____ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ __ И НАНОМАТЕРИАЛЫ

УДК 544.72.05,544.461

ИССЛЕДОВАНИЕ ПРЕВРАЩЕНИЙ НАНОРАЗМЕРНОГО ПОРОШКА БЕМИТА И γ-Al₂O₃ ПРИ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ

© 2020 г. И. В. Козерожец^{*a*, *b*, *, Г. П. Панасюк^{*a*}, Е. А. Семенов^{*a*}, М. Н. Данчевская^{*c*}, Л. А. Азарова^{*a*}, Н. П. Симоненко^{*a*}}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bНациональный научно-технический университет — МИСиС, Ленинский пр-т, 4, Москва, 119049 Россия ^cМосковский государственный университет имени М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

> *e-mail: irina 135714@yandex.ru Поступила в редакцию 14.10.2019 г. После доработки 05.11.2019 г. Принята к публикации 27.11.2019 г.

Методами рентгенофазового анализа, сканирующей и просвечивающей электронной микроскопии исследован процесс превращения наноразмерных порошков бемита и γ -Al₂O₃ при термической обработке в α -Al₂O₃ и приведены его параметры в зависимости от размера исходных частиц бемита. Показано, что наноразмерный порошок бемита при нагревании до 1150°C последовательно переходит в различные фазы оксида алюминия без изменения формы и размера исходных частиц.

Ключевые слова: γ -Al₂O₃, α -Al₂O₃, термическая обработка, бемит **DOI:** 10.31857/S0044457X20040091

введение

Современная лазерная, нефтехимическая, керамическая промышленность нужлается в исхолном сырье оксида алюминия со строго контролируемыми свойствами (размер частиц, форма, агломерированность, фазовый состав и др.) [1-5]. Однако большинство современных методов синтеза порошков оксида алюминия, используемых в промышленности, не позволяют получать материал с заданными характеристиками. Метод гидротермальной обработки исходных прекурсоров (гидраргиллит, различные фазы оксида алюминия) путем варьирования параметров обработки позволяет получать бемит (AlOOH), термическая обработка которого до 1200-1300°С приводит к формированию α-Al₂O₂ с заданными свойствами [6, 7].

Применение наноматериалов в промышленности открывает новые возможности создания материалов с улучшенными свойствами и характеристиками [8–10]. Так, наноразмерный порошок α -Al₂O₃ в настоящее время используется для создания подложек микросхем, конструктивных элементов радиоламп, для синтеза высокоплотной керамики, прозрачной керамики, в качестве наполнителя в огнеупорных материалах, для футеровки литейных форм и т.д. [11, 12]. Смесь наноразмерных порошков бемита (AlOOH) и α -Al₂O₃ с размером кристаллов 20–40 нм позволяет удалять тяжелые металлы из сточных вод, что имеет огромное значение для экологии [13].

Большое число работ посвящено исследованию превращений микронных частиц оксидов и гидроксида алюминия при термической обработке, определению температуры фазовых переходов в зависимости от размера частиц исходного прекурсора [14–16].

Цель настоящей работы — исследование превращений наноразмерных порошков бемита и γ -Al₂O₃ при термической обработке до 1150°C, определение температуры их фазовых переходов в α -Al₂O₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве прекурсора использовали наноразмерный порошок бемита, полученный при гидротермальной обработке наноразмерного порошка γ -Al₂O₃, синтезированного по технологии, описанной в статье [2]. Гидротермальную обработку проводили в автоклавах объемом 18 см³ в тефлоновом вкладыше в 1.5%-ном растворе HCl в течение 36 и 96 ч при температуре 150°С. После охлаждения и разгерметизации автоклавов образцы бемита (AlOOH) извлекали из контейнеров, промывали дистиллированной водой, высушивали при 100°С и подвергали термической обработке на воздухе до температуры 1150°С. Полученный наноразмерный порошок α -Al₂O₃ исследова-

Рис. 1. СЭМ- (а, д) и ПЭМ-изображения (б, в, г, е) изменения формы и размера частиц сферического бемита при его термической обработке: а, б – сферический бемит, полученный при гидротермальной обработке наноразмерного порошка γ -Al₂O₃ в 1.5%-ном растворе HCl при 150°C (36 ч); в – прогрев при 250°C (3 ч); г – прогрев при 700°C (4 ч); д, е – наноразмерный порошок α -Al₂O₃, полученный при термической обработке сферического бемита при 1200°C (5 ч).

