ТЕРМОДИНАМИКА НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

УДК 536.631+544.31

ВЛИЯНИЕ ГАБИТУСА ЧАСТИЦ НА ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ EuPO₄ В ОБЛАСТИ ТЕМПЕРАТУР 7–1600 К

© 2020 г. К. И. Брюханова^{*a*, *}, Г. Е. Никифорова^{*a*}, А. В. Тюрин^{*a*}, О. Н. Кондратьева^{*a*}, К. С. Гавричев^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: bryuhanova@igic.ras.ru Поступила в редакцию 19.11.2019 г. После доработки 04.12.2019 г. Принята к публикации 24.12.2019 г.

Изучено влияние морфологии частиц на термодинамические свойства ортофосфата европия. Образец EuPO₄, не содержащий адсорбированных примесей и воды, с хорошо ограненными частицами в виде вискеров длиной до 6 мкм и диаметром 0.15-0.30 мкм получен гидротермальным методом синтеза. Теплоемкость вискеров EuPO₄ исследована в интервале температур 7.12–1319.3 К. Термодинамические функции рассчитаны во всем температурном диапазоне. На основании полученных данных определено влияние габитуса частиц на соотношение энтальпийного и энтропийного факторов и их вклад в свободную энергию ортофосфата европия. Оценен аномальный вклад в теплоемкость вискеров EuPO₄ в температурном диапазоне 0-900 К.

Ключевые слова: термодинамика, калориметрия, гидротермальный синтез, размерный фактор, ортофосфат европия

DOI: 10.31857/S0044457X20050037

ВВЕДЕНИЕ

В настоящее время большое количество исследований посвящено изучению свойств неорганических материалов в зависимости от размера, габитуса, морфологии частиц, а также от качества и состава поверхности вешества [1-7]. Уменьшение размера частиц по одному, двум или трем направлениям может привести к радикальному изменению характеристик материалов. Например, каталитические, оптические и термодинамические свойства металлов [6, 8, 9] или полупроводников [4, 10, 11] меняются при уменьшении кристаллитов по трем направлениям до нанометрового диапазона (0D-частицы). Изменение размера частиц по двум направлениям приводит к образованию удлиненных частиц (1D-частицы: whisker, wire, belt, rod) и позволяет варьировать, в частности, электронные [12], оптические [1, 13], механические [14] и другие свойства материалов [15, 16].

Ортофосфаты редкоземельных элементов (**P39**), выбранные в качестве объектов исследования, обладают рядом свойств, которые обеспечивают их применение в различных областях науки и техники [17]. Термо-, химическая и радиационная устойчивость ортофосфатов LnPO₄ [18, 19] позволяет использовать их в качестве люминофоров [20, 21], в производстве лазерных материалов, катализаторов [22, 23] и теплозащитных покрытий [24], а также как матрицы для захоронения радиоактивных отходов [25]. Европий заметно отличается от других элементов в ряду лантаноидов. Особенности его электронной конфигурации [Xe] $6s^{2}4f^{7}$ и внутрицентровых f-f-переходов позволяют использовать европий в качестве флуоресцентных маркеров в биологических системах, а также в качестве примеси-активатора в решетке других соединений с целью повышения эффективности переноса энергии и изменения спектральных характеристик матрицы "хозяина" [20, 25, 26]. Кроме того, электронные конфигурации европия Eu и америция Am $[Rn]7s^{2}5f^{7}$, как одного из основных компонентов радиоактивных отходов [27], идентичны, а равенство ионных радиусов Еи и Ат способствует взаимозаменяемости данных элементов в минералоподобных матрицах структурного типа монацит [28, 29].

Данное исследование направлено на выявление зависимости термодинамических характеристик ортофосфата европия от габитуса частиц, в которых соотношение размера по одному из направлений превышает два других на несколько порядков. Такой анализ полезен для определения термодинамической стабильности и механической целостности соединения в ряде научных и технологических процессов.

