ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.015.3

ТВЕРДЫЙ РАСТВОР СО СТРУКТУРОЙ α -NaFeO₂ В СИСТЕМЕ Li_{1+y}CoO₂-Li_{1+y}MnO₂-Li_{1+y}NiO₂-Li_{1+y}FeO₂

© 2020 г. Г. Д. Нипан^{*a*}, М. Н. Смирнова^{*a*, *}, Д. Ю. Корнилов^{*b*}, М. А. Копьева^{*a*}, Г. Е. Никифорова^{*a*}, Н. П. Симоненко^{*a*}, С. П. Губин^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bООО "АкКо Лаб", ул. Гиляровского, 65/1, Москва, 129110 Россия

> *e-mail: smirnova_macha 1989@mail.ru Поступила в редакцию 21.10.2019 г. После доработки 21.11.2019 г. Принята к публикации 27.11.2019 г.

Методом рентгенофазового анализа (РФА) исследованы образцы номинальных составов Li_{1.1}Mn_{1-x}(Ni_{0.33}Co_{0.33}Fe_{0.33})_xO₂ (0 $\leq x \leq$ 1), синтезированные методом сжигания геля с крахмалом. Получен гомогенный образец состава Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O₂ со структурой α -NaFeO₂. По данным РФА оценена протяженность твердого раствора со структурой α -NaFeO₂ вдоль концентрационных медиан изобарно-изотермического тетраэдра Li_{1+y}NiO₂-Li_{1+y}MnO₂-Li_{1+y}CoO₂-Li_{1+y}FeO₂. Выявлена непрерывность твердого раствора Li(Ni,Mn,Co,Fe)O₂ для коноды Li_{1+y}CoO₂-Li_{1+y}Ni_{0.33}Mn_{0.33}Fe_{0.33}O₂, ограниченность для коноды Li_{1+y}NiO₂-Li_{1+y}Mn_{0.33}Co_{0.33}Fe_{0.33}O₂ и узкий интервал гомогенности для коноды Li_{1+y}NiO₂-Li_{1+y}NiO_{2.33}Go_{0.33}Fe_{0.33}O₂. Проанализировано изменение параметров элементарной ячейки Li(Ni,Mn,Co,Fe)O₂ в зависимости от катионного состава. Образцы Li_{1.1}Ni_{0.10}Mn_{0.10}Co_{0.70}Fe_{0.10}O₂, Li_{1.1}Ni_{0.70}Mn_{0.10}Co_{0.10}Fe_{0.10}O₂ и Li_{1.1}Ni_{0.60}Mn_{0.13}Co_{0.13}Fe_{0.13}O₂ протестированы в качестве катодов литий-ионного аккумулятора.

Ключевые слова: твердые растворы, материалы ЛИА **DOI:** 10.31857/S0044457X20040133

введение

Снижение содержания кобальта в слоистой структуре LiCoO₂ ($R\overline{3}m$), послужившей основой при создании катодных материалов литий-ионных аккумуляторов (ЛИА) [1], привело к получению твердого раствора Li(Ni_{0 33}Mn_{0 33}Co_{0 33})O₂ [2], а затем целого спектра составов, в которых доля Со не превышает 10% от общего числа катионов [3]. В качестве основного заместителя используется более дешевый и менее токсичный никель [4], однако Ni²⁺ из-за близости ионных радиусов способен замещать Li⁺ и разупорядочивать структуру α-NaFeO₂, ухудшая электрохимические характеристики ЛИА. Для компенсации эффекта разупорядочения вводится литий сверх стехиопри номинальном метрии, что составе $Li_{1+x}(Ni,Mn,Co)_{1-x}O_2$, начиная с x = 0.2, приводит к образованию второй фазы Li_2MnO_3 (C2/m), не участвующей в электрохимическом процессе [5]. Избыточный литий не способствует снижению стоимости и пожароопасности ЛИА, между тем как замещение на Fe любого элемента из триады Ni, Mn, Co при сохранении гомогенности твердого раствора Li(Ni,Mn,Co,Fe)O₂ позволит

сделать ЛИА более дешевыми и экологически безопасными.

В образцах Li(Ni,Mn,Co,Fe)O₂, синтезированных в ряде работ, доля железа не превышает 10%. Исходя из классического состава Li Ni_{0.33}Mn_{0.33}Co_{0.33}O₂ [2], кобальт частично за-LiNi_{0.33}Mn_{0.33}Co_{0.17}Fe_{0.17}O₂ мещен до [6], $Li Ni_{0.33}Mn_{0.33}Co_{0.22}Fe_{0.11}O_2$ [7], $Li Ni_{0.33}Mn_{0.33}Co_{0.23}Fe_{0.1}O_2$ [8] И LiNi_{0.33}Mn_{0.33}Co_{0.25}Fe_{0.08}O₂ [9], а также никель и марганец до LiNi_{0.3}Mn_{0.3}Co_{0.3}Fe_{0.1}O₂ [8, 10, 11]. Кроме того, проведено допирование железом с получением составов LiNi_{0.6}Mn_{0.2}Co_{0.15}Fe_{0.05}O₂ [12] и LiNi_{0.4}Mn_{0.4}Co_{0.15}Fe_{0.05}O₂ [13].