ли методами рентгенофазового анализа (**РФА**) на дифрактометре Bruker D8 Advance (Cu K_{α} -излучение), сканирующей электронной микроскопии (**СЭМ**) на приборе SCAN-S2 и просвечивающей электронной микроскопии (**ПЭМ**) на приборе Jem-1001.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно [17], бемит при нагревании до 1300-1350°С последовательно переходит в различные фазы оксида алюминия (аморфный, γ -, θ -, δ -, α -) без изменения формы и размера исходной частицы. Для микронных частиц оксида алюминия при нагревании до температуры 1150°С характерно присутствие смеси фаз (θ -, δ -, α -Al₂O₃), структура α -Al₂O₃ является слабоупорядоченной с широкими рефлексами на дифрактограммах. При нагревании до 1300–1350°С осуществляется полный переход в α -Al₂O₃ [6, 7]. Образовавшиеся частицы α -Al₂O₃ являются поликристаллическими и прак-

Рис. 2. СЭМ- (а, д) и ПЭМ (б, в, г, е)-изображения изменения формы и размера частиц игольчатого бемита при его термической обработке: а, б – игольчатый бемит, полученный при гидротермальной обработке наноразмерного порошка γ -Al₂O₃ в 1.5%-ном растворе HCl при 150°C (96 ч); в – прогрев при 250°C (3 ч); г – прогрев при 700°C (4 ч); д, е – наноразмерный порошок α -Al₂O₃, полученный при термической обработке игольчатого бемита при 1200°C (5 ч).

тически не спекаются между собой, α -Al₂O₃ приобретает совершенную структуру с узкими рефлексами на дифрактограммах.

Ранее было показано [12, 18], что при гидротермальной обработке наноразмерного порошка γ -Al₂O₃ в 1.5%-ном растворе HCl в течение 36 и 96 ч при температуре 150°С образуется бемит разной морфологии. Так, при обработке наноразмерного порошка γ -Al₂O₃ в течение 36 ч был получен бемит, который представляет собой, согласно результатам СЭМ и ПЭМ, бесформенные агломераты с размером ~10–15 мкм, состоящие из мелких частиц с размером 10–40 нм (рис. 1а, 1б). При обработке наноразмерного порошка γ -Al₂O₃ в тех же условиях в течение 96 ч был получен бемит, состоящий, согласно результатам СЭМ и ПЭМ, из частиц игольчатой формы, достигающих в длину ~2–3 мкм, а в ширину не более 20 нм (рис. 2а, 2б).

Синтезированный по представленной в работе [18] технологии бемит разной морфологии под-

Рис. 3. Дифрактограммы наноразмерных порошков γ -Al₂O₃ и α -Al₂O₃, полученных при прогреве оксида алюминия, синтезированного по технологии [2], при температурах 900°C (5 ч) и 1150°C (6 ч).

вергали термической обработке на воздухе при температурах до 1150°С. На рис. 1 и 2 представлены микрофотографии СЭМ и ПЭМ, иллюстрирующие сохранение формы и размера частиц бемита при его термической обработке: 250°С, выдержка в течение 3 ч (рис. 1в, рис. 2в); 700°С, 4 ч (рис. 1г, 2г); 1000°С, 5 ч (рис. 1д, 1е, 2д, 2е). Данные СЭМ и ПЭМ указывают на сохранение морфологии бемита при его термической обработке, что позволяет получать наноразмерный порошок α -Al₂O₃ изометрической формы со средним размером частиц 25 нм и игольчатой формы со средним размером частиц по ширине 30 нм.

