ТЕРМОДИНАМИКА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

УДК 546.03

ФАЗОВЫЕ ПЕРЕХОДЫ МЕЗОГЕННОГО ДЕНДРИМЕРА ПОЛИПРОПИЛЕНИМИНА ТРЕТЬЕЙ ГЕНЕРАЦИИ И КОМПЛЕКСА Fe(II) НА ЕГО ОСНОВЕ

© 2020 г. М. С. Груздев^{*a*, *}, А. Г. Рамазанова^{*a*}, В. В. Королев^{*a*}, У. В. Червонова^{*a*}, О. В. Балмасова^{*a*}, А. М. Колкер^{*a*}

^аИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия

*e-mail: gms@isc-ras.ru Поступила в редакцию 30.10.2019 г. После доработки 14.11.2019 г. Принята к публикации 27.12.2019 г.

Проведен синтез и исследованы термодинамические свойства двух жидкокристаллических дендримеров третьей генерации — производных полипропиленимина с $3,4-\delta uc$ (децилокси) бензойными фрагментами на периферии. Методами дифференциальной сканирующей калориметрии и оптической поляризационной микроскопии установлено образование колончатой мезофазы. Впервые экспериментально определена удельная теплоемкость и магнитокалорический эффект железосодержащего комплекса G3-K2.10 · (FeCl₂)₁₅ в интервале температур 288–350 К при изменении магнитного поля от 0 до 1.0 Тл. Температурная зависимость удельной теплоемкости комплекса в интервале 210–460 К получена на дифференциальном сканирующем калориметре и оригинальном микрокалориметре. Отмечено, что температурные зависимости теплоемкости и магнитокалорического эффекта носят экстремальный характер.

Ключевые слова: дендример, колончатая мезофаза, магнитокалорический эффект, теплоемкость **DOI:** 10.31857/S0044457X20050116

ВВЕДЕНИЕ

Дендримеры представляют собой класс регулярно разветвленных соединений, в структуре которых можно выделить ядро (дендритную матрицу), алифатические спейсеры и различные терминальные функциональные группы [1, 2]. Основной особенностью, присущей дендримерам различной химической природы, является наличие определенных форм, размера и управляемой функциональности дендримера. Показано, что модификация структуры функциональных групп и дендритной матрицы лиганда позволяет индуцировать и контролировать магнитное поведение [3] и мезоморфные свойства (тип фазы и устойчивость) дендримерного комплекса [4]. В последнее время широко исследуются металлсодержащие дендримеры. Это можно объяснить тем, что они содержат большое число потенциальных координационных узлов. т.е. ионы металла могут быть интегрированы в различные части дендритной архитектуры. Дендримерные макромолекулы с ионами металлов (Fe(II), Fe(III), Co(II), Mn(III) и Cr(III)) являются наиболее широко изучаемыми системами [5–10]. Особое внимание уделяется исследованию магнитокалорического эффекта (МКЭ) в различных магнитоупорядоченных вешествах [11, 12]. Это связано с возможностью получения информации о магнитных фазовых переходах и состоянии вещества под действием магнитного поля [13]. Важное место среди молекулярных магнетиков занимают комплексы с основаниями Шиффа с электронной конфигурашией атома металла d^5 как наиболее устойчивые системы с переменным спином [14, 15]. Ранее методом поляризационной термомикроскопии и микрокалориметрии [16] изучены фазовые превращения гексакоординационных бис-хелатных комплексов железа(III) с основаниями Шиффа. Установлено, что исследуемые вещества проявляют мезоморфные свойства и являются термотропными жидкими кристаллами; наблюдается корреляция магнитного фазового перехода с термотропным мезоморфизмом. В связи с этим представляет интерес синтез органометаллических дендримеров или комплексов дендримеров с металлами с новыми уникальными свойствами.

Настоящая работа представляет собой экспериментальное исследование жидкокристаллических (**ЖК**) и магнитокалорических свойств полипропилениминового дендримера третьей генерации и железо(II)содержащего металлокомплекса на его основе.