Введение Fe приводит к образованию концентрационного объема Li(Ni,Mn,Co,Fe)O₂ в тетраэдре составов $Li_{1+y}NiO_2-Li_{1+y}MnO_2-Li_{1+y}CoO_2-Li_{1+y}FeO_2$ при постоянном давлении и температуре с новыми границами гомогенности по катионам относительно Li(Ni,Mn,Co)O₂. Ранее в изобарно-изотермическом тетраэдре $Li_{1+y}NiO_2-Li_{1+y}MnO-Li_{1+y}CoO_2-Li_{1+y}FeO_2$ нами определены фазовые состояния для образцов составов $Li_{1,05}Fe_{1-x}(Ni,Mn,Co)_xO_2$, $Li_{1,1}Co_{1-x}(Ni,Mn,Fe)_xO_2$ и

Li_{1.1}Ni_{1-x}(Mn,Co,Fe₀)_xO₂ с шагом x = 0.1 вдоль медиан Li_{1+y}FeO₂-Li_{1+y}Ni_{0.33}Mn_{0.33}Co_{0.33}O₂ [14], Li_{1+y}CoO₂-Li_{1+y}Ni_{0.33}Mn_{0.33}Fe_{0.33}O₂ [15], Li_{1+y}NiO₂-Li_{1+y}Mn_{0.33}Co_{0.33}Fe_{0.33}O₂ [15] и ноды Li_{1+y}FeO₂-Li_{1+y}Ni_{0.60}Mn_{0.20}Co_{0.20}O₂ [14]. Установлена возможность получения однофазных образцов со структурой α -NaFeO₂ при содержании Fe 15-20% от общего числа катионов [14, 15].

В настоящей работе исследован фазовый состав вдоль концентрационной медианы $Li_{1+y}MnO_2-Li_{1+y}Ni_{0.33}Co_{0.33}Fe_{0.33}O_2$ и установлены границы объема гомогенности стабильного Li(Ni,Mn,Co,Fe)O₂ в изобарно-изотермическом тетраэдре $Li_{1+y}NiO_2-Li_{1+y}MnO_2-Li_{1+y}CoO_2-Li_{1+y}FeO_2$. Протестированы отдельные образцы граничных составов твердого раствора в качестве катодов литий-ионных аккумуляторов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Потери лития в процессе синтеза могут составлять 5–7% [16], поэтому в исходную реакционную смесь добавляли 10%-ный избыток лития. Образцы Li_{1.1}Mn_{1-x}(Ni_{0.33}Co_{0.33}Fe_{0.33})_xO₂ ($0 \le x \le 1$) синтезировали методом сжигания геля на основе крахмала [14, 15], который выступал в качестве восстановителя, способствовал процессу гелеобразования за счет термической клейстеризации и обеспечивал горение геля в самоподдерживающем режиме с образованием мелкодисперсных порошков.

Для приготовления исходных смесей использовали нитраты соответствующих металлов и крахмал с содержанием основных веществ >99.9% (х. ч.). Концентрацию металлов в нитратах определяли гравиметрическим методом. Растворы нитратов в расчете на 10 г конечного продукта $\text{Li}_{1,1}\text{Mn}_{1-x}(\text{Ni}_{0.33}\text{Co}_{0.33}\text{Fe}_{0.33})_x\text{O}_2$ с шагом x = 0.1 переносили в мерные колбы на 200 мл и доводили дистиллированной водой до метки. Для синтеза 2 г каждого образца соответствующего состава 40 мл раствора переносили в керамическую чашу, добавляли раствор рассчитанного количества крахмала в 10 мл воды и упаривали при 90–120°С до образования геля. Дальнейшее повышение температуры до ~150°С приводило к интенсивному выделению газообразных продуктов и образованию черных губчатых хлопьев. Этот промежуточный порошкообразный продукт перетирали и поэтапно отжигали при температурах 300°С (5 ч), 500°С (5 ч) и 800°С (5 ч), а затем охлаждали в режиме выключенной печи.