Однако исследование превращений наноразмерных порошков γ -Al₂O₃ и бемита, полученного при гидротермальной обработке нанопорошка γ -Al₂O₃ в 1.5%-ном растворе HCl при 150°C в течение 36 ч, при температуре до 1150°C выявило разный механизм перехода в α -Al₂O₃.

Прогрев наноразмерного порошка γ -Al₂O₃ при температуре 1150°С, согласно результатам РФА, приводит к образованию α -Al₂O₃ без посторонних фаз (рис. 3). Наноразмерный порошок бемита сферической формы при прогреве при 1000°С в течение 5 ч приводит, по данным РФА, к образованию γ -, θ -, σ -фаз (рис. 4), которые сохраняются и при прогреве при 1150°С с появлением рефлексов α -Al₂O₃.

В работе [19] показано, что для микронного размера частиц γ -Al₂O₃ вплоть до 1300°С фиксируется наличие γ -, θ - и σ -фаз Al₂O₃, полный переход в α -Al₂O₃ завершается при 1300°С.

Оксид алюминия — наиболее перспективный материал для широкой области применения. Од-

Рис. 4. Дифрактограммы, иллюстрирующие фазовые превращения наноразмерного порошка сферического бемита при прогреве при температурах 900°С (5 ч), 1000°С (8 ч), 1150°С (6 ч).

нако керамические материалы, полученные из микронных и субмикронных кристаллов оксида алюминия, во многих случаях не удовлетворяют требованиям современной промышленности. Использование наноразмерных частиц оксидов алюминия с контролируемой дисперсностью, формой и размерами частиц позволяет добиться необходимого улучшения свойств конечного продукта.

В работах [20-25] показано, что повышения прочности и снижения температуры спекания оксидной керамики можно добиться путем перехода к максимальному количеству нанофазы. Это способствует снижению ползучести за счет обеспечения исходного размера дефектов, сравнимого с размером зерна. В работе [19] проведено последовательное прессование и спекание на воздухе до температуры 1450°С микро- (3-10 мкм) и наноразмерных (50-100 нм) частиц α-Al₂O₃. Согласно представленным в работе [19] данным по механическим свойствам алюмооксидной керамики, полученной при спекании микро- и наноразмерных порошков α-Al₂O₃, использование для создания алюмооксидной керамики наноразмерного порошка α-Al₂O₃ позволяет получать керамику с лучшими техническими характеристиками (остаточная внутренняя пористость 5%, плотность 4.04 г/см³, прочность на изгиб 420 МПа).

ЗАКЛЮЧЕНИЕ

Исследовано превращение наноразмерных порошков бемита и γ -Al₂O₃ в α -Al₂O₃ при термической обработке до 1150°С. Показано, что наноразмерный порошок бемита сферической и

игольчатой морфологии при нагревании до температуры 1150°С последовательно переходит в различные фазы оксида алюминия без изменения формы и размера исходных частиц. Выявлен разный механизм перехода в α -Al₂O₃ при термической обработке до 1150°С наноразмерных порошков γ-Al₂O₃ и сферического бемита, полученного при гидротермальной обработке нанопорошка γ-Al₂O₃ в 1.5%-ном растворе HCl при 150°С в течение 36 ч.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Panasyuk G.P., Azarova L.A., Belan V.N. et al.* // Theor. Found. Chem. Eng. 2019. V. 53. № 4. P. 596. https://doi.org/10.1134/S0040579518050196
- Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. Р. 1303. [Панасюк Г.П., Козерожец И.В., Семенов Е.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1286.] https://doi.org/10.1134/S0036023618100157
- Panasyuk G.P., Luchkov I.V., Kozerozhets I.V. et al. // Inorg. Mater. 2013. V. 49. № 9. P. 899. https://doi.org/10.1134/S0020168513090136
- Chung C.K., Chang W.T., Liao M.W. et al. // Mater. Lett. 2012. V. 88. P. 104. https://doi.org/10.1016/j.matlet.2012.08.047
- Kurochkin V.D., Kravchenko L.P. // Powder Metall. Met. Ceram. 2006. V. 45. № 9-10. P. 493. https://doi.org/10.1007/s11106-006-0111-0
- Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2019. V. 55. № 9. P. 920. https://doi.org/10.1134/S0020168519090127
- Panasyuk G.P., Semenov E.A., Kozerozhets I.V. et al. // Dokl. Chem. 2018. V. 483. Part 1. P. 272. https://doi.org/10.1134/S0012500818110022
- Bravet D., Guiselin O., Swei G. // J. Appl. Polym. Sci. 2010. V. 116. № 1. P. 373. https://doi.org/10.1002/app.30809

