоне составляет 2%.

Измерение теплоемкости в интервале 9–350 К проводили в автоматическом адиабатическом калориметре БКТ-3 с использованием гелия и азота в качестве криогенных жидкостей. Калибровку калориметра осуществляли путем измерения теплоемкости бензойной кислоты марки К-2 и меди "ос. ч.". По результатам калибровки и поверки калориметра установлено, что погрешность измерений теплоемкости веществ составляет 2% при температуре <15 К, 0.5% в интервале 15 < T < 40 К и 0.2% в области 40–350 К.

Теплоемкость DyNbO₄ в области высоких температур была изучена в режиме нагревания и охлаждения с использованием дифференциального сканирующего калориметра STA 449 F1 Jupiter® (Netzsch). Измерения проводили в платиновых тиглях с крышкой в атмосфере аргона (чистотой 99.9999%) со скоростью нагрева 20 град/мин. В качестве стандарта использовали синтетический сапфир 720 (α-Al₂O₃).

Поскольку фазовые переходы второго рода характеризуются незначительным изменением теплоемкости, их не всегда удается зафиксировать калориметрическими методами. Стандартная методика определения теплоемкости методом ДСК состоит из трех последовательных измерений: теплового потока базовой линии, стандарта и изучаемого образца. Особое внимание было уделено максимальному повышению чувствительности этих сигналов. В связи с этим для всех измерений контролировали постоянство температуры, положения и ориентации тигля с крышкой на держателе образца.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Теплоемкость ортониобата диспрозия в интервале 0-400 К представлена на рис. 1. На графике можно отметить два участка, где экспериментальные значения теплоемкости получены двумя независимыми калориметрическими методами на разных приборах. Это релаксационная и адиабатическая калориметрия в температурном диапазоне 9-50 К и адиабатическая калориметрия и ДСК в интервале 308-350 К. В обоих случаях экспериментальные значения теплоемкости совпадают в пределах ошибки эксперимента, что свидетельствует о высокой достоверности полученных данных.

В области ниже 9 К наблюдается нисходящая ветвь низкотемпературной аномалии, максимум которой лежит за пределами наших измерений (вставка на рис. 1). Данная аномалия связана с переходом DyNbO₄ из пара- в антиферромагнитное состояние и характерна для соединений, содержащих ион Dy³⁺ [18, 19]. К сожалению, в литературе не удалось найти каких-либо сведений о калориметрических или магнитных измерениях ортониобата диспрозия при температурах ниже 2 К. Поскольку характеристики данного перехода неизвестны, в дальнейших расчетах теплоемкость $DyNbO_4$ в интервале температур 0–9 К принимали равной решеточной теплоемкости, описание которой будет дано ниже. Отметим лишь, что экспериментальные значения теплоемкости в области низкотемпературной аномалии удовлетворительно описываются полиномиальной функцией, коэффициенты которой представлены в табл. 1.

На участке 9–350 К экспериментальные значения теплоемкости монотонно возрастают без видимых аномалий и могут быть сглажены единым уравнением. В качестве аппроксимирующей функции было выбрано уравнение, представляю-

Рис. 1. Низкотемпературная теплоемкость DyNbO₄. Символами обозначены экспериментальные значения, полученные методами релаксационной (квадраты), адиабатической (ромбы) и дифференциальной сканирующей калориметрии (круги), линией – сглаженные значения $C_p^{\circ}(T)$, рассчитанные по уравнению (1). На вставке выделена область низкотемпературной аномалии, пунктиром показана сглаживающая полиномиальная функция.