ОБЪЕКТЫ И МЕТОДЫ

Растворители и исходные реагенты, выбранные для синтеза, имели квалификацию "х. ч." и не подвергались дополнительной очистке. Полипропилениминовый дендример — коммерчески доступный препарат из каталога ALDRICH в виде 20%-ного метанольного раствора.

Спектры ЯМР ¹Н (500.17 МГц) получали на приборе Bruker Avance 500, растворитель – $CDCl_3$, внутренний стандарт – TMC.

Спектры комбинационного рассеяния (**КР**) соединений записывали на монохроматоре Acton Research SpectraPro-500i с He-Ne лазером (635 нм). Мощность излучения 3 мВ. Раман-спектры фиксировали в области 100–3500 см⁻¹.

Масс-спектры регистрировали на масс-спектрометре Shimadzu AXIMA Confidence. Матрица – 2,5дигидроксибензойная кислота.

Элементный анализ выполняли на анализаторе FlashEA 1112.

ДСК-измерения и исследования теплоемкости образцов проводили в атмосфере аргона с помошью лифференциального сканирующего калориметра DSC 204 F1 Phoenix с µ-сенсором (Netzch). Для ДСК-метода применяли алюминиевые тигли, скорость нагрева составляла 10 град/мин. Теплоемкость образца в нулевом магнитном поле измеряли при температурах 210-460 К со скоростью сканирования 10 град/мин в тиглях объемом 50 мкл. Система дифференциального сканирующего калориметра была откалибрована с использованием сапфирового стандарта в атмосфере азота. Каждый эксперимент повторяли пять раз. Погрешность измерения теплоемкости составляла 1.5%. Фазовое состояние образцов исследовали при помоши поляризационного микроскопа Nikon Diaphot 300, оснащенного нагревательным столиком Mettler FP 90.

Магнитокалорический эффект образца изучали с использованием оригинального микрокалориметра [17]. Микрокалориметрическую ячейку с изотермической оболочкой помещали в зазор электромагнита. Чувствительность установки составляла 2 × 10^{-5} К. Погрешность в измерении МКЭ не превышала 2%. Для проверки надежности используемого метода была проведена калибровка микрокалориметра по металлическому гадолинию (химическая чистота 98%) [17].

В качестве объектов исследования были выбраны дендример и дендримерный комплекс железа(II) третьей генерации (рис. 1).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

N-(3,4-ди(децилокси)бензоилокси)сукцинимид синтезировали по методике, приведенной в работе [18].

Синтез полипропилениминового дендримера третьей генерации (G3-K2.10)

Навеску полипропилениминового дендримера с активными аминогруппами в виде раствора в MeOH (0.726 г, 0.43 ммоль) растворяли в свежеперегнанном CHCl₃ (20 мл), добавляли N-(3,4-ди(децилокси)бензоилокси)сукцинимид (4.02 г, 7.56 ммоль) в 10 мл CHCl₃ и 3 мл триэтиламина. Смесь перемешивали в течение 14 сут, затем реакционную массу охлаждали льдом до 275–278 К. Выпавший осадок отфильтровывали, промывали дистиллированной водой и перекристаллизовывали из смеси гексан/этилацетат/этанол (2 : 1 : 1). Выпавшие кристаллы лиофилизировали из бензола. Продукт — белый порошок. Выход 0.98 г (63.4%). MS (MALDI-ToF-MS, DHB, m/z): найдено 8353.1 [M⁺], вычислено 8352.9. ЭА:

	С	Н	Ν	0
Найдено, %:	75.33;	10.76;	4.19;	9.72.
Для C ₅₂₀ H ₉₁₂ N ₃₀ O ₄₈				
вычислено, %:	74.77;	11.01;	5.03;	9.19.

