ТЕРМОДИНАМИКА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

УДК 544.31

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СОЕДИНЕНИЙ НА ОСНОВЕ BaLa₂WO₇, ДОПИРОВАННЫХ ЕВРОПИЕМ

© 2020 г. Д. Б. Гоголь^{*a*}, Д. Т. Садырбеков^{*a*, *b*}, М. Р. Бисенгалиева^{*a*, *, **}

^аИнститут проблем комплексного освоения недр, ул. Ипподромная, 5, Караганда, 100019 Казахстан ^bКарагандинский государственный университет им. акад. Е.А. Букетова,

ул. Университетская, 28, Караганда, 100028 Казахстан

*e-mail: 160655@mail.ru

**e-mail: mirabis@ipkon.kz

Поступила в редакцию 15.11.2019 г. После доработки 02.12.2019 г. Принята к публикации 24.12.2019 г.

Твердофазным методом синтезированы образцы соединений из систем тройных оксидов на основе бария, лантана, европия и вольфрама общей формулы Ba(La,Eu)₂WO₇. Путем полнопрофильного расчета рентгеновских дифрактограмм уточнены параметры элементарных ячеек и определено содержание дополнительных фаз. Методом адиабатической калориметрии исследована зависимость теплоемкости образцов от гелиевой области до комнатных температур (4.25–315 K) и зарегистрированы аномалии, обусловленные наличием допирующего элемента. На основе экспериментальных данных выделена решеточная составляющая теплоемкости для определения величин изменения энтропии и энтальпии в аномалиях и рассчитаны термодинамические функции соединений в интервале 5–310 K. Стандартные значения термодинамических функций составляют: $C_{p, 298.15} = 208.3 \pm 0.7 \, \text{Дж}/(моль K)$, $S_{298.15}^{\circ} = 243.6 \pm 1.5 \, \text{Дж}/(моль K)$, $H_{298.15} - H_0 = 37360 \pm 185 \, \text{Дж}/моль для Ba(La_{0.99}Eu_{0.01})_2WO_7$; $C_{p, 298.15} = 208.7 \pm 0.5 \, \text{Дж}/(моль K)$, $S_{298.15}^{\circ} = 244.0 \pm 1.2 \, \text{Дж}/(моль K)$, $H_{298.15} - H_0 = 37619 \pm 142 \, \text{Дж}/моль для$

Ва(La_{0.97}Eu_{0.03})₂WO₇; $C_{p, 298.15} = 208.8 \pm 0.8 \, \text{Дж/(моль K)}, S_{298.15}^{\circ} = 242.6 \pm 1.5 \, \text{Дж/(моль K)}, H_{298.15} - H_0 = 37384 \pm 190 \, \text{Дж/моль для Ba}(La_{0.95}Eu_{0.05})_2$ WO₇.

Ключевые слова: тройные оксиды, редкоземельные элементы, лантан, низкотемпературная теплоемкость, адиабатическая калориметрия

DOI: 10.31857/S0044457X20050104

введение

Соединения и материалы на основе редкоземельных элементов (РЗЭ) с различными свойствами широко распространены и высоко востребованы в современной технологии. Среди соединений РЗЭ со структурой, производной от структуры пирохлора, имеются сегнетоэлектрики, магнетики, полупроводники и сверхпроводники. Допирование соединений из систем сложных оксидов атомами РЗЭ позволяет значительно расширить диапазон их перспективных свойств. В получаемых соединениях из-за особенностей электронной структуры лантаноидов проявляются люминесцентные, диэлектрические, транспортные и другие свойства. Ввиду большого разнообразия особенностей и значительного количества вариантов допирования соединений необходимы систематические исследования физико-химических свойств подобных веществ.

Особое место среди допантов занимает европий, обладающий высоким периодом флуоресценции, что позволяет использовать его в различных материалах [1]. Например, в системах европий—вольфрамат наблюдается эффективный перенос энергии между группой WO_4^{2-} и ионом Eu^{3+} , что позволяет использовать их в качестве люминесцентных источников света [2]. Образцы люминофоров CaMoO₄ : xEu^{3+} (x = 1-6 мол. %), приготовленные золь-гель методом, по результатам измерения отражения [3], являются оптически активными соединениями. Вольфрамат состава BaLa_{3.96}Eu_{0.04}(WO₄)₇ демонстрирует красное свечение средней эффективности при комнатной температуре и ниже, а также в ультрафиолетовой области [4].

