ТЕРМОДИНАМИКА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

УДК 536.631+544.31.031

НИЗКОТЕМПЕРАТУРНЫЕ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА *ТРИС*-ДИПИВАЛОИЛМЕТАНАТА КОБАЛЬТА

© 2020 г. И. С. Черняйкин^{*a*, *b*, *, М. А. Беспятов^{*a*}, С. И. Доровских^{*a*, *b*}, Т. М. Кузин^{*a*}, Н. В. Гельфонд^{*a*}, Н. Б. Морозова^{*a*}}

^а Институт неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия ^b Новосибирский государственный университет, ул. Пирогова, 2, Новосибирск, 630090 Россия *e-mail: cherny@niic.nsc.ru Поступила в редакцию 15.11.2019 г.

Поступила в редакцию 15.11.2019 г. После доработки 02.12.2019 г. Принята к публикации 24.12.2019 г.

Теплоемкость *трис*-дипивалоилметаната кобальта $Co(C_{11}H_{19}O_2)_3$ измерена адиабатическим методом в интервале температур 8.18–301.61 К. Анализ функциональной зависимости теплоемкости не выявил каких-либо тепловых аномалий в поведении. Термодинамические функции (энтропия, энтальпия и приведенная энергия Гиббса) рассчитаны с использованием полученных экспериментальных данных по теплоемкости в интервале температур 0–300 К. Значение абсолютной энтропии использовано для расчета энтропии образования $Co(C_{11}H_{19}O_2)_3$ при T = 298.15 К.

Ключевые слова: теплоемкость, калориметрия, термодинамические функции, β-дикетонаты кобальта **DOI:** 10.31857/S0044457X20050050

введение

Тонкие пленки оксида кобальта (Co_3O_4) являются перспективными функциональными материалами благодаря каталитическим [1], магнитным [2] и электрохромным [3] свойствам. В настоящее время они рассматриваются для изготовления устройств преобразования солнечной энергии [4], датчиков монооксида углерода [5, 6], электродов в литийионных аккумуляторах [7].

Одним из способов получения тонких пленок является химическое осаждение из паровой фазы (Chemical vapor deposition, **CVD**). Ключевой задачей для разработки эффективного и воспроизводимого процесса CVD является поиск молекулярных предшественников (прекурсоров) с четко определенными химико-физическими свойствами.

Трис-дипивалоилметанат кобальта является перспективным прекурсором для получения тонких пленок оксида кобальта методом CVD [8]. Этот комплекс обладает высокой летучестью и термической стабильностью газовой фазы [9, 10] в необходимом для CVD-технологий диапазоне температур. Однако многие другие важные термодинамические свойства этого комплекса, необходимые для оптимизации технологических CVD-процессов, все еще не изучены. В частности, отсутствуют данные о низкотемпературной теплоемкости для *mpuc*-дипивалоилметаната кобальта.

Эти данные позволяют определять такие важные фундаментальные свойства, как энтропия, энтальпия, приведенная энергия Гиббса, температура Дебая, характеристики фазовых переходов и др. [11–13]. На базе низкотемпературных данных возможен расчет теплоемкости во всей области существования твердой фазы [14].

Настоящая работа посвящена экспериментальному исследованию адиабатическим методом термодинамических свойств (теплоемкость, энтропия, энтальпия, приведенная энергия Гиббса) *трис*-дипивалоилметаната кобальта в интервале температур 8.18–301.61 К. Проведенные исследования выполнены впервые.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез *трис*-дипивалоилметаната кобальта $Co(C_{11}H_{19}O_2)_3$ проводили по методике [15]. В качестве исходных реагентов применяли $CoCl_2 \cdot 6H_2O$ (\geq 99.9%) и $C_{11}H_{20}O_2$ (\geq 99%); все химические вещества, использованные в синтезе, коммерчески доступны (табл. 1). После синтеза образец дополнительно очищали с помощью сублимации в вакуумной (p = 7 Па) градиентной печи при 413–423 К.

