ТЕРМОДИНАМИКА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

УДК 536.63

СИНТЕЗ, СТРУКТУРА И ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ГЕРМАНАТА NdGaGe₂O₇

© 2020 г. Л. Т. Денисова^{а,} *, Ю. Ф. Каргин^b, Л. А. Иртюго^a, В. В. Белецкий^a, Н. В. Белоусова^a, В. М. Денисов^a

^аСибирский федеральный университет, Институт цветных металлов и материаловедения, Свободный пр-т, 79, Красноярск, 660041 Россия ^bИнститут металлургии и материаловедения им. А.А. Байкова РАН, Ленинский пр-т, 49, Москва, 119991 Россия *e-mail: antluba@mail.ru Поступила в редакцию 15.10.2019 г. После доработки 24.10.2019 г. Принята к публикации 25.12.2019 г.

Методом твердофазных реакций при последовательном ступенчатом обжиге на воздухе стехиометрической смеси исходных оксидов Nd_2O_3 , Ga_2O_3 и GeO_2 в интервале температур 1273–1473 К синтезированы поликристаллические образцы германата галлия-неодима $NdGaGe_2O_7$. При помощи дифференциальной сканирующей калориметрии исследована температурная зависимость теплоемкости полученных образцов в области 350–1000 К. По экспериментальным значениям $C_p = f(T)$ рассчитаны термодинамические функции (изменения энтальпии, энтропии и приведенной энергии Гиббса) сложного оксидного соединения $NdGaGe_2O_7$.

Ключевые слова: твердофазный синтез, структура, германаты редкоземельных элементов, дифференциальная сканирующая калориметрия, высокотемпературная теплоемкость, термодинамические свойства

DOI: 10.31857/S0044457X20050074

введение

Интересные физические свойства и возможность практического применения германатов состава RMGe₂O₇ (R = P3 Θ ; M = Al, Ga, In, Fe) в течение длительного времени привлекают к себе внимание исследователей и практиков [1-12]. Они могут использоваться в качестве лазеров [4, 5], люминофоров [4], новых магнитных материалов [2, 3, 13]. Для соединения NdGaGe₂O₇ в литературе имеются только данные о кристаллической структуре [1, 14] и оптических свойствах [14, 15], сведения о теплофизических свойствах отсутствуют. Диаграмма состояния системы Nd₂O₃-Ga₂O₃-GeO₂ не построена. Для термодинамического моделирования фазовых равновесий в этой системе требуются данные по термодинамическим свойствам образующихся соединений, которых к настоящему времени нет.

Цель настоящей работы — исследование высокотемпературной теплоемкости NdGaGe₂O₇ и определение его термодинамических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза соединения NdGaGe₂O₇ в качестве исходных компонентов использовали предварительно прокаленные на воздухе при T = 1173 K оксиды Nd₂O₃, Ga₂O₃ (ос. ч.) и GeO₂ (99.996%). Поликристаллические образцы германата галлиянеодима состава NdGaGe₂O₇ получали методом твердофазных реакций. Для этого стехиометрическую смесь исходных компонентов тшательно смешивали в агатовой ступке и прессовали без добавления связующего в таблетки. Обжиг приготовленных таблеток проводили в муфельной печи на воздухе при последовательном ступенчатом повышении температуры: 1273 (40 ч), 1373 (100 ч) и 1473 К (60 ч). С целью достижения полноты протекания твердофазной реакции спеченные таблетки через каждые 20 ч измельчали и снова прессовали. Поскольку относительно высокие температуры твердофазного синтеза могут приводить к испарению GeO2 и отклонению состава от стехиометрии [16], для обжига образцов использовали тигли с крышками. Время синтеза и дополнительное количество GeO2 подбирали экспериментально. Фазовый состав полученных образцов контро-

Рис. 1. Рентгенограмма NdGaGe₂O₇ при комнатной температуре: *1* – экспериментальный, *2* – расчетный, *3* – разностный профили рентгенограмм; штрихи указывают расчетные положение рефлексов.