Достаточно эффективными люминофорами являются соединения на основе BaLa₂WO₇, которые обладают оптической активностью не только в случае европия, но и других лантаноидов [5–9]. При этом возможности проявления люминесцентных свойств расширяются при совместном применении двух лантаноидов или замене части щелочноземельного элемента.

Количество работ, описывающих термодинамические свойства соединений, допированных европием, значительно меньше. Так, в работе [10] исследована высокотемпературная теплоемкость соединений вида $(U_{1-x}Eu_x)O_2$ в интервале температур от 300 до 1550 К. Таким образом, имеется пробел в изучении термодинамических и других свойств соединений при низких температурах, который может быть заполнен методом адиабатической калориметрии.

В настоящей работе синтезированы и измерены допированные соединения с общей формулой $Ba(La_{1-x}Eu_x)_2WO_7$, где x – стехиометрический коэффициент, зависящий от взятых мольных соотношений. Мольные соотношения, выбранные для синтеза данных соединений, соответствовали 1, 3 и 5 мол. % оксида Eu_2O_3 по отношению к количеству молей оксида лантана La_2O_3 .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза в качестве исходных веществ использовали карбонат стронция SrCO₃, карбонат бария BaCO₃, оксид вольфрама(VI) WO₃, оксид лантана La₂O₃, оксид европия Eu₂O₃. Реактивы имели квалификацию "х. ч." (оксиды РЗЭ), "ч." (карбонаты бария и стронция), "ч. д. а." (оксид вольфрама). Оксиды щелочноземельных и редкоземельных металлов перед синтезом дополнительно прокаливали при 1173 К (900°С) в течение 2 ч для удаления избыточной влаги и поглощенного углекислого газа. Для получения сложных оксидов использовали твердофазный метод. Навески исходных реагентов, взятые в стехиометрических соотношениях, тщательно перетирали в агатовой ступке, затем полученную смесь отжигали при температуре 973 К (700°С) в течение 10–12 ч в фарфоровых тиглях в атмосфере воздуха. Далее полученные прекурсоры измельчали в агатовой ступке и прокаливали в алундовых тиглях в атмосфере воздуха с последовательным повышением температуры: 1173 К (900°С) – 6 ч, 1273 К (1000°С) – 6 ч и завершающий отжиг при 1473 К (1200°С) в три приема по 7 ч каждый.

Дифрактограммы синтезированных образцов получали на дифрактометре Shimadzu XRD-6000 при комнатной температуре (CuK_a-излучение, геометрия съемки на отражение, диапазон углов $2\theta = 10^{\circ} - 60^{\circ}$, шаг 0.02°). Обработку полученных дифрактограмм, обнаружение известных фаз и поиск изоструктурных соединений проводили с помощью программы Match! Version 2.3 [11] и базы данных порошковой дифракции PDF-2 [12]. Первоначальное индицирование дифрактограмм И определение сингонии, пространственных групп соединений и параметров элементарных ячеек проводили с использованием программ DicVol06, Treor-90 и ITO, входящих в состав пакета программ FullProf [13]. Моделирование разностных дифрактограмм и уточнение параметров элементарных ячеек на основе данных для подобранных изоструктурных соединений проводили в программе Powder Cell version 2.4 [14]. Определение параметров кристаллической структуры проводили при последовательном уточнении сначала общих параметров дифрактограммы, потом размеров элементарной ячейки и формы пиков, а затем оптимизации атомных позиций.

Теплоемкость образцов измеряли от температуры жидкого гелия методом адиабатической калориметрии на низкотемпературной теплофизической установке фирмы "Termax" [15]. Навески образцов составляли от 1.3 до 2.2 г. Титановые контейнеры с образцами вакуумировали, заполняли газообразным гелием и уплотняли с помощью индиевой прокладки. Шаг измерений составлял от 0.3 до 3 К в зависимости от диапазона температур, интервал измерений 4.25–320 К. Общий температурный интервал измерений был пройден несколько раз, в области температур до 20 К промеры теплоемкости производились не менее трех раз.