Рентгенофазовый анализ (**РФА**) порошков выполняли на дифрактометре Bruker Advance D8 (Cu K_{α} -излучение) в интервале углов $2\theta = 10^{\circ} - 70^{\circ}$ с шагом сканирования 0.0133°. Обработку результатов проводили с помощью программного пакета DIFFRAC.EVA с использованием оборудования ЦКП ФМИ ИОНХ РАН.

Рентгеноспектральный микроанализ (**PCMA**) структуры образцов Li(Ni,Mn,Co,Fe)O₂ и соотношения Ni : Mn : Co : Fe (с помощью энергодисперсионной приставки) осуществляли с использованием микроскопа Carl Zeiss NVision 40, оснащенного анализатором Oxford Instruments X-Max, при ускоряющих напряжениях 3-20 кB.

Электрохимические испытания Li(Ni,Mn,Co,Fe)O₂ проводили на автоматизированном зарядно-разрядном измерительно-вычислительном комплексе компании "АК БУСТЕР" (Россия) по двухэлектродной схеме в сборно-разборных тефлоновых ячейках, где в качестве анода и электрода сравнения применялся металлический литий марки ЛЭ-1 (ГОСТ 8774-75). Катоды для электрохимических испытаний готовили следующим образом: гомогенизированную смесь (порошок Li(Ni,Mn,Co,Fe)O₂ 90%, ацетиленовая сажа (Timcall) 5%, поливинилиденфторид (PVDF), pacтворенный в N-метилпироллидоне, 5%) наносили на алюминиевый токосъем размером 15 × 27.5 мм и сушили при температуре 80°С в течение 1 ч, затем осуществляли вакуумную термообработку при 120°С в течение 12 ч. Сборка тестовых электрохимических ячеек происходила в среде высокочистого аргона с использованием перчаточного бокса PureLab HE Glovebox (США), в работе применялся электролит марки SelectiLyte LP71 (США) и сепаратор Dreamweaver Silver $AR^{TM}40$ (США).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В серии $\text{Li}_{1.1}\text{Mn}_{1-x}(\text{Ni}_{0.33}\text{Co}_{0.33}\text{Fe}_{0.33})_x\text{O}_2 (0 \le x \le 1)$ только состав Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O₂ (рис. 1, кривая 9) принадлежит области гомогенного твердого раствора Li(Ni,Mn,Co,Fe)O₂. Начиная $Li_{11}MnO_2$ сосуществуют С шпинель Li(Ni,Mn,Co,Fe)₂O₄ и фаза с моноклинной структурой на основе Li_2MnO_3 (рис. 1, кривые 1–3). В интервале составов Li₁₁Ni_{0.10}Mn_{0.70}Co_{0.10}Fe_{0.10}O₂-Li_{1.1}Ni_{0.17}Mn_{0.50}Co_{0.17}Fe_{0.17}O₂ проявляется фаза со структурой α -NaFeO₂ (рис. 1, кривые 4-6). В об-Li_{1.1}Ni_{0.20}Mn_{0.40}Co_{0.20}Fe_{0.20}O₂ разцах И Li_{1.1}Ni_{0.23}Mn_{0.30}Co_{0.23}Fe_{0.23}O₂ вместо ромбоэдрической фазы обнаруживается шпинель (Mn,Fe)₃O₄ (рис. 1, кривые 7–8), которая в образце $Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O_2$ исчезает вместе с Li₂MnO₃, уступая место ромбоэдрической фазе (рис. 1, кривая 9). После прохождения области гомогенности для $Li_{1.1}Ni_{0.30}Mn_{0.10}Co_{0.30}Fe_{0.30}O_2$ образуется четырехфазная смесь с участием шпинели Li(Ni,Mn,Co,Fe)₂O₄, биксбиита (Mn,Fe)₂O₃ и кубической фазы на основе LiFeO₂ (рис. 1, кривая 10). В отсутствие Mn образец Li_{1.1}Ni_{0.33}Co_{0.33}Fe_{0.33}O₂