лировали с помощью рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANalytical, Нидерланды, Cu K_{α} -излучение). Дифрактограмма подтвердила однофазность синтезированного образца NdGaGe₂O₇ (рис. 1). Параметры элементарной ячейки полученного германата галлия-неодима определены согласно [17].

Измерение теплоемкости $NdGaGe_2O_7$ проводили при помощи термоанализатора STA 449 C Jupiter (Netzsch, Германия), подробное описание методики экспериментов приведено в [18]. Ошибка экспериментов не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Параметры кристаллической решетки синтезированного германата NdGaGe₂O₇ (пр. гр. $P2_1/c$, Z = 4) приведены в табл. 1. Видно, что полученные нами значения a = 7.2240(1), b = 6.5913(1), c == 12.8507(2) Å удовлетворительно согласуются с данными других авторов. На рис. 2 показана связь между значениями ионного радиуса редкоземель-

Таблица 1. Параметры элементарной ячейки NdGaGe₂O₇ (пр. гр. $P2_1/c, Z=4$)

Параметр	Наши данные	[1]	[14]
<i>a</i> , Å	7.2240(10	7.208(1)	7.21(1)
<i>b</i> , Å	6.5913(1)	6.603(1)	6.58(1)
<i>c</i> , Å	12.8507(2)	12.823(1)	12.82(1)
β, град	117.394(1)	117.4(2)	117.4(2)
<i>V</i> , Å ³	543.28(1)	541.84	540.0
<i>d</i> , г/см ³	5.76	5.78	5.80

ных ионов $r_{R^{3+}}$ и параметрами элементарной ячейки германатов RGaGe₂O₇. Видно, что с ростом $r_{R^{3+}}$ значения *a*, *b* и *c* линейно увеличиваются и могут быть описаны линейными уравнениями:

$$a = (5.74 \pm 0.06) + (1.26 \pm 0.05) r_{R^{3+}}, \tag{1}$$

$$b = (5.74 \pm 0.04) + (0.723 \pm 0.04) r_{R^{3+}}, \qquad (2)$$

$$c = (10.94 \pm 0.14) + (1.631 \pm 0.13) r_{R^{3+}}.$$
 (3)

Коэффициенты корреляции для уравнений (1)– (3) равны соответственно 0.9948, 0.9920 и 0.9827. В то же время плотность этих соединений с ростом значений $r_{R^{3+}}$ закономерно уменьшается не по линейному закону и может быть описана соотношением:

$$d = (31.91 \pm 3.14) - (40.64 \pm 5.48)r_{R^{3+}} + (15.64 \pm 2.38)r_{P^{3+}}^{2}.$$
 (4)

Значения параметров элементарной ячейки $RGaGe_2O_7$ взяты из работы [14], а $r_{R^{3+}}$ (для координационного числа ионов РЗЭ, равного 9) — из [19]. Подобная корреляция между значениями $r_{R^{3+}}$ и параметрами элементарной ячейки была получена ранее для соединений $R_2Ge_2O_7$ [17].

Наличие зависимостей, описываемых уравнениями (1)–(3), позволяет оценить параметры элементарной ячейки соединения PmGaGe₂O₇, которое к настоящему времени еще не получено: a = 7.18, b = 6.57, c = 12.80 Å.

На рис. 3 приведена зависимость теплоемкости полученных поликристаллических образцов NdGaGe₂O₇ от температуры. Значения молярной теплоемкости C_p закономерно увеличиваются по мере роста температуры, а на графике зависимости $C_p = f(T)$ не наблюдается каких-либо заметных отклонений (аномалий или экстремумов) от плавной кривой. Характер полученной кривой теплоемкости свидетельствует о том, что в области температур 350–1000 К соединение NdGaGe₂O₇ не испытывает полиморфных превращений. Таким образом, полученные результаты могут быть описаны классическим уравнением Майера–Келли [20]:

$$C_p = a + bT - cT^{-2}, (5)$$

которое для NdGaGe₂O₇ имеет следующий вид:

$$C_p = (250.8 \pm 0.29) + (37.48 \pm 0.30) \times 10^{-3}T - - (47.39 \pm 0.33) \times 10^{5}T^{-2}.$$
 (6)

Коэффициент корреляции для уравнения (6) равен 0.9998, а максимальное отклонение экспериментальных точек от сглаживающей кривой – 0.29%.