При обработке измеренных данных использовали сплайн-аппроксимацию экспериментальных значений теплоемкости полиномами 3-й степени вида $C_p = a_0 + a_1 T + a_2 T^2 + a_3 T^3$. Ниже температуры 5 К значения теплоемкости экстраполировали к абсолютному нулю в соответствии с полиномом нечетной степени $C_p = aT^3 + bT^5$. Перекрытие экспериментальных точек в областях смены полиномов составляло не менее 3–4 точек.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенофазовый анализ образцов показал хорошее соответствие соединению $BaLa_2WO_7$ (PDF-2 № 00-039-0083) [16, 17], которое кристаллизуется в моноклинной сингонии (пр. гр. $P112_1/b$).

Соодинациа	Парамет	ры элемента	Факторы недостоверности, %			
Соединение	а	b	С	γ	R_p	R_{wp}
Ba(La _{0.99} Eu _{0.01}) ₂ WO ₇	8.8577	12.8804	5.8371	105.128	11.25	17.17
Ba(La _{0.97} Eu _{0.03}) ₂ WO ₇	8.8577	12.8769	5.8346	105.126	11.63	17.34
Ba(La _{0.95} Eu _{0.05}) ₂ WO ₇	8.8577	12.8752	5.8305	105.124	12.49	16.29

Таблица 1. Параметры кристаллической структуры образцов

Атомные позиции

Атом	$Ba(La_{0.99}Eu_{0.01})_2WO_7$			Ba(L	$La_{0.97}Eu_{0.03})_2W$	Ba(La _{0.95} Eu _{0.05}) ₂ WO ₇			
	x	у	Z,	x	у	Z.	x	у	z
Ba	0.4790	0.1267	0.5149	0.4826	0.1283	0.5099	0.4811	0.1339	0.5037
La/Eu1	0.1860	0.0929	0.0062	0.1883	0.0789	0.0023	0.1883	0.0913	0.9753
La/Eu2	0.0780	-0.1241	0.4717	0.0577	-0.1257	0.5025	0.0577	-0.1257	0.5025
W	0.2811	0.3378	0.4608	0.2920	0.3375	0.4690	0.2920	0.3444	0.4647
01	0.4884	0.3361	0.4929	0.5087	0.3476	0.4620	0.4907	0.3476	0.4755
O2	0.0488	0.3140	0.4460	0.0511	0.3280	0.4769	0.0511	0.3232	0.4769
O3	0.2793	0.4423	0.7481	0.2996	0.4283	0.7173	0.2958	0.4407	0.7173
O4	0.2658	0.2458	0.1781	0.2455	0.2474	0.2090	0.2635	0.2474	0.1816
O5	0.3275	0.4688	0.2429	0.3072	0.4672	0.2463	0.3252	0.4548	0.2463
O6	0.2493	0.2002	0.6711	0.2470	0.2018	0.6402	0.2470	0.2142	0.6402
O 7	-0.0009	-0.0026	0.2482	0.0014	0.0110	0.2791	0.0194	0.0114	0.2517

Помимо основной фазы во всех образцах обнаружены остаточные количества не полностью прореагировавших исходных соединений, представленные вольфраматом бария $BaWO_4$ (PDF-2 N 00-008-0457) и оксидом лантана La_2O_3 (PDF-2 N 01-076-7398), содержание которых определено на уровне ~3–4 об. %. Соотношения между обнаруженными побочными примесями находятся приблизительно в равных мольных количествах, что свидетельствует об отсутствии нестехиометрии в целевых соединениях. Наличие каких-либо других примесей не обнаружено.

В табл. 1 представлены результаты уточнения кристаллической структуры синтезированных

соединений с учетом частичной заселенности атомных позиций лантана атомами европия. Кристаллографические позиции атомов в элементарной ячейке образцов соответствуют приведенным в работе [17] положениям атомов с отклонением не более чем $\pm 2\%$.

Как видно из полученных данных, с увеличением содержания европия в составе образцов, линейные параметры b и c элементарной ячейки незначительно уменьшаются, в то время как моноклинный угол практически не изменяется. Это обстоятельство объясняется тем, что значения ионного радиуса европия достаточно близки к та-

Рис. 1. Экспериментальная, теоретическая и разностная дифрактограммы соединений $Ba(La_{1-x} Eu_x)_2 WO_7$.

ковым для атомов лантана, и размеры элементарной ячейки соединений изменяются слабо.

Экспериментальная, теоретическая и разностная дифрактограммы соединений представлены на рис. 1. Разностные кривые получены вычитанием из экспериментальной дифрактограммы суммы теоретических профилей допированного основного соединения и примесных веществ, также учитываемых при расчете.