Рис. 1. Дифрактограмма (а) и кривые нагревания ДСК-ТГ (б) ортофосфата европия с призматическими частицами (*w*EuPO₄).

Для сравнения свойств использовали ранее изученный ортофосфат европия со сферическими частицами (далее sEuPO₄) [30]. Настоящая работа дополнена анализом размера частиц образца и особенностей их поверхности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и исследование образца

Ортофосфат европия с частицами в виде вискеров (wEuPO₄) получен гидротермальным методом при 200°С в течение 55 ч (pH 1, Ln : P = 1 : 1). Данная методика подробно изложена для LnPO₄ (Ln = La, Pr, Nd, Sm) в работе [31].

Фазовый состав и степень закристаллизованности анализировали с помощью дифрактометра Bruker Advance D8 (Cu K_{α} , $\lambda_{cp} = 1.5418$ Å, геометрия на отражение, $2\theta = 10^{\circ}-60^{\circ}$, шаг 0.02°). Все рефлексы на дифрактограмме относятся к ортофосфату европия со структурой монацита и согласуются с базой данных ICDD PDF-2 (карточка JCPDS 84-0919), общая формула EuPO₄ (пр. гр. $P2_1/c$). Высокое разрешение всех отражений на рентгенограмме позволяет судить о высокой степени кристалличности образца (рис. 1а). Параметры элементарной ячейки определены с помощью программы TOPAS 4.2.

Отсутствие сорбированных примесей и воды, а также термическую устойчивость wEuPO₄ вплоть до 1500°С (1773 К) подтверждали методом диффе-

ренциальной сканирующей калориметрии (ДСК) и с помощью термогравиметрического (ТГ) анализа (термовесы с чувствительностью 0.025 мкг) на установке синхронного анализа STA 449F1 Jupiter фирмы Netzsch (рис. 16). В исследованном диапазоне температур на кривых ДСК и ТГ не наблюдается тепловых эффектов и потери массы соответственно. Отсутствие воды в объектах исследования является важным критерием при измерении теплоемкости соединений, поскольку, ранее (при исследовании свойств наночастиц) было показано, что сорбированная на поверхности вода оказывает существенное влияние на величины теплоемкости [2, 32].

Морфологию поверхности, размер частиц и элементный состав оценивали с помощью растрового электронного микроскопа Carl Zeiss NVision 40 (U = 1 kB), оснащенного рентгеноспектральным детектором Oxford X-Max (U = 20 кB). Оба образца содержат хорошо ограненные и закристаллизованные частицы (рис. 2). Образец sEuPO₄ содержит спеченные агломераты сферических частиц диаметром 0.4-0.6 мкм. Синтезированный в данной работе образец wEuPO₄ содержит вытянутые призматические частицы (вискеры) диаметром 0.15-0.30 мкм и длиной до 6 мкм. Соотношение средней длины вискера к среднему диаметру L/D = 22. Фактическое содержание элементов (Еи, РиО) в вискерах определено по соотношению:

Рис. 2. Микрофотографии ортофосфата европия с призматическими (а, в) и сферическими (б, г) частицами.

Рис. 3. Рентгеноспектральной элементный анализ wEuPO₄.

$$\frac{\chi(\Im)}{\chi(Eu) + \chi(P) + \chi(O)} \times 100\%,$$
 (1)

где $\chi(\Im)$ — содержание элемента (ат. %), определенное по данным рентгеноспектрального микроанализа. Номинальное содержание было определено аналогичным образом согласно формуле соединения. Данные анализа показали, что элементный состав синтезированного ортофосфата европия соответствует формуле EuPO₄ (рис. 3).

В табл. 1 приведены результаты расчета кристаллографических параметров и оценка размера частиц согласно микрофотографиям РЭМ для обоих образцов.