Вещество	Источник	Состояние	Массовая доля чистоты
$CoCl_2 \cdot 6H_2O$	Ltd "Component-reaktiv"	Твердый	≥0.999
$C_{11}H_{20}O_2$	Dalchem	Жидкий	≥0.99
NaOH	Ltd "Component-reaktiv"	Твердый	≥0.98
H_2O_2	Ltd "Component-reaktiv"	Жидкий	0.30 в воде
C ₂ H ₅ OH	Ltd "Component-reaktiv"	Жидкий	≥0.95
CHCl ₃	Ltd "Component-reaktiv"	Жидкий	≥0.9995
$Co(C_{11}H_{19}O_2)_3$	Синтезирован	Твердый	≥0.99

Таблица 1. Характеристика химических веществ, используемых в этом исследовании

Образец Со($C_{11}H_{19}O_2$)₃ при комнатной температуре представляет собой темно-зеленый кристаллический порошок с типичным размером кристаллитов ~0.2 мм. Температура плавления полученного образца, определенная на столике Кофлера, составляет 519 ± 1 К, что согласуется с данными, представленными в [16]. Химический анализ (Carlo-Erba-11008) очищенного соединения на С и Н показал, что его состав соответствует расчетному в пределах точности эксперимента (C, H – 0.2%):

	С	Н
Найдено, мас. %:	65.25;	9.41.
Для С ₃₃ Н ₅₇ О ₆ Со		
вычислено, мас. %:	65.05;	9.36.

По данным рентгенофазового анализа (дифрактометр Shimadzu XRD-7000, Cu K_{α} -излучение, Ni-фильтр, 2 θ = 5°–45°), соединение однофазно, и структура полученных кристаллов соответствует установленной в [10] для Co(C₁₁H₁₉O₂)₃: *Pnma*; *a* = 19.239 ± 0.001, *b* = 18.880 ± 0.001, *c* = = 10.781 ± 0.001 Å; $\alpha = \beta = \gamma = 90^{\circ}$.

Метод измерения теплоемкости. Теплоемкость образца была измерена адиабатическим методом на установке, подробно описанной в [17, 18]. Использовали разборный никелевый калориметр. Калориметрическую ампулу с образцом заполняли газообразным гелием (р = 1 кПа) для улучшения теплопередачи. Температуру калориметра измеряли эталонным платиновым термометром сопротивления ($R_{100}/R_0 = 1.3925$), изготовленным и проградуированным в ФГУП "ВНИИФ-ТРИ". Стандартная неопределенность температуры u(T) = 0.01 К. Разрешающая способность термометрической аппаратуры составляла $5 \times 10^{-5} \, {
m K}$ выше 50 К, уменьшаясь до 1.5×10^{-3} К при 11 К. Система адиабатического контроля обеспечивала температурную стабильность калориметрической ампулы в пределах 0.0001 град/мин. Измерения теплоемкости проводили импульсным методом нагрева. Перед проведением измерений теплоемкости образца проводили градуировку установки. Результаты градуировки по стандартному веществу (бензойной кислоте) показали хорошее согласие с данными [19]. Отклонение полученных данных по теплоемкости бензойной кислоты от стандартных значений [19] составило $\leq 1\%$ в интервале 5–20 К, $\leq 0.3\%$ в интервале 20–80 К и $\leq 0.15\%$ в интервале 80–300 К.