			2			
Номинальный состав	<i>a</i> , Å	c, Å	c/a	<i>V</i> , Å ³	I_{003}/I_{104}	$(I_{006} + I_{102})/I_{101}$
Li _{1.1} CoO ₂	2.8162	14.0540	4.9904	92.528	2.06	0.31
$Li_{1.1}Ni_{0.03}Mn_{0.03}Co_{0.90}Fe_{0.03}O_2$	2.8199	14.1189	5.0069	97.230	1.85	0.55
$Li_{1.1}Ni_{0.07}Mn_{0.07}Co_{0.80}Fe_{0.07}O_2$	2.8210	14.0917	4.9953	97.118	2.09	0.51
$Li_{1.1}Ni_{0.10}Mn_{0.10}Co_{0.70}Fe_{0.10}O_2$	2.8397	14.1804	4.9936	99.029	1.88	0.54
$Li_{1.1}Ni_{0.10}Mn_{0.10}Co_{0.70}Fe_{0.10}O_2^*$	2.8453	14.2370	5.0037	99.821	2.58	—
$Li_{1.1}Ni_{0.13}Mn_{0.13}Co_{0.60}Fe_{0.13}O_2$	2.8521	14.2309	4.9896	100.252	2.24	0.72
$Li_{1.1}Ni_{0.17}Mn_{0.17}Co_{0.50}Fe_{0.17}O_2$	2.8606	14.2726	4.9894	101.146	1.94	0.77
$Li_{1.1}Ni_{0.20}Mn_{0.20}Co_{0.40}Fe_{0.20}O_2$	2.8751	14.3019	4.9744	102.384	2.17	0.66
Li _{1.1} Ni _{0.23} Mn _{0.23} Co _{0.30} Fe _{0.23} O ₂	2.8861	14.3377	4.9678	103.427	2.29	0.50
$Li_{1.1}Ni_{0.27}Mn_{0.27}Co_{0.20}Fe_{0.27}O_2$	2.8934	14.3559	4.9616	104.083	2.44	0.52
$Li_{1.1}Ni_{0.30}Mn_{0.30}Co_{0.10}Fe_{0.30}O_2$	2.9012	14.3601	4.9497	104.675	0.96	_
Li _{1.1} NiO ₂	2.8980	14.2367	4.9126	103.547	0.66	_
$Li_{1.1}Ni_{0.70}Mn_{0.10}Co_{0.10}Fe_{0.10}O_2$	2.8935	14.2321	4.9186	103.192	0.49	_
$Li_{1.1}Ni_{0.70}Mn_{0.10}Co_{0.10}Fe_{0.10}O_2^*$	2.9030	14.2684	4.9151	104.14	0.99	—
$Li_{1.1}Ni_{0.60}Mn_{0.13}Co_{0.13}Fe_{0.13}O_2$	2.8902	14.2348	4.2332	102.976	0.59	—
$Li_{1.1}Ni_{0.60}Mn_{0.13}Co_{0.13}Fe_{0.13}O_2^*$	2.9033	14.3125	4.9297	104.482	1.17	-
$Li_{1.1}Ni_{0.50}Mn_{0.17}Co_{0.17}Fe_{0.17}O_2$	2.8873	14.2731	4.9434	103.046	0.88	—
$Li_{1.1}Ni_{0.40}Mn_{0.20}Co_{0.20}Fe_{0.20}O_2$	2.8884	14.2945	4.9489	103.280	1.03	—
$Li_{1.1}Ni_{0.30}Mn_{0.23}Co_{0.23}Fe_{0.23}O_2$	2.8956	14.3389	4.9520	104.118	1.19	-
$Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O_2$	2.8976	14.3501	4.9525	104.340	1.88	-

Таблица 1. Параметры элементарной ячейки твердого раствора Li_{1 + v}(Ni,Mn,Co,Fe)O₂

* Образец после электрохимических испытаний.

представляет собой смесь ромбоэдрической и кубической фаз (рис. 1, кривая 11).

В табл. 1 приведены результаты расшифровки дифрактограмм для гомогенных образцов серий $\text{Li}_{1.1}\text{Co}_{1-x}(\text{Ni}_{0.33}\text{Mn}_{0.33}\text{Fe}_{0.33})_x\text{O}_2 \ (0 \le x \le 0.9),$ $Li_{1,1}Ni_{1-x}(Mn_{0.33}Co_{0.33}Fe_{0.33})_xO_2$ (0.3 $\leq x \leq 0.7$) и Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O₂. Дублеты пиков (006)/(102) и (108)/(110) подтверждают наличие слоистой структуры α-NaFeO₂ (рис. 1) [17]. Параметры гексагональной ячейки с уменьшением содержания Co увеличиваются от $Li_{1,1}Ni_{0.03}Mn_{0.03}Co_{0.90}Fe_{0.03}O_2$ (a = 2.8199, c = 14.1189 Å) до $\text{Li}_{1.1}\text{Ni}_{0.30}\text{Mn}_{0.30}\text{Co}_{0.10}\text{Fe}_{0.30}\text{O}_2$ (a = = 2.9012, c = 14.3601 Å). Характеристическое отношение между интенсивностями I_{003}/I_{104} 2.44 (табл. 1) достигает величины для Li_{1.1}Ni_{0.27}Mn_{0.27}Co_{0.20}Fe_{0.27}O₂, указывая на катионное упорядочение в литиевом слое [18], но для $Li_{1.1}Ni_{0.30}Mn_{0.30}Co_{0.10}Fe_{0.30}O_2$ резко падает до 0.96. Параметр $R = (I_{006} + I_{102})/I_{101}$, не превышающий 0.50, свидетельствует о наиболее выраженной гексагональной структуре для Li_{1.1}Ni_{0.23}Mn_{0.23}Co_{0.30}Fe_{0.23}O₂ в Со-ряду [19].