Отсутствие в литературе сведений о теплоемкости $NdGaGe_2O_7$ не позволяет сравнить полу-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 5 2020

Рис. 2. Корреляция между значениями ионных радиусов редкоземельных ионов $r_{R^{3+}}$ и параметрами элементарной ячейки германатов RGaGe₂O₇: *a* (1), *b* (2), *c* (3), *d* (4).

ченные нами результаты с данными других авторов. Тем не менее можно оценить величину теплоемкости этого соединения, используя различные модельные представления. Установлено, что лучшее согласие с экспериментом наблюдается для значений C_p , рассчитанных методами Неймана–Коппа [21–23], Кумока [24] и Келлога [25]. Значения C_p при 298 К в этом случае равны соответственно 206.5, 212.8 и 214.3 Дж/(моль K), что отличается от экспериментальных на 0.02, 3.0 и 3.8% (полученное для NdGaGe₂O₇ экстраполяцией экспериментальных данных по уравнению (6) расчетное значение $C_{p298} = 206.55$ Дж/(моль K)).

На рис. 3 для сравнения приведены данные по теплоемкости $Nd_2Ge_2O_7$ ($C_{p298} = 243.1 \, \text{Дж/(моль K)}$), полученные нами ранее [17]. Видно, что замещение части неодима на галлий приводит к уменьшению молярной теплоемкости, что, возможно, связано с меньшей атомной массой галлия и структурными изменениями. Кроме того, для соединений неодима (как и для других парамагнитных соединений РЗЭ) следует также учитывать появление избыточной теплоемкости в широком температурном диапазоне (или аномального вклада Шоттки). Следует также отметить, что при 350 К значение C_p для NdGaGe₂O₇ сопоставимо с величинами теплоемкости сложных индийсодер-

<i>Т</i> , К	<i>С_р,</i> Дж/(моль К)	<i>Н</i> °(<i>T</i>) − <i>Н</i> °(350 К), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350 K), Дж/(моль K)	Ф°(<i>T</i>) – Ф°(350 К), Дж/(моль К)
350	222.8	_	_	_
400	233.4	11.42	30.48	1.93
450	241.1	23.29	58.44	6.68
500	247.1	35.51	84.17	13.16
550	251.9	47.99	107.9	20.71
600	256.0	60.69	130.1	28.91
650	259.4	73.57	150.7	37.50
700	262.5	86.62	170.0	46.28
750	265.3	99.82	188.2	55.14
800	267.8	113.1	205.4	64.00
850	270.2	126.6	221.7	72.81
900	272.4	140.2	237.2	81.51
950	274.5	153.8	252.0	90.10
1000	276.6	167.6	266.2	98.56

Таблица 2. Термодинамические свойства NdGaGe₂O₇

жащих германатов $DyInGe_2O_7$, $HoInGe_2O_7$ [26] и $Y_2Ge_2O_7$ [27].

По известным термодинамическим соотношениям с использованием уравнения (6) рассчитаны термодинамические функции (изменения энтальпии, энтропии и приведенной энергии Гиббса) оксидного соединения NdGaGe₂O₇, результаты приведены в табл. 2.

Рис. 3. Температурная зависимость молярной теплоемкости $Nd_2Ge_2O_7(1)$ и $NdGaGe_2O_7(2)$, точки – экспериментальные данные, линия – расчет по уравнению (6).

ЗАКЛЮЧЕНИЕ

Выполнен синтез поликристаллических образцов германата галлия-неодима состава NdGaGe₂O₇ ступенчатым обжигом на воздухе при 1273-1473 К стехиометрической смеси Nd₂O₃, Ga₂O₃ и GeO₂. Определены параметры кристаллической решетки синтезированного NdGaGe₂O₇ (пр. гр. $P2_1/c$, Z = 4): a = 7.2240(1), b = 6.5913(1), c = 12.8507(2) Å. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость полученных образцов. Показано, что в области 350-1000 К температурная зависимость С_п описывается уравнением Майера-Келли с отклонением экспериментальных точек от сглаживающей кривой, не превышающим 0.29%. На основании экспериментальных данных рассчитаны термодинамические свойства (изменения энтальпии, энтропии и приведенной энергии Гиббса) сложного оксида NdGaGe₂O₇.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Jarchow O., Klaska K.-H., Schenk-Strauβ H. // Z. Kristallogr. V. 172. P. 159.
- Милль Б.В., Казей З.А., Рейман С.И. и др. // Вестн. Моск. ун-та. Сер. 3. Физ., астрономия. 1987. Т. 28. № 4. С. 95.