Спектр ЯМР ¹Н (δ , м.д.): 0.80 (т, 96H, С<u>H</u>₃), 1.17–1.36 (м, 452H, O–CH₂–CH₂–(C<u>H</u>₂)₇, N–CH₂–(C<u>H</u>₂)₂–CH₂–N), 1.47–1.70 (м, 120H, O–CH₂–C<u>H</u>₂, N–CH₂–C<u>H</u>₂–CH₂–N, C<u>H</u>₂–CH₂– NHCO), 2.31 (уш, 84H, N–C<u>H</u>₂–(CH₂)₂–C<u>H</u>₂–N, N–C<u>H</u>₂–CH₂–C<u>H</u>₂–N, N–C<u>H</u>₂–(CH₂)₂–NHCO), 3.37 (уш, 32H, C<u>H</u>₂–NHCO), 3.77–3.83 (м, 64H, O–C<u>H</u>₂), 6.61 (с, 16H, аром.), 7.35–7.41 (м, 32H, аром.), 7.91 (уш, 16H, N<u>H</u>CO).

Синтез железо(II)содержащего комплекса на основе полипропилениминового дендримера третьей генерации (G3-K2.10 · (FeCl₂)₁₅)

Реакцию комплексообразования проводили в растворе ТГФ в атмосфере аргона. Навеску лиганда G3-K2.10 (0.4 г, 0.048 ммоль) растворяли в ТГФ (28 мл) и перемешивали в течение 6 ч в инертной атмосфере. Добавляли свежеприготовленный и отфильтрованный раствор FeCl₂ (0.255 г, 0.0021 ммоль) в ТГФ (20 мл). Реакционную массу перемешивали 26 ч при комнатной температуре, затем отгоняли ТГФ до минимального объема (2 мл) на ротационном испарителе, добавляли 4 мл этанола и выдерживали реакционную смесь в течение 8 ч при 254 К. Выпавший осадок отфильтровывали и промывали этанолом (2 × 3 мл), лиофилизировали из бензола. Продукт – желтый порошок. Выход 0.47 г (78.2%). МS

Рис. 1. Дендримерный комплекс железа(II) третьей генерации G3-K2.10 · (FeCl₂)₁₅.

(MALDI-ToF-MS, DHB, *m/z*): найдено 8433.9 [M⁺Fe], вычислено 8431.9. ЭА:

С Н N O Fe Cl Найдено, %: 60.55; 9.78; 4.07; 8.06; 7.68; 9.86. Для С₅₂₀Н₉₁₂N₃₀O₄₈Fe₁₅Cl₃₀ вычислено, %: 60.85; 9.59; 4.09; 7.48; 7.92; 10.06.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спектроскопия комбинационного рассеяния

Для установления координации железа был зарегистрирован спектр КР синтезированного комплекса (рис. 2).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 5 2020

При сравнении рамановских спектров исходных соединений и продукта отчетливо видно отсутствие полос поглощения у дендримерного лиганда в области 132 и 224 см⁻¹. Это можно объяснить тем, что аминогруппы участвуют в координации ионов железа. Две последние полосы в Раман-спектре при 224.25 и 132.21 см⁻¹ подтверждают природу дендримерного комплекса и присутствие железа.

Мезоморфизм соединений

Фазовые переходы синтезированного лиганда и металлокомплекса, а также структуру образуемых ими мезофаз изучали методами ДСК и поляризационно-оптической микроскопии. Из пред-

Рис. 2. Спектр КР соединения G3-K2.10 \cdot (FeCl₂)₁₅ в сравнении со спектрами дендримерного лиганда и безводного FeCl₂.

ставленных данных видно, что образцы формируют ЖК-фазу и являются энантиотропными жидкими кристаллами (табл. 1).

Поляризационно-оптические исследования лиганда показали, что дендример обладает двулучепреломлением. В интервале температур от 325.1 до точки просветления 375 К образуется текстура, типичная для колончатой фазы жидкокристаллического состояния вещества (рис. 3).

