_____ ФИЗИЧЕСКИЕ МЕТОДЫ __ ИССЛЕДОВАНИЯ

УДК 546.72.76.22

ДИНАМИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ ТИОХРОМИТА FeCr₂S₄

© 2020 г. Т. Г. Аминов^{а,} *, Г. Г. Шабунина^а, Е. В. Бушева^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: aminov@igic.ras.ru

Поступила в редакцию 02.07.2019 г. После доработки 07.09.2019 г. Принята к публикации 27.09.2019 г.

Динамическим методом исследована магнитная восприимчивость ферримагнетика $FeCr_2S_4$ с целью изучения природы магнитного перехода в области T = 60 К. Свойства соединения измерены в нулевом постоянном магнитном поле $H_{DC} = 0$ в температурном интервале 4–230 К при амплитудах модуляции $H_{AC} = 1$ и 17 Э и частотах переменного поля v = 10, 100, 1000 и 10000 Гц. Показано, что при T > 60 К свойства FeCr₂S₄ отвечают дальнему ферримагнитному порядку с локальным спиновым разупорядочением. Размеры искажений спиновой решетки (микрообластей или магнитных кластеров) сильно возрастают в районе 150 К, где возникает локальное спиновое стекло с температурой замораживания спинов $T_f = 155$ К. Пологий максимум примесного спинового стекла в FeCr₂S₄ при T = 155 К можно рассматривать как простой ансамбль или конгломерат особо крупных магнитных кластеров с эффективной температурой Кюри T = 155 К.

Ключевые слова: магнитный полупроводник, спиновое стекло, халькогенидная шпинель **DOI:** 10.31857/S0044457X20020026

ВВЕДЕНИЕ

Измерения магнитной восприимчивости на переменном токе предоставляют уникальную информацию о магнитных свойствах материала, которую невозможно получить статическим методом исследования. Эта информация касается прежде всего веществ, где доминирует ближний магнитный порядок, т.е. твердых растворов [1–5]. Однако, как будет показано ниже, уникальная магнитная информация может быть получена и при исследовании однородных магнетиков типа FeCr₂S₄.

Соединение FeCr_2S_4 имеет структуру шпинели, его отличают такие необычные свойства, как колоссальное магнитосопротивление [6, 7], мультиферроичность [8–11], сильные эффекты спинфононной связи [12–15].

Ионы в А- и В-узлах структуры шпинели взаимодействуют посредством косвенного обмена [16], что приводит к сильным магнитным фрустрациям. Из-за этого в веществе могут возникать разнообразные магнитные структуры – от дальнего порядка до состояния спинового стекла [17–21].

Соединение FeCr_2S_4 — полупроводник с дальним магнитным порядком и температурой упорядочения $T_C = 170$ К. Согласно порошковой нейтронографии [22, 23], при T = 4.2 К соединение является коллинеарным ферримагнетиком с антиферромагнитно выстроенными ферромагнит-

ными Fe- и Cr-подрешетками, моменты которых равны: μ Fe = 4.2 μ B и μ Cr = 2.9 μ B. Однако мессбауровские данные говорят о структурной трансформации шпинели при T = 10 K [24, 25]. Кроме того, просвечивающая электронная микроскопия выявила при $T \sim 60$ K переход от кубической симметрии к триклинной [26]. При этой же температуре в FeCr₂S₄ [23–28] наблюдался пологий пик на кривых температурной зависимости намагниченности, что могло быть следствием состояния возвратного спинового стекла.

Согласно [29], температурная зависимость скорости звука в монокристаллах FeCr_2S_4 характеризуется аномалиями при T = 176, ~60 и ~15 K, где верхнее значение отвечает температуре Кюри, среднее – структурному переходу, а низшее – замораживанию орбитального момента согласно данным удельной теплоемкости [30].