Уточненное содержание примесей вольфрамата бария и оксида лантана в образцах в пересчете на моли составляет по 7.3 мол. % для образца с 1% Eu, 6.8 мол. % для образца с 3% Eu, 7.8 мол. % для образца с 5% Eu. Из этого следует, что содержание основной фазы в образцах составляет 92.13, 92.72 и 91.71 мас. % соответственно. С учетом обнаруженных примесей $BaWO_4$ и La_2O_3 в образцах в экспериментальные данные по теплоемкости была введена поправка на их содержание. Удельная теплоемкость вольфрамата бария [18] и оксида лантана [19] была вычтена из общей экспериментально измеренной теплоемкости пропорционально массовой доле примеси.

Внешний вид температурных зависимостей теплоемкости, полученных в результате калориметрических измерений образцов, представлен на рис. 2. В низкотемпературной теплоемкости образцов обнаружены аномальные отклонения от обычного хода теплоемкости, связанные с наличием ионов Eu³⁺ в кристаллической структуре соединений. Аномалии имеют вид пологих пиков небольшой интенсивности в интервале от 5 до 8 К.

Рис. 2. Экспериментальная мольная теплоемкость исследованных соединений $Ba(La_{1-x} Eu_x)_2 WO_7$.

Аномальная составляющая теплоемкости была вычислена путем преобразования и вычитания решеточной составляющей из общей теплоемкости в соответствии с уравнениями [20, 21]:

$$\frac{C_{\rm L}}{T^3} = K \left(1 - \frac{C_{\rm L}}{3Rn}\right)^m,$$
$$\ln\left(\frac{C_{\rm L}}{T^3}\right) = m \ln\left(1 - \frac{C_{\rm L}}{3Rn}\right) + \ln K$$

Рис. 3. Общая (1), аномальная (2), решеточная (3) и сглаженная аномальная (4) теплоемкости соединений Ba(La_{1 – x}Eu_x)₂WO₇.

Для выделенных решеточных и аномальных составляющих теплоемкости были получены сглаженные зависимости, представленные на рис. 3. Уравнения этих зависимостей были использованы для расчета изменений энтальпии и энтропии в наблюдаемых аномальных переходах.

Рис. 4. Разброс экспериментальных значений теплоемкости относительно сглаженной кривой для исследованных соединений $Ba(La_{1-x} Eu_x)_2WO_7$.

Появление аномалий теплоемкости связано, по-видимому, с возможным возникновением магнитных взаимодействий в образцах, вызванных присутствием атомов европия. Природный европий состоит в основном из двух изотопов: ¹⁵¹Еи и ¹⁵²Еи, имеющих спин 5/2, что обусловлива-