На кривой ДСК лиганда в цикле первого нагрева наблюдается эндотермический пик в температурном интервале 325.2—363.1 К с теплотой перехода 43.3 Дж/г, соответствующей образованию колончатой мезофазы. Последующий переход в изотропную жидкость также характеризуется эндотермическим пиком при температуре 374.8 К ($\Delta H = 1.29 \, \text{Дж/г}$). В цикле первого охлаждения наблюдается один экзотермический пик с теплотой

Рис. 3. Негеометрическая текстура соединения G3-K2.10, в цикле нагрева T = 353 K, увеличение 100.

перехода -0.94 Дж/г (357.3 К), соответствующий переходу изотропа в ЖК-фазу. Наличие на кривой ДСК перегиба при температуре 299-300 К $(\Delta C_n = 0.2 \, \text{Дж}/(\text{г K}))$ дает основание говорить о переходе в застеклованное состояние с сохранением текстуры мезофазы. Второй цикл нагрева дендримерного лиганда характеризуется процессом стеклования 299.2 К ($\Delta C_p = 0.52 \, \text{Дж}/(\Gamma \text{ K})$) с последующим плавлением мезоморфного застеклованного образца в расплав с температурой просветления 367.2 К ($\Delta H = 1 \, \text{Дж/г}$). Второе охлаждение навески лиганда повторяет первый цикл, указывая на термодинамически устойчивое поведение дендримера, а именно переход в застеклованное состояние с сохранением текстуры колончатой фазы. Такое фазовое поведение можно объяснить тем, что третья генерация является переходной от дискообразной формы молекулы к сферической.

Установлено, что дендримерный комплекс также является мезогеном. По данным ДСК, ве-

Вещество	g	T_g , K	Cr	T _{mes} , K	М	T _{iso} , K	Iso	<i>Т_{dec}</i> , К		
G3-K2.10										
1-й нагрев			+	325.2	Col	374.8	+	542.2		
2-й нагрев	+	299.2		342.5	Col	367.2	+			
G3-K2.10 · (FeC	(l ₂) ₁₅	,				,	,	,		
1-й нагрев	+	287.5		323.7	Col	449*	+	465.4		
2-й нагрев	+	282.3		328.3*	Col	448*	+			

Таблица 1. Данные ДСК и поляризационной термомикроскопии

Примечание. T_g – температура стеклования, T_{mes} – температура перехода в мезофазу, T_{iso} – температура просветления, M – мезофаза, T_{dec} – температура декомпозиции; * – данные поляризационной термомикроскопии; g – стекло; Cr – кристалл; Col – колончатая мезофаза.

Рис. 4. Негеометрическая текстура соединения G3-K2.10 · (FeCl₂)₁₅, в цикле нагрева T = 368 K, увеличение 100.

щество после синтеза находится в застеклованном состоянии, которое в первом цикле нагрева переходит в мезофазу при температуре 323.7 К ($\Delta H = 85.9 \text{ Дж/r}$) с последующим переходом в изотроп около 448 К. Текстура мезофазы приведена на рис. 4.

Последующее охлаждение выявило сохранение ЖК-упорядочения с последующим стеклованием образца с образованием застеклованной мезофазы, устойчивой в течение длительного промежутка времени.

Теплоемкость образцов

Экспериментальные данные по удельной теплоемкости образца в интервале температур 210– 460 К представлены на рис. 5.

Уравнение полиномиальной зависимости $C_p = = f(T)$ для интервала температур 460—210 К приведено ниже:

$$C_p \left(\exists \mathbf{x} / (\mathbf{r} \ \mathbf{K}) \right) = -0.0000003x^4 + 0.00001763x^3 - (1) - 0.00592576x^2 + 0.97011911x - 59.57639341,$$

где *х* – температура.