Измерение теплоемкости

Низкотемпературные зависимости теплоемкости $C_p(T)$ для wEuPO₄ получены с помощью теплофизической установки БКТ-3 ("Термис",

Таблица 1. Параметры элементарной ячейки и оценка размера частиц для ортофосфата европия с призматическими (wEuPO₄) и сферическими (sEuPO₄) частицами

Параметр	wEuPO ₄	sEuPO ₄
<i>a</i> , Å	6.668 ± 0.004	6.647 ± 0.006
b, Å	6.866 ± 0.003	6.867 ± 0.006
c, Å	6.351 ± 0.004	6.337 ± 0.004
β, град	103.97 ± 0.05	103.66 ± 0.06
$V, Å^3$	282.2 ± 0.3	281.1 ± 0.1
<i>D</i> , мкм	0.15-0.30	0.4-0.6
<i>L</i> , мкм	До б	_
L/D	~22	—

Россия). Конструкция установки и методика измерений подробно описаны в [33]. Погрешность измерений теплоемкости стандартов составила $\pm 2\%$ при T < 15 K, $\pm 0.5\%$ при 15 K < T < 40 K и $\pm 0.2\%$ от 40 до 340 K.

Высокотемпературная зависимость теплоемкости $C_p(T)$ для wEuPO₄ получена на установке синхронного анализа STA 449F1 Jupiter (Netzsch), скорость нагрева 20 град./мин. Согласно калибровке прибора погрешность эксперимента не превышала 2.7%. Особенности съемки можно найти в работе [34].

Рис. 4. Теплоемкость ортофосфата европия с призматическими (*1*) и сферическими (*2*) частицами [30] в интервале температур 0–1600 К; разность между $C_p(w)$ и $C_p(s)$ (*3*).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Теплоемкость и термодинамические характеристики $sEuPO_4$, опубликованные ранее в работе [30], использованы в этом исследовании в качестве данных для сравнительного анализа.

Температурная зависимость теплоемкости $wEuPO_4$, полученная методом адиабатической калориметрии, определена в области 7.12–345.65 К в 121-й точке (табл. 2). Для сглаживания низкотемпературной зависимости $C_p(T)$ использовали уравнение, представляющее линейную комбинацию ортонормированных полиномов (2):

$$C_p = \sum_{0}^{m} A_j U^j$$
, где $U = 1 - e^{-0.001T}$. (2)

Значения коэффициентов полинома A_j представлены в табл. 3.

Экспериментальные зависимости $C_p(T)$ wEuPO₄, определенные методом ДСК в области температур 304.3–1319.3 К в 182 точках, могут быть описаны с помощью уравнения Майера–Келли (3):

$$C_{p} (w \text{EuPO}_{4}) = 136.7114935 + + 0.03004466T - 2.63451298 \times 10^{6} T^{-2},$$
(3)

где C_p , Дж/(моль K), *T*, K. Коэффициент корреляции для уравнения (3) равен $R^2 = 0.99998$.

На сглаженной кривой температурной зависимости теплоемкости wEuPO₄ в изученном интервале не наблюдается выраженных аномалий, а значения C_p закономерно увеличиваются с ростом температуры (рис. 4). Следует отметить увеличение полученных значений $C_p(T)$ wEuPO₄ по сравнению с данными [30] начиная от 280 K, разница при этом достигает 3 Дж/(моль K) (~3%) при комнатной температуре и увеличивается до 15 Дж/(моль K) (~10%) при 1600 K.

Стыковка низко- и высокотемпературной ветвей теплоемкости была проведена на участке 290—320 К. Значения производных теплоемкостей на этом участке оказались равны при 310 К с разницей 0.00021, поэтому эта температура была выбрана в качестве точки стыка.