Для образцов $Li_{1.1}Ni_{1-x}(Mn_{0.33}Co_{0.33}Fe_{0.33})_xO_2$ (0.3 $\leq x \leq 0.7$) явное расщепление пиков (006)/(102) и (108)/(110) отсутствует. Подобная картина наблюдается в системе Li-Mn-Ni-O [20]. Влияние Со в серии Li_{1.1}Co_{1-x}(Ni_{0.33}Mn_{0.33}Fe_{0.33})_xO₂ и Ni в серии Li_{1.1}Ni_{1-x}(Mn_{0.33}Co_{0.33}Fe_{0.33})_xO₂ на структуру $R\overline{3}m$, как видно из табл. 1, заметно отличается. При снижении содержания Со соотношение c/a монотонно уменьшается от 5.0069 до 4.9497, что свидетельствует об искажении гексагональной ячейки [21], а отношение I_{003}/I_{104} , характеризующее упорядочение в литиевом слое, возрастает до 2.44 для Li_{1.1}Ni_{0.27}Mn_{0.27}Co_{0.20}Fe_{0.27}O₂ и резко падает до 0.96 для Li₁₁Ni_{0 30}Mn_{0 30}Co_{0 10}Fe_{0 30}O₂. При снижении содержания Ni соотношение c/a, в свою очередь, увеличивается от 4.9186 до 4.9520, что указывает на снятие искажения в гексагональной структуре, однако отношение I_{003}/I_{104} едва достигает критической величины 1.2 для $Li_{11}Ni_{0,30}Mn_{0,23}Co_{0,23}Fe_{0,23}O_{2}$.

Для Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O₂ параметры a = 2.8976, c = 14.3501 Å и $I_{003}/I_{104} = 1.88$ (табл. 1).

Согласно РСМА, содержание никеля, марганца, кобальта и железа в синтезированных образцах Li(Ni,Mn,Co,Fe)O₂ отклоняется от заданного значения не более чем на 1 ат. %. На рис. 2 представлена микроструктура Li_{1.1}Ni_{0.30}Mn_{0.23}Co_{0.23}Fe_{0.23}O₂, которая характеризуется однородными частицами с размером не более 100 нм.

Рис. 1. Дифрактограммы образцов состава $Li_{1.1}Mn_{1-x}(Ni_{0.33}Co_{0.33}Fe_{0.33})_xO_2$: $I - Li_{1.1}MnO_2$, $2 - Li_{1.1}Ni_{0.03}Mn_{0.90}Co_{0.03}Fe_{0.03}O_2$, $3 - Li_{1.1}Ni_{0.07}Mn_{0.80}Co_{0.07}Fe_{0.07}O_2$, $4 - Li_{1.1}Ni_{0.10}Mn_{0.70}Co_{0.10}Fe_{0.10}O_2$, $5 - Li_{1.1}Ni_{0.13}Mn_{0.60}Co_{0.13}Fe_{0.13}O_2$, $6 - Li_{1.1}Ni_{0.17}Mn_{0.50}Co_{0.17}Fe_{0.17}O_2$, $7 - Li_{1.1}Ni_{0.20}Mn_{0.40}Co_{0.20}Fe_{0.20}O_2$, $8 - Li_{1.1}Ni_{0.23}Mn_{0.30}Co_{0.23}Fe_{0.23}O_2$, $9 - Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O_2$, $10 - Li_{1.1}Ni_{0.30}Mn_{0.10}Co_{0.30}Fe_{0.30}O_2$, $11 - Li_{1.1}Ni_{0.33}Co_{0.33}Fe_{0.33}O_2$.

Рис. 2. СЭМ-микрофотография образца $Li_{1,1}Ni_{0,30}Mn_{0,23}Co_{0,23}Fe_{0,23}O_2$ после отжига при 800°С.