В калориметр было загружено 4.1161 г вещества. Молярная масса, использованная для представления теплоемкости, была вычислена на основании формулы $Co(C_{11}H_{19}O_{2})_3$ и составила 608.72 г/моль.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Теплоемкость Co(C₁₁H₁₉O₂)₃ была измерена адиабатическим методом в интервале температур от 8.18 до 301.61 К. Две серии измерений теплоемкости $C_{p,m}(T)$ представлены в хронологическом порядке в табл. 2. Серия 1 была выполнена после охлаждения образца от комнатной температуры до температуры кипения жидкого азота (~77.4 К), серия 2 – после охлаждения образца от комнатной температуры до температуры кипения жидкого гелия (~4.2 К). Обе серии измерений теплоемкости хорошо (в пределах неопределенности измерений) согласуются между собой. Анализ функционального поведения теплоемкости $C_{p, m}(T)$ (рис. 1) не выявил никаких тепловых аномалий. При температуре 301.61 К теплоемкость Co(C₁₁H₁₉O₂)₃ достигает лишь ~37% от предельного значения закона Дюлонга и Пти. указывая на тенденцию дальнейшего роста. Это свидетельствует о высокой граничной частоте и значительной плотности мод в высокочастотной области фононного спектра.

Для вычисления термодинамических функций (энтропии, энтальпии и приведенной энергии Гиббса) было проведено сглаживание экспериментальной теплоемкости с помощью метода Румшиского [20, 21]. В этом методе используется аппроксимация кривой сплайн-функциями. Каждая сплайн-функция третьего, четвертого или более высокого порядка аппроксимирует заранее выбранное количество точек k (k = 5, 6, 7 или более)

<i>Т</i> , К	<i>С_{р, m}</i> , Дж/(моль К)	Т, К	<i>С_{р, m}</i> , Дж/(моль К)	<i>Т</i> , К	<i>С_{р, m}</i> , Дж/(моль К)
Серия 1		198.02	642.4	11.48	27.94
79.49	288.1	202.39	653.1	13.51	37.84
83.35	302.5	206.72	663.3	15.03	45.39
87.25	316.8	211.00	673.4	16.45	52.20
91.83	333.5	215.22	683.7	17.82	58.71
96.78	351.5	219.40	693.4	19.53	66.53
101.46	368.2	223.89	704.0	21.68	76.30
105.93	383.6	228.69	715.1	24.58	88.26
110.72	400.2	233.43	726.1	28.30	103.4
115.83	417.4	238.12	737.0	32.42	119.1
120.75	433.1	242.77	748.3	36.77	134.8
125.50	447.8	247.37	759.2	41.62	151.7
130.23	462.1	251.92	770.2	46.33	168.3
134.96	476.2	256.43	781.3	50.56	183.4
139.57	489.8	260.89	792.0	54.72	198.1
144.07	502.8	265.64	804.1	59.41	215.1
148.47	515.2	270.66	816.1	64.39	233.1
152.78	527.3	275.62	828.8	69.56	251.8
157.01	538.6	280.54	841.3	74.95	271.7
161.17	549.5	285.65	854.2	79.83	289.5
165.67	561.6	290.91	867.2	84.33	306.3
170.50	574.0	296.11	880.7	88.54	321.7
175.26	586.1	301.61	894.3	92.52	336.1
179.93	598.2	Серия 2		96.78	351.3
184.54	609.9	8.18	13.27	101.26	367.1
189.09	621.0	8.82	16.00	105.56	382.6
193.58	631.9	9.97	20.91		

Таблица 2. Экспериментальные значения теплоемкости для кристаллического $Co(C_{11}H_{19}O_2)_3$ (M = 608.72 г/моль) при давлении p = 1 кПа

Рис. 1. Экспериментальная теплоемкость *трис*-дипивалоилметаната кобальта.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 5 2020

ЧЕРНЯЙКИН и др.