	$Ba(La_{0.99}Eu_{0.01})_2WO_7$			Ba(l	$La_{0.97}Eu_{0.03})_{2}$	WO ₇	Ba(La _{0.95} Eu _{0.05}) ₂ WO ₇		
<i>T</i> , K	<i>С_р,</i> Дж/(моль К)	<i>S</i> °, Дж/(моль K)	$H_T - H_0,$ Дж/моль	<i>С_р,</i> Дж/(моль К)	<i>S</i> °, Дж/(моль К)	$H_T - H_0,$ Дж/моль	<i>С_р,</i> Дж/(моль К)	<i>S</i> °, Дж/(моль K)	$H_T - H_0,$ Дж/моль
5	0.134	0.029	0.119	0.137	0.026	0.108	0.143	0.027	0.113
10	0.939	0.333	2.523	0.938	0.333	2.529	0.966	0.335	2.549
20	6.601	2.368	35.04	6.634	2.379	35.24	6.685	2.417	35.79
30	17.99	7.023	153.7	17.90	7.046	154.1	18.17	7.119	155.7
40	34.82	14.70	424.2	31.48	14.06	401.1	31.64	14.20	405.1
50	51.44	24.23	854.3	45.05	22.54	783.9	44.99	22.70	788.3
60	57.81	33.58	1369	57.90	31.90	1299	57.85	32.04	1303
70	69.65	43.39	2007	69.91	41.74	1939	69.83	41.87	1942
80	80.65	53.42	2759	81.16	51.82	2695	80.93	51.93	2697
90	90.96	63.52	3618	91.76	62.00	3560	91.24	62.07	3558
100	100.7	73.61	4577	101.8	72.19	4529	101.0	72.19	4520
110	109.8	83.64	5630	111.0	82.33	5593	110.1	82.25	5576
120	118.4	93.56	6771	119.7	92.37	6747	118.7	92.20	6720
130	126.5	103.4	7995	128.0	102.3	7987	126.8	102.0	7948
140	134.3	113.0	9300	135.9	112.1	9306	134.5	111.7	9255
150	141.8	122.6	10681	143.5	121.7	10704	142.1	121.2	10637
160	148.7	131.9	12134	150.5	131.2	12175	148.7	130.6	12091
170	154.9	141.1	13652	157.0	140.5	13713	154.9	139.8	13610
180	160.7	150.2	15231	163.0	149.7	15314	160.7	148.8	15189
190	166.1	159.0	16865	168.6	158.6	16972	166.1	157.7	16823
200	171.2	167.6	18552	173.8	167.4	18685	171.2	166.3	18 510
210	175.8	176.1	20287	178.4	176.0	20447	176.0	174.8	20245
220	180.2	184.4	22067	182.7	184.4	22252	180.5	183.1	22028
230	184.6	192.5	23892	186.8	192.6	24100	184.9	191.2	23855
240	188.8	200.4	25759	190.6	200.6	25987	189.5	199.2	25726
250	192.8	208.2	27668	194.1	208.5	27911	193.9	207.0	27644
260	196.5	215.9	29614	197.3	216.2	29869	197.9	214.7	29604
270	200.4	223.4	31599	200.5	223.7	31857	201.4	222.2	31601
280	203.6	230.7	33620	203.5	231.0	33877	204.5	229.6	33631
290	206.3	237.9	35670	206.4	238.2	35927	207.1	236.8	35689
298.15	208.3 ± 0.7	243.6 ± 1.5	37360 ± 185	208.7 ± 0.5	244.0 ± 1.2	37619 ± 142	208.8 ± 0.8	242.6 ± 1.5	37384 ± 190
300	208.7	244.9	37746	209.2	245.3	38006	209.2	243.9	37770
310	211.0	251.8	39845	211.8	252.2	40111	210.7	250.8	39870

Таблица 2. Термодинамические функции соединений

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 5 2020

ет наличие магнитных свойств у его соединений. Полученные значения изменения энтальпии и энтропии в аномалиях образнов изменяются незначительно несмотря на увеличение содержания европия: от 0.19 до 0.26 Дж/моль и от 0.030 до 0.042 Дж/(моль К) соответственно с погрешностью, определенной на уровне $\pm 15\%$. Это обстоятельство может указывать на то, что наблюдаемые эффекты не зависят напрямую от концентрании лопирующего элемента. Величины изменения энтропии в наблюдаемых превращениях значительно меньше, чем теоретическое значение Rln2, это обусловлено замещением только части атомов лантана на атомы европия при допировании соединений. При пересчете на один моль атомов европия с учетом его мольной доли в соединении эти величины составляют 4.01-5.55 Дж/моль и 0.646-0.895 Дж/(моль К) соответственно.

Величины основных термодинамических функций энтропии S° и изменения энтальпии $H_T - H_0$ для синтезированных соединений определяли по коэффициентам аппроксимирующих полиномов с помощью следующих выражений:

$$S_T^{\circ} = \int_0^T \frac{C_p}{T} dT = a_0 \ln T + \sum_{n=1}^3 \frac{a_n T^n}{n},$$
$$H_T^{\circ} - H_0^{\circ} = \int_0^T C_p dT = \sum_{n=0}^3 \frac{a_n T^{n+1}}{n+1}.$$

Вычисленные значения термодинамических функций исследованных соединений в интервале температур 5—300 К представлены в табл. 2 вместе с соответствующими погрешностями. Погрешности измерений определяли на основе разброса экспериментальных точек от сглаженной кривой в пределах 95%-ного доверительного интервала (рис. 4).

Найденные значения термодинамических функций незначительно возрастают по мере увеличения допирования соединений европием. Отсутствие выраженной зависимости значений изменения энтропии и энтальпии от содержания европия можно рассматривать как указание на то, что магнитное взаимодействие между атомами европия, приводящее к превращениям, возникает уже при наименьшей концентрации, и дальнейшее ее увеличение не приводит к существенным изменениям в исследованном диапазоне допирования.