Тетраэдр составов псевдочетырехкомпонентной системы $Li_{1+\nu}NiO_2 - Li_{1+\nu}MnO_2 - Li_{1+\nu}CoO_2 -$ Li_{1+v}FeO₂ не позволяет представить многофазные равновесия с участием шпинели Li(Ni,Mn,Co,Fe)₂O₄, галита Li(Ni,Mn,Co,Fe)O, биксбиита (Mn,Fe)₂O₃ и α-Li(Fe,Mn)₅O₈. В отсутствие расплава в качестве квазибинарной системы можно рассматривать медиану Li_{1+v}CoO₂- $Li_{1+\nu}Ni_{0,33}Mn_{0,33}Fe_{0,33}O_{2}$ но не медианы

 $Li_{1+v}NiO_2 - Li_{1+v}Mn_{0.33}Co_{0.33}Fe_{0.33}O_2$ И Li₁₊, MnO₂-Li₁₊, Ni_{0 33}Co_{0 33}Fe_{0 33}O₂. Однако с помощью тетраэдра можно оценить положение полиэдра гомогенности Li(Ni,Mn,Co,Fe)O₂ в концентрационном пространстве системы $Li_{1+\nu}NiO_2-Li_{1+\nu}MnO_2-Li_{1+\nu}CoO_2-Li_{1+\nu}FeO_2$. На рис. 3 в изобарно-изотермическом тетраэдре $Li_{1+y}NiO_2 - Li_{1+y}MnO_2 - Li_{1+y}CoO_2 - Li_{1+y}FeO_2$ $(t = 800^{\circ}\text{C}, p_{\text{O}_2} = 21 \text{ кПА})$ исследованные однофазные составы $Li_{1.1}Co_{1-x}(Ni_{0.33}Mn_{0.33}Fe_{0.33})_xO_2$, $Li_{11}Ni_{1-x}(Mn_{0.33}Co_{0.33}Fe_{0.33})_xO_2$ И $Li_{11}Mn_{1-x}(Mn_{0.33}Co_{0.33}Fe_{0.33})_xO_2$ (0 $\leq x \leq 1$) показаны черными кружками. Для удобства восприятия составы твердого раствора приведены на медианах $Li_{1+\nu}CoO_2 - Li_{1+\nu}Ni_{0.33}Mn_{0.33}Fe_{0.33}O_2$, $Li_{1+v}NiO_2 - Li_{1+v}Mn_{0.33}Co_{0.33}Fe_{0.33}O_2$ И $Li_{1+\nu}MnO_2 - Li_{1+\nu}Ni_{0,3}Co_{0,33}Fe_{0,33}O_2$. Фазовый объем Li(Ni,Mn,Co,Fe)O₂ включает в себя составы $Li_{1+v}Ni_{0.33}Mn_{0.33}Co_{0.33}O_2$, $Li_{1+y}Ni_{0.60}Mn_{0.20}Co_{0.20}O_2,\ Li_{1+y}Ni_{0.20}Mn_{0.20}Co_{0.20}Fe_{0.40}$ O₂, Li_{1+v}Ni_{0.42}Mn_{0.14}Co_{0.14}Fe_{0.30}O₂ (рис. 3, точки 1–4) [14], Li₁₊, Ni_{0 33}Mn_{0 33}Co_{0 17}Fe_{0 17}O₂ (рис. 3, точка 5) [6] и находится по одну сторону от плоскости $Li_{1+\nu}CoO_2 - Li_{1+\nu}Ni_{0.5}Mn_{0.5}O_2 - Li_{1+\nu}FeO_2$.

Содержание Fe в твердом растворе Li(Ni,Mn,Co,Fe)O₂ изменяется вместе с гомогенным фазовым объемом в зависимости от соотно-

Рис. 3. Составы твердого раствора Li(Ni,Mn,Co,Fe)O₂ в тетраэдре Li_{1 + y}NiO₂-Li_{1 + y}MnO₂-Li_{1 + y}CoO₂-Li_{1 + y}FeO₂. Отмечены точки: 1 - Li_{1 + y}Ni_{0.33}Mn_{0.33}Co_{0.33}O₂, 2 - Li_{1 + y}Ni_{0.60}Mn_{0.20}Co_{0.20}O₂, 3 - Li_{1 + y}Ni_{0.20}Mn_{0.20}Co_{0.20}Fe_{0.40}O₂ [14], 4 - Li_{1 + y}Ni_{0.42}Mn_{0.14}Co_{0.14}Fe_{0.3}O₂ [14] и 5 - Li_{1 + y}Ni_{0.33}Mn_{0.33}Co_{0.17}Fe_{0.17}O₂ [6].

Рис. 4. Заряд-разрядные кривые для десяти циклов при токе заряда 1С и токе разряда C/2: a $-Li_{1,1}Ni_{0,70}Mn_{0,10}Co_{0,10}Fe_{0,10}O_2$, 6 $-Li_{1,1}Ni_{0,60}Mn_{0,13}Co_{0,13}Fe_{0,13}O_2$, в $-Li_{1,1}Ni_{0,10}Mn_{0,10}Co_{0,70}Fe_{0,10}O_2$.