- 9. *Zhu J.P., Feng C.H., Yin H.B. et al.* // Construction and Building Materials. 2015. V. 101. P. 246. https://doi.org/10.1016/j.conbuildmat.2015.10.038
- Fohlerova Z., Mozalev A. // J. Biomed. Mater. Res. 2018. V. 106. № 5. P. 1645. https://doi.org/10.1002/jbm.b.33971
- 11. *Panasyuk G.P., Azarova L.A., Belan V.N. et al.* // Theor. Found. Chem. Eng. 2018. V. 52. № 5. P. 879. https://doi.org/10.1134/S0040579518050202
- 12. *Panasyuk G.P., Belan V.N., Voroshilov I.L. et al.* // Theor. Found. Chem. Eng. 2013. V. 47. № 4. P. 415. https://doi.org/10.1134/S0040579513040143
- 13. Svarovskaya N.V., Bakina O.V., Glazkova E.A. et al. // Prog. Natur. Sci.-Mater Int. 2019. V. 27. № 2. P. 268. https://doi.org/10.1016/j.pnsc.2017.02.006
- Mitsui T., Matsui T., Kikuchi R. et al. // Bull. Chem. Soc. Jpn. 2009. V. 82. № 5. P. 618. https://doi.org/10.1246/bcsj.82.618
- Lopushan V.I., Kuznetsov G.F., Pletnev R.N. et al. // Refract. Ind. Ceram. 2007. V. 48. № 5. P. 378. https://doi.org/10.1007/s11148-007-0099-0
- Wang Y.P., Liu X.H., Chen X.Y. et al. // Ceram. Int. 2018. V. 44. № 7. P. 7883. https://doi.org/10.1016/j.ceramint.2018.01.224
- 17. Панасюк Г.П., Ворошилов И.Л., Белан В.Н. и др. // Хим. технология. 2011. Т. 12. № 4. С. 227.
- Panasyuk G.P., Belan V.N., Voroshilov I.L. et al. // Inorg. Mater. 2010. V. 46. № 7. P. 747. https://doi.org/10.1134/S0020168510070113
- 19. Земцова Е.Г., Монин А.В., Смирнов В.М. и др. // Физическая мезомеханика. 2014. Т. 17. № 6. С. 53.
- 20. Zietala M., Durejko T., Lazinska M. // Archives of Metallurgy and Materials. 2015. V. 60. № 3. P. 2447. https://doi.org/10.1515/amm-2015-0398
- 21. *Khalil N.M.* // J. Ind. Eng. Chem. 2014. V. 20. № 5. P. 3663.
- https://doi.org/10.1016/j.jiec.2013.12.063
 22. Choi K., Tong W., Maiani R.D. et al. // J. Nucl. Mater. 2010. V. 404. № 3. P. 210.
- https://doi.org/10.1016/j.jnucmat.2010.07.018
- Park T., Lee Y., Cha S.W. et al. // J. Ind. Eng. Chem. 2019. V. 75. P. 108. https://doi.org/10.1016/j.jiec.2019.03.008
- 24. Kumar S., Sood P.K. // Materials Res. Express. 2019. V. 6. № 5. № 056516 https://doi.org/10.1088/2053-1591/aaf6fa
- Nayak G.S., Zybala R., Kozinski R. et al. // Mater. Lett. 2018. V. 225. P. 109. https://doi.org/10.1016/j.matlet.2018.05.004