- Bucio L., Cascales C., Alonso J.A. et al. // J. Phys.: Condens. Matter. 1996. V. 8, P. 2641.
- Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S. et al. // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1.
- Kaminskii A.A., Rhee H., Lux O. et al. // Laser. Phys. Lett. 2013. V. 19. P. 075803-1. https://doi.org/10.1088/1612-2011/10/7/0755803
- Denisova L. T., Kargin Yu. F, Irtyugo L. A. et al. // Inorg. Mater. 2018. V. 54. № 12. Р. 1245. [Денисова Л.Т., Каргин Ю.Ф., Иртюго Л.А. и др. // Неорган. материалы. 2018. Т. 54. № 12. С. 1315.] https://doi.org/10.1134/S0020168518120026
- Juarez-Arellano E.-A., Rosales I., Bucio L. et al. // Acta Crystallogr. 2002. V. C58. P. i135. https://doi.org/10.1107/S010827010201/3343
- Juarez-Arellano E.A., Rosales I., Oliver A. et al. // Acta Crystallogr. 2004. V. C60. P. i14. https://doi.org/10.1107/S0108270/03029056
- Bucio L., Cascales C., Alonso J.A. et al. // Mater. Sci. Forum Vols. 1996. P. 735. https://doi.org/10.4028/www.Scientific.net/MSF.228-231.735
- 10. *Cascales C., Gutierrez Puebla, Klimin S. et al.* // Chem. Mater. 1999. V. 11. № 9. P. 2520.
- 11. Baran E.J., Cascales C., Mercader R.C. // Spectrochim. Acta. 2000. V. A56. P. 1277.
- Juárez-Arellano E.A., Bucio L., Ruvalcaba J.L. et al. // Z. Kristallogr. 2002. V. 217. P. 201.
- Cascales C., Fernandez-Diaz M.T., Monge M.A. et al. // Chem. Mater. 2002. V. 14. P. 1995.
- 14. Kaminskii A.A., Mill B.V., Butashin A.V. et al. // Phys. Status Solidi A. 1987. V. 103. P. 575.
- Lozano G., Cascales C., Zaldo C., Porcher P. // J. Alloys Compd. 2000. V. 303–304. P. 349.
- Becker U.W., Felsche J. // J. Less-Common. Met. 1987. V. 128. P. 269.

 Denisova L.T., Irtyugo L.A., Beletskii V.V. et al. // Phys. Solid State. 2018. V. 60. № 3. Р. 626. [Денисова Л.Т., Иртюго Л.А., Белецкий В.В. и др. // ФТТ. 2018. Т. 60. № 3. С. 618.]

https://doi.org/10.1134/S1063783418030071

- Denisova L. T., Irtyugo L.A., Kargin Yu.F. // Inorg. Mater. 2017. V. 53. № 1. Р. 93. [Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71.] https://doi.org/10.1134/S0020168517010046
- Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751.
- 20. *Maier C.G., Kelley K.K.* // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3234.
- Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
- 22. Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). Екатеринбург; УрО РАН, 1997. 230 с.
- 23. *Морачевский А.Г., Сладков И.Б., Фирсова Е.Г.* Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
- Кумок В.Н. // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- 25. *Кубашевский О., Олкокк С.Б.* Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- Denisova L.T., Irtyugo L.A., Kargin Yu.F. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. Р. 1161. [Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2019. Т. 64. № 9. С. 980.] https://doi.org/10.1134/S0036023619090079
- 27. Denisova L.T., Irtyugo L.A., Kargin Yu.F. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. Р. 361. [Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2018. Т. 63. № 3. С. 338.] https://doi.org/10.1134/S003602361803004X