В изученном интервале температур на основании полученных данных по теплоемкости были рассчитаны термодинамические функции для $wEuPO_4$: энтропия $S^{\circ}(T)$, приращение энтальпии $\Delta H^{\circ}(T)$ и энергия Гиббса $\Delta G^{\circ}(T)$. Стандартные термодинамические функции при T = 298.15 К для обоих образцов приведены в табл. 4. Влияние габитуса частиц на термодинамические характеристики ортофосфата европия представлено на рис. 5. Отмечено, что энтропия и приращение энтальпии wEuPO₄ растут более интенсивно с повышением температуры. Разница энтропийного вклада достигает 22.2 кДж/моль, а энтальпийного — 10.7 кДж/моль при 1600 К. Преоблада

N⁰	<i>Т</i> , К	C_p	N⁰	<i>Т</i> , К	C_p	N⁰	<i>Т</i> , К	C_p
1	7.12	0.05798	42	55.66	20.83	83	155.14	75.12
2	7.61	0.1309	43	57.29	21.84	84	158.45	76.50
3	8.24	0.1811	44	58.93	22.87	85	161.76	77.76
4	8.89	0.2050	45	60.56	23.96	86	165.08	79.06
5	9.55	0.1756	46	62.20	25.15	87	168.39	80.25
6	10.22	0.1970	47	63.85	26.30	88	171.71	81.46
7	10.91	0.2628	48	65.49	27.52	89	175.02	82.56
8	11.61	0.3138	49	67.14	28.51	90	178.34	83.63
9	12.31	0.4605	50	68.79	29.57	91	181.66	84.65
10	13.03	0.6100	51	70.44	30.62	92	184.97	85.65
11	13.77	0.6414	52	72.32	31.93	93	188.28	86.55
12	14.52	0.7032	53	74.38	33.39	94	191.60	87.52
13	15.27	0.8478	54	76.44	35.03	95	194.91	88.42
14	16.09	1.0574	55	78.50	36.65	96	198.22	89.33
15	16.86	1.271	56	80.57	38.11	97	201.53	90.12
16	17.63	1.490	57	82.64	39.29	98	205.24	91.35
17	18.41	1.745	58	84.71	40.12	99	209.36	92.27
18	19.19	1.967	59	86.79	41.88	100	213.48	93.95
19	19.98	2.238	60	88.86	43.77	101	217.59	95.05
20	21.28	2.773	61	90.93	44.87	102	250.36	104.4
21	22.73	3.263	62	93.01	45.98	103	254.43	105.6
22	24.20	3.830	63	93.52	46.72	104	258.49	106.5
23	25.68	4.141	64	95.58	47.77	105	262.54	107.6
24	27.18	4.839	65	97.64	48.91	106	266.58	108.4
25	28.69	5.613	66	99.70	50.01	107	270.61	109.4
26	30.21	6.463	67	102.37	51.35	108	274.63	110.3
27	31.74	7.339	68	105.65	52.66	109	278.64	111.2
28	33.28	8.200	69	108.93	54.35	110	282.63	112.2
29	34.84	8.756	70	112.21	55.96	111	286.62	113.0
30	36.40	9.750	71	115.50	57.60	112	290.59	113.9
31	37.97	10.68	72	118.79	59.20	113	294.55	114.7
32	39.54	11.44	73	122.08	60.68	114	298.49	115.4
33	41.12	12.32	74	125.37	62.13	115	302.94	116.6
34	42.71	13.10	75	128.69	63.65	116	309.31	118.6
35	44.31	14.00	76	131.99	65.13	117	316.66	119.8
36	45.94	14.92	77	135.29	66.60	118	323.96	121.1
37	47.55	15.91	78	138.59	68.05	119	331.21	122.2
38	49.16	16.92	79	141.90	69.47	120	338.42	123.6
39	50.78	17.90	80	145.21	70.99	121	345.65	125.4
40	52.41	18.91	81	148.52	72.38			
41	54.03	19.83	82	151.83	73.73			

2020

Таблица 2. Экспериментальные значения теплоемкости C_p [Дж/(моль K)] wEuPO₄ в интервале температур 7.12–345.65 К

Таблица 3. Коэффициенты A_i уравнения (2)

j	<i>А</i> _{<i>j</i>} , Дж/(К моль)
0	1.49
1	-311.625
2	20985.84
3	-199763.86
4	902972.8
5	-1999487
6	1740280
σ^2	0.122860