Коэффициент корреляции $R^2 = 0.99$. Удельная теплоемкость комплекса G3-K2.10 · (FeCl₂)₁₅ была определена впервые. Согласно полученным данным, на зависимости удельной теплоемкости от температуры (рис. 5) присутствуют максимумы при 313 и 348 К, что соответствует фазовому переходу комплекса в мезоморфное состояние. Для уточнения полученных данных была определена удельная теплоемкость образца в процессе охла-

Рис. 5. Температурная зависимость удельной теплоемкости образца G3-K2.10 · (FeCl₂)₁₅: *1* – нагрев (210– 460 K), *2* – охлаждение (460–210 K), *3* – нагрев лиганда (210–460 K).

ждения при температурах 460–210 К. Данные представлены на рис. 5 (кривая 2). Как известно, охарактеризовать структуру образца можно по температурной зависимости удельной теплоемкости — параметра, чувствительного к структуре объекта. Температурные кривые теплоемкости при нагревании и охлаждении (рис. 5) наглядно свидетельствуют о процессах, происходящих в образце при переходе в застеклованное состояние с сохранением текстуры мезофазы.

Исследование магнитокалорического эффекта G3-K2.10 · (FeCl₂)₁₅ проводили калориметрическим методом в магнитных полях от 0 до 1.0 Тл в диапазоне температур 288–338 К (рис. 6, 7) [17]. Погрешность измерения МКЭ составляла 2%.

При включении магнитного поля у комплекса наблюдается положительный магнитокалорический эффект. Полевые зависимости магнитокалорического эффекта для координационного со-

Рис. 6. Полевая зависимость магнитокалорического эффекта образца при температурах: 1 - 288, 2 - 298, 3 - 308, 4 - 318 K.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 5 2020

Рис. 7. Температурная зависимость магнитокалорического эффекта образца. Индукция магнитного поля (от 0.2 до 1.0 Тл) указана на рисунке.

единения G3-K2.10 \cdot (FeCl₂)₁₅ имеют классический линейный характер (рис. 6). С ростом индукции магнитного поля МКЭ растет и уменьшается с ростом температуры.

В изученном интервале температур МКЭ имеет небольшую величину (рис. 7). Наличие положительного МКЭ подтверждает парамагнитные свойства образца. На температурной зависимости МКЭ в интервале 300-340 К наблюдается минимум МКЭ, что соответствует максимуму на температурной зависимости теплоемкости (рис. 5). С температуры 318 К наблюдается тенденция роста МКЭ, что свидетельствует о наличии в образце магнитного фазового перехода (рис. 7). Однако из-за того, что изучение МКЭ проводили в узком интервале температур (по техническим причинам), мы не получили полной картины фазового перехода, сопровождающегося максимумом на температурной зависимости МКЭ, которая подтверждает данные ДСК и поляризационной термомикроскопии (табл. 1).

ЗАКЛЮЧЕНИЕ

В ходе работы синтезированы два дендримера третьей генерации – производные полипропиленимина с 3,4-бис(децилокси)бензойными фрагментами на периферии: безметальный лиганд и металлокомплекс Fe(II). Методами дифференциальной сканирующей калориметрии и оптической поляризационной микроскопии показано, что оба соединения проявляют термотропный мезоморфизм с переходом в застеклованное состояние из мезофазы с сохранением текстуры. Установлено образование колончатой мезофазы в интервале температур 325.2-363.1 К. Определена удельная теплоемкость железосодержащего комплекса G3-K2.10 · (FeCl₂)₁₅. Впервые получен магнитокалорический эффект образца; наличие МКЭ свидетельствует о парамагнитных свойствах комплекса. Установлено, что вид температурной зависимости МКЭ отражает экстремальную температурную зависимость теплоемкости. Температурные зависимости удельной теплоемкости и МКЭ коррелируют с мезоморфными фазовыми переходами, полученными на основании данных ДСК и оптической поляризационной микроскопии и характеризующими наличие термотропного мезоморфизма синтезированных соединений.