Таблица 3. Молярные термодинамические функции (теплоемкость $C_{p,m}^{\circ}$, энтропия $\Delta_0^T S_m^{\circ}$, энтальпия $\Delta_0^T H_m^{\circ}$, приведенная энергия Гиббса $\Phi_m^{\circ} = \Delta_0^T S_m^{\circ} - \Delta_0^T H_m^{\circ}/T$) для Со(С₁₁Н₁₉О₂)₃ при давлении p = 0.1 МПа; M = 608.72 г/моль

<i>Т</i> , К	$C_{p,m}^{\circ}, $ Дж/(моль К)	$\Delta_0^T S_m^\circ$, Дж/(моль К)	$\Delta_0^T H_m^{\circ}$, Дж/моль	Φ_m° , Дж/(моль К)
0	0	0	0	0
5	3.030	1.022	3.916	0.2392
10	21.16	7.853	58.69	1.984
15	45.20	20.88	223.6	5.977
20	68.71	37.15	509.1	11.69
30	109.9	73.01	1408	26.09
40	146.2	109.7	2690	42.41
50	181.3	146.1	4328	59.50
60	217.2	182.3	6320	76.95
70	253.5	218.5	8673	94.58
80	290.1	254.7	11390	112.3
90	326.9	291.0	14480	130.2
100	362.9	327.3	17930	148.1
110	397.8	363.5	21730	166.0
120	430.7	399.6	25870	184.0
130	461.4	435.3	30340	201.9
140	491.0	470.6	35100	219.9
150	519.5	505.4	40150	237.7
160	546.6	539.8	45480	255.6
170	572.7	573.7	51080	273.3
180	598.4	607.2	56940	290.9
190	623.2	640.2	63050	308.4
200	647.2	672.8	69400	325.8
210	671.1	705.0	75990	343.1
220	694.9	736.7	82820	360.3
230	718.1	768.1	89890	377.3
240	741.5	799.2	97180	394.3
250	765.6	830.0	104720	411.1
260	789.9	860.5	112 500	427.8
270	814.7	890.7	120520	444.4
280	839.9	920.8	128790	460.8
290	865.1	950.7	137320	477.2
298.15	885.7	975.0	144450	490.5
300	890.5	980.5	146090	493.5

в зависимости от степени кривизны сглаживаемой функции. При этом могут использоваться сплайн-функции с согласованием в точке сшивки первых производных для *i*- и (*i* + 1)-ой сплайнфункций. Графическое сглаживание использовалось на концах температурных диапазонов. Отклонение экспериментальных значений от сглаженной кривой $C_s(T)$ показано на рис. 2. Среднеквадратичные отклонения экспериментальных точек $C_{p,m}(T)$ от полученной сглаженной кривой

Рис. 2. Относительное отклонение ($\Delta C = C_{p, m}(T) - C_s(T)$) экспериментальных значений теплоемкости $C_{p, m}(T)$ от сглаженной кривой $C_s(T)$ для Co(C₁₁H₁₉O₂)₃.

Рис. 3. Теплоемкость в координатах $C_{p,m}(T)/T$ от T^2 для Co(C₁₁H₁₉O₂)₃ в диапазоне температур 0–30 К. Черные кружки – экспериментальные данные, пунктирная линия соответствует закону Дебая, сплошная линия – сглаженные значения теплоемкости.

C_s(*T*) составляют: 0.33% (8.18–20 K), 0.09% (20–80 K), 0.023% (80–301.61 K).

Значения энтропии $\Delta_0^T S_m^\circ$, энтальпии $\Delta_0^T H_m^\circ$ и

приведенной энергии Гиббса Φ_m° во всем рассматриваемом интервале температур получены численным интегрированием сглаженной зависимости теплоемкости $C_s(T)$ от температуры. При расчетах предполагалось, что ниже 8.18 К, где экспериментальные данные отсутствуют, теплоемкость образца не содержит аномальных вкладов и подчиняется предельному закону Дебая ($C \sim T^{3}$,

рис. 3). Значения термодинамических функций в интервале от 0 до 300 К представлены в табл. 3.