Таблица 4. Стандартные термодинамические функции EuPO₄ с призматическими (wEuPO₄) и сферическими (sEuPO₄) [30] частицами при 298.15 К

Образец	<i>С</i> _{<i>p</i>} °, Дж/(К моль)	<i>S</i> °, Дж∕(К моль)*	$\Delta H^{\circ},$ кДж/моль
wEuPO ₄	115.72 ± 0.18	125.22 ± 0.79	19.34 ± 0.10
sEuPO ₄	113.05 ± 0.14	122.82 ± 0.67	19.10 ± 0.09

* Энтропия магнитного фазового перехода ниже 2 K, равная 5.76 Дж/(моль K) ($S_{tr} = R \ln 2$), учтена в расчете.

ние энтропийного фактора при расчете энергии Гиббса увеличивает термодинамическую стабильность wEuPO₄. Однако, как было отмечено в [34], можно говорить лишь об относительной стабильности вискеров, так как при высоких температурах будут преобладать кинетические и диффузионные процессы.

Рис. 5. Термодинамические функции $TS^{\circ}(T)$, $\Delta H^{\circ}(T)$, $\Delta G^{\circ}(T)$ [кДж/моль] для wEuPO₄ (1) и sEuPO₄ (2) [30].

Аномальный вклад в теплоемкость был оценен

как разность $C_p^{\circ}(T)$ EuPO₄ и решеточной теплоемкости этого соединения:

$$C_{an} = C_p - C_{lat},\tag{4}$$

где C_p и C_{lat} – измеренная и решеточная теплоемкость вещества соответственно.

Для диамагнитных ортофосфатов лантана (4 f^0) и лютеция (4 f^{14}) эта аномалия отсутствует, а для гадолиния (4 f^7) реализуется только при очень низких температурах (ниже 10 K), поэтому их теплоемкость может быть использована для оценки C_{lal} . Решеточная теплоемкость была рассчитана по формуле Веструма [35] как линейная комбинация теплоемкостей изоструктурных соединений LaPO₄ [36] и GdPO₄ [37]:

$$C_{lat} (\text{EuPO}_4) = f C_p (\text{GdPO}_4) + + (1 - f) C_p (\text{LaPO}_4),$$
(5)

где f — коэффициент пропорциональности, рассчитанный исходя из объемов элементарных ячеек вышеупомянутых ортофосфатов ($V(LaPO_4) =$ = 305.9 Å³; $V(EuPO_4) = 281.1$ Å³; $V(GdPO_4) =$ = 279.2 Å³):

$$f = \frac{V(\text{EuPO}_4) - V(\text{LaPO}_4)}{V(\text{GdPO}_4) - V(\text{LaPO}_4)} = 0.92884.$$
(6)

Полученные таким образом зависимости $C_{an}(T)$ для wEuPO₄ и sEuPO₄ [30] в интервале температур 0–900 К представлены на рис. 6. Для сравнения на рисунке приведены данные работы [38], полученные из высокотемпературных измерений приращения энтальпии (эксп) и рассчитанные исходя из расщепления энергетических f-подуровней Eu³⁺ (теор). Видно, что до ~200 К температурные зависимости аномальной теплоемкости очень близки, а при более высоких температура наблюдается пологий максимум, температура и амплитуда которого для wEuPO₄ и sEuPO₄ существенно отличаются: 321 К, 10.9 Дж/(К моль), и 386 К, 15.5 Дж/(К моль) соответственно. Зависимость для sEuPO₄ находится в удовлетворительном согласии с аналогичными литературными зависимостями [38]. Известно, что образцы, полученные в работе [38] золь-гель методом с последующим отжигом, содержат сферические частицы, как образец sEuPO₄ и полученные аналогичным образом изоструктурные соединения LnPO₄ [31].

ЗАКЛЮЧЕНИЕ

Подобрана методика гидротермального синтеза для получения ортофосфата европия с вытянутыми призматическими частицами (вискерами). Подтверждены фазовый и элементный состав полученного соединения, а также отсутствие адсор-

Рис. 6. Аномальный вклад в теплоемкость EuPO₄: с призматическими (wEuPO₄), сферическими (sEuPO₄) [30] частицами и определенный в работе [38].