щее собой комбинацию функций Дебая (D) и Эйнштейна (E):

$$C_{p}^{\circ}(T) = n \left[\left(\frac{1}{3}\right) \sum_{j=1}^{3} a_{j} D_{j} \left(\frac{\theta_{j}}{T}\right) + a_{4} E \left(\frac{\theta_{E}}{T}\right) \right], \qquad (1)$$

где θ_1 , θ_2 , θ_3 , θ_E — характеристические температуры; a_1 , a_2 , a_3 , a_4 — линейные коэффициенты; n — число атомов в молекуле (для DyNbO₄ n = 6). В качестве начального приближения для расчета линейных коэффициентов задавалось условие $(a_1 + a_2 + a_3)/3 + a_4 = 1$. Процедура расчета подробно описана в работе [20]. Вычисленные значения параметров приведены в табл. 2.

Уравнение (1) учитывает вклад акустических и оптических мод в теплоемкость вещества и может рассматриваться как суммарная теплоемкость кристаллической решетки, поэтому данное уравнение было использовано для экстраполяции температурной зависимости теплоемкости к 0 К.

На рис. 2 представлена теплоемкость DyNbO₄, измеренная методом ДСК в интервале 308–1298 К, а также экспериментальные данные, полученные ранее [14] в интервале 500–1300 К. Поскольку в работе [14] значения теплоемкости были представлены только в графическом виде, предварительно они были оцифрованы и приведены к размерности Дж/(К моль). На графике видно, что значения теплоемкости, полученные в двух исследованиях, демонстрируют удовлетворительное совпадение в интервале температур 500—700 К. Но при более высоких температурах наблюдается расхождение между экспериментальными данными. В то же время следует отметить, что температуры фазового превращения очень близки.

Таблица 1. Параметры уравнения $C_p(T) = a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4 + a_5T^5 + a_6T^6$ для расчета теплоем-кости DyNbO₄ в температурном интервале 2–9 К

Параметр	Значение			
<i>а</i> ₀ , Дж/(К моль)	7.016285			
<i>а</i> ₁ , Дж/(К ² моль)	-5.66160			
<i>а</i> ₂ , Дж/(К ³ моль)	2.12222			
<i>а</i> ₃ , Дж/(К ⁴ моль)	-0.43809			
<i>а</i> ₄ , Дж/(К ⁵ моль)	0.051014			
<i>а</i> ₅ , Дж/(К ⁶ моль)	-0.003114			
<i>а</i> ₆ , Дж/(К ⁷ моль)	0.0000777			
<i>R</i> ²	0.998			

Таблица 2. Параметры уравнения (1) для расчета теплоемкости $DyNbO_4$ в температурном интервале 9–350 К

Параметр	Значение		
<i>а</i> ₁ , 1/моль	0.51667		
<i>a</i> ₂ , 1/моль	0.85883		
<i>a</i> ₃ , 1/моль	0.84383		
<i>a</i> ₄ , 1/моль	0.30683		
Θ ₁ , Κ	125		
Θ ₂ , Κ	804		
Θ ₃ , K	1180		
$\Theta_{\rm E},{\rm K}$	312		
σ ² , Дж ² /(К ² моль ²)	0.012569		

На вставке к рис. 2 видно, что значения теплоемкости, полученные в режимах нагревания и охлаждения, полностью совпадают. И в обоих

случаях на температурной зависимости теплоем-

кости наблюдается четко выраженная ступенька.

Такое поведение теплоемкости является харак-

терной особенностью переходов второго рода.

Отсутствие гистерезиса на температурной зави-

симости теплоемкости при T_{tr} подтверждает вы-

вод о том, что термодинамически данный фазо-

Таблица 3. Параметры уравнения (2) для расчета теплоемкости DyNbO₄ в интервале 308–1300 К

Параметр	308–1086 K	1086–1300 K
а, Дж/(К моль)	123.7709	112.3526
<i>b</i> , Дж/(К ² моль)	0.059172	0.033748
с, Дж/(К моль)	-1792975	6823861
<i>d</i> , Дж/моль	-2.06×10^{-5}	0
<i>R</i> ²	0.9997	0.9908

вый переход относится к классическим переходам второго рода.