ФИНАНСИРОВАНИЕ РАБОТЫ

Физико-химический эксперимент выполнен на оборудовании Верхневолжского регионального центра физико-химических исследований. Работа выполнена при частичной финансовой поддержке грантов РФФИ № 18-03-00081_а в части синтеза дендримеров и анализа их теплоемкостей и № 18-29-04016_мк в рамках установления фазовых переходов полученных соединений. Магнитные свойства и магнитокалорический эффект были изучены при поддержке гранта РФФИ № 18-43-370022_p_а, а также в рамках государственной Программы Российской академии наук (№ 01201260483).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Lee C.C., MacKay J.A., Frechet J.M.J., Szoka F.C. // Nat. Biotechnol. 2005. V. 23. P. 1517. https://doi.org/10.1038/nbt1171
- Frechet J.M.J. // Science. 1994. V. 263. P. 1710. https://doi.org/10.1126/science.8134834
- 3. Pramanik Harun A.R., Chanda S., Bhattacharjee C.R. et al. // Liq. Cryst. 2016. V. 43. Iss. 11. P. 1606. https://doi.org/10.1080/02678292.2016.1190037
- Domracheva N.E., Morozov V.I., Gruzdev M.S. et al. // Macromol. Chem. Phys. 2010. V. 211. P. 791. https://doi.org/10.1002/macp.200900554
- Donnio B. // Inorg. Chim. Acta. 2014. V. 409. P. 53. https://doi.org/10.1016/j.ica.2013.07.045
- Astruc D., Ruiz J. // J. Inorg. Organomet. Polym. 2015. V. 25. P. 2. https://doi.org/10.1007/s10904-014-0091-3
- Gruzdev M., Chervonova U., Frolova T., Kolker A. // Liq. Cryst. 2017. V. 44. P. 322. https://doi.org/10.1080/02678292.2016.1202340
- Gu Cheng, Shentu Baoqing, Weng Zhixue. Metallic ionpolyamide polyamide-amine complex compound catalyst and use for preparing polyphenylene oxide in aqueous medium. CN101497693 (A). 2009.
- Balzani V., Bergamini G., Ceroni P. // Photochemistry and photophysics of metal complexes with dendritic ligands. V. 63. Inorganic Photochemistry / Eds. van Eldik R., Stochel G. Amsterdam: Elsevier, 2011. P. 105. https://doi.org/10.1016/B978-0-12-385904-4.00008-1

- Murtaza Bohra, Sahoo S.C. // J. Alloys Compd. 2017. V. 699. P. 1118. https://doi.org/10.1016/j.jallcom.2017.01.013
- Jing Zhong, Wenzhong Liu, Ling Jiang et al. // Rev. Sci. Instrum. 2014. V. 85. P. 094905. https://doi.org/10.1063/1.4896121
- Pandey S., Quetz A., Aryal A. et al. // J. Magn. Magn. Mater. 2017. V. 444. P. 98. https://doi.org/10.1016/j.jmmm.2017.08.009
- Gruzdev M.S., Domracheva N.E., Chervonova U.V. et al. // J. Coord. Chem. 2012. V. 65. P. 1812. https://doi.org/10.1080/00958972.2012.682158
- Hoshino N., Ako A.M., Powell A.K. et al. // Inorg. Chem. 2009. V. 48. P. 3396. https://doi.org/10.1021/ic801776w

- Halcrow M.A. Spin-crossover Materials: Properties and Applications. Hoboken: John Wiley & Sons Ltd, 2013. 564 p. https://doi.org/10.1002/anie.201306160
- Gruzdev M.S., Korolev V.V., Ramazanova A.G. et al. // Liq. Crys. 2018. V. 45. P. 907. https://doi.org/10.1080/02678292.2017.1397783
- Korolev V.V., Korolev D.V., Ramazanova A.G. // J. Therm. Anal. Calorim. 2018. V. 136. P. 937. https://doi.org/10.1007/s10973-018-7704-y
- Gruzdev M.S., Alexandrov A.I., Pashkova T.V., Chervonova U.V. // Liq. Cryst. 2019. V. 63. P. 454. https://doi.org/10.1080/02678292.2018.1508766