ЗАКЛЮЧЕНИЕ

В результате твердофазного синтеза получены соединения на основе бария, вольфрама и РЗЭ лантана и европия. Исследованы их структурные и термодинамические свойства. На основе данных рентгеновской дифракции проведен рентге-

нофазовый анализ образцов, определены параметры их элементарных ячеек и атомные позиции. Проведены измерения теплоемкости от температуры жидкого гелия, в результате которых обнаружены низкотемпературные аномалии, связанные с магнитными изменениями в структуре образцов, вызванными присутствием допирующих атомов европия.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках проекта AP05130095 по программе финансирования научных исследований Комитетом науки Министерства образования и науки Республики Казахстан.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Pinatti I.M., Nogueir I.C., Pereira W.S. et al.* // Dalton Trans. 2015. V. 44. P. 17673. https://doi.org/10.1039/C5DT01997D
- Qin C., Huang Y., Chen G. et al. // Mater. Lett. 2009. V. 63. P. 1162. https://doi.org/10.1016/j.matlet.2009.02.018
- Braziulis G., Stankeviciute R., Zalga A. // Mater. Sci. 2014. V. 20. P. 90. https://doi.org/10.5755/j01.ms.20.1.4797
- Blasse G., Dirksen G.J., Brixner L.H. et al. // Mater. Chem. Phys. 1989. V. 21. P. 293. https://doi.org/10.1134/S003602361311017X
- Choi S., Park B.-Y., Jung H.-K. et al. // J. Korean Phys. Soc. 2010. V. 57. P. 169. https://doi.org/10.3938/jkps.57.169
- Yan S.-A., Wang J.-W., Chang Y.-S. et al. // Opt. Mater. 2011. V. 34. P. 147. https://doi.org/10.1016/j.optmat.2011.07.028
- Yan S.-A., Chang Y.-S., Hwang W.-S. et al. // J. Lumin. 2012. V. 132. P. 1867. https://doi.org/10.1016/j.jlumin.2012.02.007
- Deng Y., Yi S., Huang J. et al. // Mater. Res. Bull. 2014. V. 57. P. 85. https://doi.org/10.1016/j.materresbull.2014.05.035
- 9. Hussain S. K., Yu J. S. // Mater. Res. Bull. 2017. V. 95. P. 229.
- https://doi.org/10.1016/j.materresbull.2017.07.031 10. *Matsui T., Kawase T., Naito K.* // J. Nucl. Mater. 1992.
 - V. 186. P. 254. https://doi.org/10.1016/0022-3115(92)90344-K
- Bernardo E. // J. Non-Cryst. Solids. 2008. V. 354. P. 3486. https://doi.org/10.1016/j.jnoncrysol.2008.03.021
- Faber J., Fawcett T. // Acta Crystallogr. B. 2002. V. 58. P. 325.

https://doi.org/10.1107/S0108768102003312

13. *Rodríguez-Carvajal J.* // Physica B. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I

- Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. P. 301. https://doi.org/10.1107/S0021889895014920
- Bissengaliyeva M.R., Gogol D.B., Taymasova Sh.T. et al. // J. Chem. Eng. Data. 2011. V. 56. P. 195. https://doi.org/10.1021/je100658y
- 16. *Kovba L.M., Lykova L.N., Balashov V.L.* // Russ. J. Inorg. Chem. 1985. V. 30. № 2. P. 311.
- Fu W.T., Ijdo D.J.W., Bontenbal A. // J. Solid State Chem. 2013. V. 201. P. 128. https://doi.org/10.1016/j.jssc.2013.01.042
- Musikhin A.E., Bespyatov M.A., Shlegel V.N. et al. // J. Alloys Compd. 2019. V. 802. P. 235. https://doi.org/10.1016/j.jallcom.2019.06.197
- Justice B.H., Westrum Jr. E.F. // J. Phys. Chem. 1963. V. 67. P. 339. https://doi.org/10.1021/j100796a031
- 20. Melia T.P., Merrifield R. // J. Inorg. Nucl. Chem. 1970. V. 32. P. 2573. https://doi.org/10.1016/0022-1902(70)80304-9
- 21. *Bissengaliyeva M.R., Gogol D.B., Bespyatov M.A. et al.* // Mater. Res. Express. 2019. V. 6. № 10. P. 106109. https://doi.org/10.1088/2053-1591/ab3ae3

634