Экспериментальные значения теплоемкости были разделены на два температурных интервала: 308.15–1078.15 и 1108.15–1298.15 К и сглажены по отдельности с помощью уравнения:

$$C_p^{\circ}(T) = a + bT + cT^{-2} + dT^2.$$
 (2)

Экспериментальные точки при 1088.15 и 1098.15 К были исключены из расчетов, поскольку они находятся в диапазоне фазового перехода. Коэффициенты уравнения (2) представлены в табл. 3 для обоих температурных интервалов. Следует отметить, что в интервале перекрывания экспериментальных значений 308—350 К сглаженные значения теплоемкости, рассчитанные

Рис. 2. Высокотемпературная теплоемкость DyNbO₄. Символами обозначены экспериментальные значения, полученные методом ДСК в режиме нагревания (круги) и охлаждения (ромбы), линиями – сглаженные значения, рассчитанные по уравнению (2), пунктиром – экспериментальные значения из [14]. На вставке показана область фазового перехода.

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ

<i>Т</i> , К	$C^{\circ}_{p}(T),$ Дж/(К моль)	$S^{\circ}(T),$ Дж/(К моль)	$H^{\circ}(T) - H^{\circ}(0), $ Дж/моль	$\Phi^{\circ}(T)^{a},$ Дж/(К моль)
2	0.008294 ⁶	0.002938	0.004925	0.0004752
4	0.06636	0.02264	0.07024	0.005076
6	0.2246	0.0755	0.3452	0.01801
8	0.5306	0.1784	1.079	0.04344
10	1.032	0.3470	2.615	0.08544
15	3.237	1.139	12.77	0.2876
20	6.373	2.486	36.58	0.6572
25	9.662	4.264	76.72	1.195
30	12.72	6.299	132.8	1.873
35	15.53	8.472	203.5	2.659
40	18.23	10.72	287.9	3.526
45	20.96	13.03	385.8	4.453
50	23.78	15.38	497.7	5.428
55	26.70	17.78	623.8	6.441
60	29.69	20.24	764.8	7.488
65	32.74	22.73	920.8	8.565
70	35.80	25.27	1092	9.667
75	38.84	27.84	1279	10.79
80	41.84	30.45	1480	11.94
85	44.81	33.07	1697	13.11
90	47.71	35.72	1928	14.29
95	50.54	38.37	2174	15.49
100	53.31	41.03	2434	16.70
110	58.65	46.37	2994	19.15
120	63.72	51.69	3606	21.64
130	68.53	56.98	4267	24.16
140	73.11	62.23	4976	26.69
150	77.45	67.42	5729	29.23
160	81.57	72.55	6524	31.78
170	85.47	77.62	7359	34.33
180	89.15	82.61	8232	36.87
190	92.63	87.52	9142	39.41
200	95.92	92.36	10085	41.93
210	99.02	97.11	11059	44.45
220	101.9	101.8	12064	46.95
230	104.7	106.4	13098	49.43
240	107.3	110.9	14157	51.90
250	109.7	115.3	15242	54.35

Таблица 4. Теплоемкость и термодинамические функции DyNbO₄ в интервале 2–1300 К

Окончание

<i>Т</i> , К	$C^{\circ}_{p}(T),$ Дж/(К моль)	<i>S</i> °(<i>T</i>), Дж/(К моль)	$H^{\circ}(T) - H^{\circ}(0),$ Дж/моль	$\Phi^{\circ}(T)^{a},$ Дж/(К моль)
260	112.0	119.7	16351	56.78
270	114.1	123.9	17482	59.19
280	116.2	128.1	18633	61.57
290	118.1	132.2	19804	63.94
300	119.8	136.3	20994	66.28
310	121.5	140.2	22201	68.61
320	123.1	144.1	23424	70.90
330	124.6	147.9	24663	73.18
340	126.0	151.7	25916	75.43
350	127.3	155.3	27182	77.67
400	132.9	172.7	33693	88.47
450	137.4	188.6	40455	98.73
500	141.0	203.3	47417	108.5
550	144.1	216.9	54548	117.7
600	146.9	229.5	61824	126.5
650	149.3	241.4	69229	134.9
700	151.4	252.5	76747	142.9
750	153.3	263.1	84367	150.6
800	155.1	273.0	92078	157.9
850	156.7	282.5	99873	165.0
900	158.1	291.5	107743	171.7
950	159.4	300.0	115679	178.3
1000	160.5	308.2	123677	184.6
1050	161.5	316.1	131728	190.6
1086	162.2	321.5	137554	194.9
1086	154.8	321.5	137554	194.9
1100	155.1	323.5	139723	196.5
1150	156.3	330.5	147509	202.2
1200	157.6	337.1	155356	207.7
1250	158.9	343.6	163269	213.0
1300	160.3	349.9	171248	218.1
1350	161.7	355.9	179295	223.1
1400	163.1	361.8	187414	228.0
1450	164.5	367.6	195604	232.7