бированных примесей и воды. Изучение образца с помощью адиабатической и дифференциальной сканирующей калориметрии показало, что соединение wEuPO₄ не имеет фазовых превращений в диапазоне температур 7.12–1319.3 К. Рассчитаны термодинамические функции в изученном интервале температур. Оценено влияние габитуса частиц на теплоемкость и термодинамические функции ортофосфата европия. Показано, что $C_p(T)$ wEuPO₄ увеличивается по сравнению с $C_p(T)$ sEuPO₄ начиная с 280 К, разница достигает 10%.

Результаты данной работы помогут исследователям оценить различные вклады в теплоемкость, а также значительно расширить термодинамические исследования по изучению влияние габитуса частиц на свойства материалов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований с использованием оборудования ЦКП ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 5 2020

СПИСОК ЛИТЕРАТУРЫ

- Acevedo-Pena P., Gonzalez I. // Procedia Chem. 2014.
 V. 12. P. 34. https://doi.org/10.1016/i.proche.2014.12.038
- 2. Spencer E.C., Ross N.L., Parker S.F. et al. // J. Phys. Chem. 2011. V. 115. P. 21105.
 - https://doi.org/org/10.1021/jp202518p
- Zhang H., Zhu D., Grasso S. et al. // Ceram. Int. 2018. V. 44. P. 14967. https://doi.org/10.1016/j.ceramint.2018.05.072
- 4. *Alivisatos A.P.* // Sci. 1996. V. 271. № 5251. P. 933. https://doi.org/10.1126/science.271.5251.933
- Chen R., Jia W., Wang Yu. et al. // Mater. Lett. 2019. V. 243. P. 66. https://doi.org/10.1016/j.matlet.2019.02.018
- 6. *Kim E.-H., Lee B.-J.* // Met. Mater. Int. 2009. V. 15. P. 531. https://doi.org/10.1007/s12540-009-0531-8
- Arinicheva Y., Clavier N., Neumeier S. et al. // J. Eur. Ceram. Soc. 2018. V. 38. P. 227. https://doi.org/10.1016/j.jeurceramsoc.2017.08.008
- Bell A.T. // Sci. 2003. V. 299. P. 1688. https://doi.org/10.1126/science.1083671
- 9. Sun J., Simon S.L. // Thermodyn. Acta. 2007. V. 463. P. 32.
 - https://doi.org/10.1016/j.tca.2007.07.007
- Shenoi R.V., Attaluri R.S., Siroya A. et al. // J. Vac. Sci. Technol. B. 2008. V. 26. № 3. P. 1136. https://doi.org/10.1116/1.2835063
- Gusev A.I., Sadovnikov S.I. // Thermodyn. Acta. 2018. V. 660. P. 1. https://doi.org/org/10.1016/j.tca.2017.12.013
- Yu L., Song H., Liu Zh. et al. // J. Phys. Chem. B. 2005.
 V. 109. P. 11450. https://doi.org/10.1021/jp045238e
- 13. *Yu L., Li D., Yue M. et al.* // Chem. Phys. 2006. V. 326. P. 478. https://doi.org/10.2478/s11696-010-0088-5
- 14. Gupta M., Dhawan P.K. Verma S.K. et al. // J. Acoustics. 2015. V. 5. P. 218. https://doi.org/10.4236/oja.2015.54017
- Rajesh K., Shajesh P., Seidel O. et al. // Adv. Funct. Mater. 2007. V. 17. P. 1682. https://doi.org/10.1002/adfm.200600794
- Zhang X.Y., Dai J.Y., Ong H.C. // J. Phys. Chem. 2011.
 V. 1. P. 6. https://doi.org/10.4236/ojpc.2011.11002
- Clavier N., Podor R., Dacheux N. // J. Eur. Ceram. Soc. 2011. V. 21. P. 941. https://doi.org/10.1016/j.jeurceramsoc.2010.12.019
- Firsching F.H., Brune S.N. // J. Chem. Eng. Data. 1991.
 V. 36. № 1. P. 93. https://doi.org/10.1021/je00001a028
- Hikichi Y., Nomura T. // J. Am. Ceram. Soc. 1987. V. 70. № 10. P. C252. https://doi.org/10.1111/j.1151-2916.1987.tb04890.x
- 20. Ruan Y., Xiao Q., Luo W. // Nanotechnol. 2011. V. 22. P. 275701. https://doi.org/10.1088/0957-4484/22/27/275701
- 21. Yang M., You H., Liu K. et al. // Inorg. Chem. 2010. V. 49. P. 4996. https://doi.org/10.1021/ic100099w