шения Li : Ni : Mn : Co, температуры, парциального давления кислорода, а также от методики синтеза, которая позволяет получить однофазный метастабильный материал наряду со стабильным. При использовании метода сжигания геля и последующего отжига до температуры 800° C на воздухе получены однофазные образцы Li(Ni,Mn,Co,Fe)O₂ с 15% Fe в слоистой структуре α -NaFeO₂, при этом содержание Co может снижаться до 5%.

Допирование Li(Ni,Mn,Co)O₂ железом в пределах 2.5% от общего числа катионов с образованием моноклинной фазы Li₂MnO₃ [22, 23] не решает проблему принципиального улучшения материалов ЛИА. В то же время обнаруженная растворимость 15% железа в твердом растворе Li(Ni,Mn,Co,Fe)O₂ позволяет рассчитывать на создание более дешевых и безопасных ЛИА.

В табл. 2 представлены результаты электрохимического тестирования образцов составов $Li_{1.1}Ni_{0.70}Mn_{0.10}Co_{0.10}Fe_{0.10}O_2$, Li_{1.1}Ni_{0.60}Mn_{0.13}Co_{0.13}Fe_{0.13}O₂ И Li_{1.1}Ni_{0.10}Mn_{0.10}Co_{0.70}Fe_{0.10}O₂ в модельных литиевых ячейках в интервале напряжений 1.0-4.5 В при токе заряда 1С и разряда С/2 (рис. 4). После 10 циклов заряда-разряда емкость образца Li_{1.1}Ni_{0.60}Mn_{0.13}Co_{0.13}Fe_{0.13}O₂ сохранилась на уровне 95% и составила 66 мА ч/г, для образца состава $Li_{1,1}Ni_{0,70}Mn_{0,10}Co_{0,10}Fe_{0,10}O$ разрядная емкость не превышала 36 мА ч/г. а лля Li_{1.1}Ni_{0.10}Mn_{0.10}Co_{0.70}Fe_{0.10}O₂ значения емкости материала в первых циклах разряда составили 95 мАч/г,

Таблица 2. Результаты электрохимического тестирования образцов Li_{1+v}(Ni,Mn,Co,Fe)O₂

Состав образца	Масса, г	Емкость, мА ч/г	Число циклов	Ток заряда/разряда, мкА
$\overline{Li_{1.1}Ni_{0.70}Mn_{0.10}Co_{0.10}Fe_{0.10}O_2}$	0.0194	36-19	10	1000/500
$Li_{1.1}Ni_{0.60}Mn_{0.13}Co_{0.13}Fe_{0.13}O_2$	0.0203	69–66	10	1000/500
$Li_{1.1}Ni_{0.10}Mn_{0.10}Co_{0.70}Fe_{0.10}O_2$	0.0161	95-37	10	1000/500

Рис. 5. Дифрактограммы образцов до (нижний спектр) и после (верхний спектр) электрохимического циклирования: $a - Li_{1.1}Ni_{0.70}Mn_{0.10}Co_{0.10}Fe_{0.10}O_2$, $6 - Li_{1.1}Ni_{0.60}Mn_{0.13}Co_{0.13}Fe_{0.13}O_2$, $B - Li_{1.1}Ni_{0.10}Mn_{0.10}Co_{0.70}Fe_{0.10}O_2$.

но к 10-му циклу емкость материала снизилась до 37 мА ч/г.

Согласно результатам РФА (рис. 5), в образце $Li_{1.1}Ni_{0.70}Mn_{0.10}Co_{0.10}Fe_{0.10}O_2$ после циклирования снизилось содержание примесей. Как видно из табл. 1, в результате электрохимического воздействия отношение I_{003}/I_{104} , характеризующее упорядочение в литиевом слое структуры α -NaFeO₂, увеличилось примерно вдвое.