 ${}^{a}\Phi^{\circ}(T) = S^{\circ}(T) - \{H^{\circ}(T) - H^{\circ}(0)/T\}.$ ⁶Курсивом показаны значения термодинамических функций, рассчитанные на основе регулярной теплоемкости DyNbO₄ в области низкотемпературной аномалии.

по уравнениям (1) и (2), совпадают в пределах 0.02%.

Температуру фазового перехода определили как 1086 К. Это значение оказалось ниже значений, полученных при изучении изменения диэлектрических свойств и кристаллической структуры ортониобата диспрозия в процессе фазового превращения [14, 16]. Однако исследования in situ методом рентгеновской дифракции высокого разрешения показали, что тетрагональная фаза может сохраняться вплоть до 940 К [14]. Вероятно, большую роль здесь также играет предыстория изучаемого образца, дефектность, размерность и унимодальность частиц. Величину ступенчатого изменения теплоемкости при температуре фазового перехода оценили исходя из расчетов температурной зависимости теплоемкости $C_p^{\circ}(T)$. Полученное значение 7.4 ± 0.3 Дж/(К моль) сопоставимо с величинами $\Delta C_p^{\circ}(T)$, опубликованны-ми ранее для других ортониобатов РЗЭ [9, 10, 12].

На основе сглаженных значений теплоемкости были рассчитаны температурные зависимости стандартных термодинамических функций (энтропии $S^{\circ}(T)$, изменения энтальпии $H^{\circ}(T) - H^{\circ}(0)$ и приведенной энергии Гиббса $\Phi^{\circ}(T)$) во всем изучаемом температурном диапазоне (табл. 4). При 298.15 К эти функции имеют следующие значения: C_{ρ}° (298.15 К) = 119.52 ± 0.18 Дж/(К моль), $S^{\circ}(298.15$ К) = 135.52 ± 0.25 Дж/(К моль), $H^{\circ}(298.15$ К) $- H^{\circ}(0) = 20$ 773 ± 37 Дж/моль, $\Phi^{\circ}(298$ К) = 65.85 ± 0.11 Дж/(К моль).

Расчет термодинамических функций после фазового перехода проводили с учетом того, что данный переход является непрерывным и изменение энтальпии и энтропии происходит в точке.