- 22. Onoda H., Nariai H., Moriwaki A. et al. // J. Mater. Chem. 2002. V. 12. P. 1754. https://doi.org/10.1039/b110121h
- 23. Nguyen T.T.N., Mauge V., Belliere-Baca V. et al. // Appl. Catal. A. 2015. V. 504. P. 4. https://doi.org/10.1016/j.apcata.2014.12.026
- 24. *Sudre O.H., Marshall D.B., Morgan P.E.D.* Monazitebased thermal barrier coatings, United States Patent (US 6,863,999 B1).
- Wang X., Teng Yu., Huang Y. et al. // J. Nucl. Mater. 2014. V. 451. P. 147. https://doi.org/10.1016/j.jnucmat.2014.03.049
- Di W., Ren X., Shirahata N. et al. // Cryst. Eng. Comm. 2011. V. 13. P. 5226. https://doi.org/10.1039/c1ce05473b
- Oelkers E.H., Montel J.-M. // Elements. 2008. V. 4. P. 113. https://doi.org/10.2113/gselements.4.2.113
- Romanchuk A. Yu., Gracheva N.N., Bryukhanova K.I. et al. // Mendeleev Commun. 2018. V. 28. P. 303. https://doi.org/10.1016/j.mencom.2018.05.025
- 29. *Shannon R.D.* // Acta Crystallogr. 1976. V. A32. P. 751. https://doi.org/10.1107/S0567739476001551
- 30. *Gavrichev K.S., Ryumin M.A., Tyurin A.V. et al.* // Chem. Thermodyn. Thermochem. 2009. V. 83. № 6. P. 1032. https://doi.org/10.1134/S0036024409060053

- 31. Bryukhanova K.I., Nikiforova G.E., Gavrichev K.S. // Nanosystems: Phys., Chem., Math. 2016. V. 7. № 3. P. 451. https://doi.org/10.17586/22208054201673451458
- Shi Q., Boerio-Goates J., Woodfield K. et al. // J. Phys. Chem. 2012. V. 2012. P. 3910. https://doi.org/10.1021/jp2088862
- Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623. https://doi.org/10.1006/jcht.1996.0173
- 34. Bryukhanova K.I., Nikiforova G.E., Khoroshilov A.V. et al. // J. Chem. Thermodyn. 2018. V. 120. P. 79. https://doi.org/10.1016/j.jct.2018.01.012
- Westrum Jr. E.F., Lecture R. // J. Chem. Thermodyn. 1983. V. 15. P. 305. https://doi.org/10.1016/0021-9614(83)90060-5
- Gavrichev K.S., Ryumin M.A., Tyurin A.V. et al. // Thermochim. Acta. 2008. V. 474. P. 47. https://doi.org/10.1016/j.tca.2008.05.004
- Gurevich V.M., Ryumin M.A., Tyurin A.V. et al. // Geochem. Itnern. 2012. V. 50. № 8. P. 702. https://doi.org/10.1134/S0016702912060031
- Popa K., Konings R.J.M. // Thermochim. Acta. 2006. V. 445. P. 49. https://doi.org/10.1016/j.tca.2006.03.023