ЗАКЛЮЧЕНИЕ

Методом сжигания геля с крахмалом впервые гомогенный образец получен состава Li_{1.1}Ni_{0.27}Mn_{0.20}Co_{0.27}Fe_{0.27}O₂ со структурой α-NaFeO₂. Методом рентгенофазового анализа определен фазовый состав образцов $Li_{1,1}Mn_{1-x}(Ni_{0,33}Co_{0,33}Fe_{0,33})_xO_2$ (0 $\le x \le 1$). Определено положение (и границы) объема гомогенности твердого раствора Li(Ni,Mn,Co,Fe)O₂ в изобарноизотермическом тетраэдре Li_{1+v}NiO₂-Li_{1+v}MnO₂-Li_{1+v}CoO₂-Li_{1+v}FeO₂. Экспериментально показано, что в твердом растворе состава LiCo_{1/3}Ni_{1/3}Mn_{1/3}O₂ переходные металлы, взятые в эквимолярном отношении, могут быть замешены на Fe (до 25%) без разрушения структуры α-NaFeO₂.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Mizushima K., Jones P.C., Wiseman P. J. et al.* // Mater. Res. Bull. 1980. V. 15. № 6. P. 783. https://doi.org/10.1016/0025-5408(80)90012-4
- Ohzuku T., Makimura Y. // Chem. Lett. 2001. V. 30. № 7. P. 642. https://doi.org/10.1246/cl.2001.642
- 3. *Nipan G.D., Klyndyuk A.I.* // Inorg. Mater. 2019. V. 55. № 2. P. 135. https://doi.org/10.1134/S0020168519020080
- 4. *Noh H.-J., Youn S., Youn C.S. et al.* // J. Power Sources. 2013. V. 233. P. 121.
 - https://doi.org/10.1016/j.jpowsour.2013.01.063
- Zhang X., Yu C., Huang X. et al. // Electrochim. Acta. 2012. V. 81. P. 233. https://doi.org/10.1016/j.electacta.2012.07.069
- Meng Y.S., Wu Y.W., Hwang B.J. et al. // J. Electrochem. Soc. 2004. V. 151. P. A1134. https://doi.org/10.1149/1.1765032
- Samarasingha P.B., Wijayasinghe A., Behm M. et al. // Solid State Ionics. 2014. V. 268. P. 226. https://doi.org/10.1016/j.ssi.2014.07.012

- Idemoto Y., Matsui T. // Electrochem. Japan. 2007. V. 75. № 10. P. 791. https://doi.org/10.5796/electrochemistry.75.791
- Wilcox J., Patoux S., Doeff M. // J. Electrochem. Soc. 2009. V. 156. № 3. P. A192. https://doi.org/10.1149/1.3056109
- Hilmi J.M., Sabirin M.N., Yahya R. et al. // Adv. Mater. Res. 2012. V. 501. P. 56. https://doi.org/10.4028/www.scientific.net/AMR.501.56
- Son J.-T., Cairns E. // Korean J. Chem. Eng. 2007.
 V. 24. № 5. P. 888. https://doi.org/10.1007/s11814-007-0060-4
- 12. *Mofid W. El*, Dissertation. Synthesis and characterization of novel cathode material with improved specific capacity and safety for lithium ion batteries. Techniscen Universität Ilmenau. 2016. 121 p. urn:nbn:de:gbv:ilm1-2016000524
- 13. Wilcox J. D., Rodrigues E.E., Doeff M.M. // J. Electrochem. Soc. 2009. V. 156. № 12. P. A1011. https://doi.org/10.1149/1.3237100
- 14. Nipan G.D., Smirnova M.N., Kop'eva M.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. Р. 1304. [Нипан Г.Д., Смирнова М.Н., Копьева М.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1111.] https://doi.org/10.1134/S0036023619100103
- 15. Nipan G.D., Smirnova M.N., Kop'eva M.A. et al. // J. Phase Equilibria and Diffusion. 2019. V. 40. № 5.

P. 725.

https://doi.org/10.1007/s11669-019-00758-4

- 16. *Shunmugasundaram R., Arumugam R.S., Dahn J.R.* // Chem. Mater. 2015. V. 27. № 3. P. 757. https://doi.org/10.1021/cm504583y
- Lee S.-W., Kim H., Kim M.-S.J. et al. // Power. Sources. 2016. V. 315. P. 261. https://doi.org/10.1016/j.jpowsour.2016.03.020
- Zhang X., Jiang W.J., Mauger Qilu A. et al. // J. Power. Sources. 2010. V. 195. № 10. P. 1292. https://doi.org/10.1016/j.jpowsour.2009.09.029
- Mohanty D., Gabrish H. // J. Power. Sources. 2012. V. 220. P. 405. https://doi.org/10.1016/j.jpowsour.2012.08.005
- 20. *McCalla E., Rowe A.W., Shunmugasundaram R. et al.* // Chem. Mater. 2013. V. 25. № 6. P. 989. https://doi.org/10.1021/cm4001619
- Antaya M., Ceams K., Preston J.S. et al. // J. Appl. Phys. 1994. V. 76. P. 2799. https://doi.org/10.1063/1.357514
- 22. *Li H., Chen G., Zhang B. et al.* // Solid State Commun. 2008. V. 146. P. 115. https://doi.org/10.1016/j.ssc.2008.02.006
- 23. *Nayak P.K., Grinblat J., Levi M. et al.* // J. Solid State Electrochem. 2015. V. 19. P. 2781. https://doi.org/10.1007/s10008-015-2790-2