ЗАКЛЮЧЕНИЕ

Теплоемкость ортониобата диспрозия измерена методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии в интервале 2–1300 К. В области фазового перехода фергусонит-шеелит выявлен скачок температурной зависимости теплоемкости $C_p^{\circ}(T)$. Отсутствие латентного тепла и гистерезиса на температурной зависимости теплоемкости при температуре фазового перехода позволяет утверждать, что переход фергусонит-шеелит относится к фазовым переходам второго рода. На основании полученной температурной зависимости теплоемкости $C_p^{\circ}(T)$ рассчитаны стандартные термодинамические функции DyNbO₄ во всем изученном температурном диапазоне.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке РФФИ (грант № 18-03-00343) с использованием оборудования ЦКП ИОНХ РАН в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Li K., Zhang Y., Li X. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 4283. https://doi.org/10.1039/c4cp03894k
- Hirano M., Dozono H. // J. Am. Ceram. Soc. 2013.
 V. 96. P. 3389. https://doi.org/10.1111/jace.12595
- Cao Y., Duan N., Yan D. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 20633. https://doi.org/10.1016/j.ijhydene.2016.08.056
- Norby T., Magrasó A. et al. // J. Power Sources. 2015. V. 282. P. 28. https://doi.org/10.1016/j.jpowsour.2015.02.027
- Haugsrud R., Norby T. et al. // Nat. Mater. 2006. V. 5. P. 193. https://doi.org/10.1038/nmat1591
- Balamurugan C., Lee D.-W., Subramania A. et al. // Appl. Surf. Sci. 2013. V. 283. P. 58.
- Kim D.-W., Kwon D.-K., Yoon S.H. et al. // J. Am. Ceram. Soc. 2006. V. 89. P. 3861. https://doi.org/10.1111/j.1551-2916.2006.01302.x
- Lee H.W., Park J.H., Nahm S. et al. // Mater. Res. Bull. 2010. V. 45. P. 21. https://doi.org/10.1016/j.materresbull.2009.09.008
- Nikiforova G., Khoroshilov A., Tyurin A. et al. // J. Chem. Thermodyn. 2019. V. 132. P. 44. https://doi.org/10.1016/j.jct.2018.12.041
- Kondrat'eva O.N., Nikiforova G.E., Tyurin A.V. et al. // J. Alloys Compd. 2019. V. 779. P. 660. https://doi.org/10.1016/j.jallcom.2018.11.272
- Nikiforova G.E., Khoroshilov A.V., Gavrichev K.S. et al. // Appl. Solid State Chem. 2018. V. 2. P. 159. https://doi.org/10.18572/2619-0141-2018-4-5-159-162
- Никифорова Г.Е., Хорошилов А.В., Гавричев К.С. и др. // Неорган. материалы. 2019. Т. 55. № 9. С. 1019. [Nikiforova G.E., Khoroshilov A.V., Gavrichev K.S. et al. // Inorg. Mater. 2019. V. 55. P. 964. https://doi.org/10.1134/S0020168519090085] https://doi.org/10.1134/S0002337X19090082
- Arulnesan S.W., Kayser P., Kimpton J.A. et al. // J. Solid State Chem. 2019. V. 277. P. 229. https://doi.org/10.1016/j.jssc.2019.06.014

- Sarin P., Hughes R.W., Lowry D.R. et al. // J. Am. Ceram. Soc. 2014. V. 97. P. 3307. https://doi.org/10.1111/jace.13095
- Jian L., Wayman C. // J. Am. Ceram. Soc. 1997. V. 80. P. 803. https://doi.org/10.1111/j.1151-2916.1997.tb02905.x
- Kukueva L.L., Ivanova L.A., Venevtsev Yu.N. // Ferroelectrics. 1984. V. 55. P. 129. https://doi.org/10.1080/00150198408015351
- 17. *Keller C.* // Z. Anorg. Allg. Chem. 1962. V. 318. P. 89. https://doi.org/10.1002/zaac.19623180108
- Гавричев К.С., Рюмин М.А., Гуревич В.М. и др. // Неорган. материалы. 2014. Т. 50. С. 993. [Gavrichev K.S., Ryumin M.A., Gurevich V.M. et al. // Inorg. Mater. 2014. V. 50. P. 917. https://doi.org/10.1134/S0020168514090039] https://doi.org/10.7868/S0002337X14090036
- Filippi J., Lasjaunias J.C., Ravex A. et al. // Solid State Commun. 1977. V. 23. P. 613. https://doi.org/10.1016/0038-1098(77)90531-2
- 20. Гуревич В.М., Горбунов В.Е., Гавричев К.С. и др. // Геохимия. 1999. № 4. С. 423. [Gurevich V.M., Gorbunov V.E., Gavrichev K.S. et al. // Geochem. Int. 1999. V. 37. P. 367.]

650