Энтропия образования $Co(C_{11}H_{19}O_2)_3$ была рассчитана с использованием значений абсолютной энтропии *трис*-дипивалоилметаната кобальта (данные этой работы), кобальта [22], углерода [23], водорода [24] и кислорода [24]. Значение энтропии образования $\Delta_p S(298.15, Co(C_{11}H_{19}O_2)_3) = -(3584 \pm 4) \, \text{Дж/(моль K)}.$

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИНХ СО РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Pollard M.J., Weinstock B.A., Bitterwolf T.E. et al. // J. Catal. 2008. V. 254. P. 218. https://doi.org/10.1016/j.jcat.2008.01.001
- Ikedo Y., Sugiyama J., Nozaki H. et al. // Phys. Rev. B: Condens. Matter 2007. V. 75. P. 054424. https://doi.org/10.1103/physrevb.75.054424
- Kadam L.D., Patil P.S. // Sol. Energy Mater. Sol. Cells. 2001. V. 70. P. 15. https://doi.org/10.1016/S0927-0248(00)00404-9
- Moon J., Kim T.K., VanSaders B. et al. // Sol. Energy Mater. Sol. Cells 2015. V. 134. P. 417.
- Nam H.-J., Sasaki T., Koshizaki N. // J. Phys. Chem. B. 2006. V. 110. P. 23081. https://doi.org/10.1021/jp063484f
- Vladimirova S., Krivetskiy V., Rumyantseva M. et al. // Sensors. 2017. V. 17. P. 2216. https://doi.org/10.3390/S17102216
- Patil A., Patil V., Shin D.W. et al. // Mater. Res. Bull. 2008. V. 43. P. 1913. https://doi.org/10.1016/J.materresbull.2007.08.031
- Alemaa F., Osinskya A., Mukhopadhyay P. et al. // J. Cryst. Growth. 2019. V. 525. P. 125207. https://doi.org/10.1016/j.jcrysgro.2019.125207
- Fahlman B.D., Barron A.R. // Adv. Mater. Opt. Electron. 2000. V. 10. P. 223. https://doi.org/10.1002/1099-0712(200005/10)10:3/5% 3c223::aid-amo411%3e3.0.co;2-m
- Ahmed M.A.K., Fjellva H., Kjekshus A. et al. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 247. https://doi.org/10.1002/zaac.200700462
- Bissengaliyeva M.R., Gogol D.B., Bekturganov N.S. et al. // J. Chem. Eng. Data. 2011. V. 56. № 5. P. 1941.
- Tyurin A.V., Khoroshilov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 12. P. 1599. https://doi.org/10.1134/S0036023618120215
- Guskov V.N., Sazonov E.G., Tyurin A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1041. https://doi.org/10.1134/S0036023619080059

- 14. Musikhin A.E., Naumov V.N., Bespyatov M.A. et al. // Thermochim. Acta. 2018. V. 670. P. 107.
- Bryant B.E., Fernelius W.C. // Inorg. Synth. 1957. V. 5. P. 188.
- 16. *Lee H., Lee C.H., Oh I.S. et al.* // Bull. Korean Chem. Soc. 2010. V. 31. № 4. P. 891.
- 17. Drebushchak V.A., Naumov V.N., Nogteva V.V. et al. // Thermochim. Acta. 2000. V. 348. P. 33.
- Bespyatov M.A., Kuzin T.M., Naumov V.N. et al. // J. Therm. Anal. Calorim. 2016. V. 123. P. 899.
- Rybkin N.P., Orlova M.P., Baranyuk A.K. et al. // Meas. Tech. 1974. V. 17. P. 1021.

- 20. *Румшиский Л.3.* Математическая обработка результатов эксперимента. Справочное руководство. М.: Наука, 1971.
- Bespyatov M.A., Musikhin A.E., Naumov V.N. et al. // J. Chem. Thermodyn. 2018. V. 118. P. 21.
- 22. *Chase M.W.Jr.* // J. Phys. Chem. Ref. Data 1998. Monograph. 9. V. 1. P. 1951.
- 23. *DeSorbo W., Tyler W.W.* // J. Chem. Phys. 1953. V. 21. P. 1660.
- 24. Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key Values for Thermodynamics. N.Y.: Hemisphere Publishing Corp., 1984.