В последние годы для изучения $FeCr_2S_4$ был использован метод прецессии/релаксации положительных мюонов (µSR) как наиболее перспективный для исследования природы и устойчивости спинового порядка в поликристаллическом магнетике. Было установлено, что в шпинели $FeCr_2S_4$ ниже ~50 К реализуется несоизмеримое модулированное неколлинеарное расположение спинов, а выше 50 К спектры µSR совместимы с коллинеарным ферримагнетизмом, хотя и с су-

Рис 1. Температурные зависимости действительной χ' (а) и мнимой χ'' (б) частей динамической магнитной восприимчивости FeCr₂S₄ при частотах 10, 100, 1000 и 10000 Гц переменного магнитного поля напряженностью $H_{AC} = 1$ Э.

щественным спиновым беспорядком в масштабе нескольких постоянных решетки [31].

Соединение FeCr₂S₄ не всегда является действительно чистым или стехиометричным из-за наличия в нем неконтролируемых примесей и дефектов, которые могут сильно искажать полученные результаты, проявляясь в виде локальных состояний или магнитных кластеров. Ранее при исследовании восприимчивости твердых растворов [4] динамическим методом нам удалось выявить в FeCr₂S₄ некоторую лабильность или разупорядочение, проявляющиеся в виде частотной зависимости восприимчивости во всем исследованном интервале температур. Для объяснения этого результата, а также уточнения природы магнитного поведения в области перехода T = 60 К методом динамической восприимчивости был изучен специально синтезированный FeCr₂S₄. Результаты приведены в данной работе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе в одних и тех же условиях были синтезированы и исследованы поликристаллические образцы FeCr₂S₄. Исходными веществами служили элементы: S (99.999%), Fe (99.9%), порошкообразный Cr (99.8%). Синтез проводили методом твердофазных реакций в кварцевых ампулах, откачанных до 10^{-2} Па, при температуре 900°C в течение 7–10 сут. Рентгенофазовый анализ показал, что все образцы FeCr₂S₄ однофазны и кристаллизуются в структуре шпинели с параметром элементарной ячейки a = 9.998 Å.

Изучение магнитных свойств проводили с помощью автоматизированного комплекса PPMS-9 (Quantum Design), который позволял измерять статическую (χ_{DC}) и динамическую магнитную восприимчивость (χ_{AC}) в интервале температур T = 1.9-300 К при напряженности внешнего магнитного поля до $H_{max} = 9$ Тл. В опытах динамическую восприимчивость измеряли при нулевом постоянном магнитном поле $H_{DC} = 0$ и температуре 4–230 К после измерений FC и полевой зависимости намагниченности при 4 К. Величина амплитуды модуляции составляла $H_{AC} = 1$ и 17 Э, частота переменного поля v = 10, 100, 1000 и 10000 Гц.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

РФА показал, что все образцы $FeCr_2S_4$ однофазны и кристаллизуются в структуре шпинели с параметром элементарной ячейки a = 9.998 Å.

На рис. 1а показана температурная зависимость действительной (х') части динамической магнитной восприимчивости FeCr₂S₄ при частотах 10, 100, 1000 и 10000 Гц переменного магнитного поля напряженностью H = 1 Э. Видно, что поликристаллический FeCr₂S₄ характеризуется температурой перехода из парамагнитного в ферримагнитное состояние $T_{\rm C} = 185~{\rm K}$ и температурой Т_н начала расхождения по частотам (необратимость) динамических восприимчивостей, которая практически совпадает с температурой Кюри образца. В отличие от $T_{\rm C}$, температура $T_{\rm H}$ не является характеристическим параметром материала, и ее величина может зависеть от многих трудно прогнозируемых причин. Например, согласно [11], она зависит от степени стехиометричности материала, его моно- или поликристалличности, наличия или отсутствия неконтролируемых примесей.

Поскольку для всех исследованных в данной работе образцов $FeCr_2S_4$ значения температур T_C

и $T_{\rm H}$ очень близки (практически совпадают друг с другом), можно предположить, что в основе этого явления лежит общая причина, например, частичная деструкция материала вследствие геометрической фрустрации или высокого значения константы магнитно-кристаллической анизотропии.

То, что кривые $\chi'(T)$ в области магнитного фазового перехода имеют различающуюся частотную зависимость, отчетливо выраженную в районе температуры Кюри, позволяет говорить о совпадении или близких значениях температур ферромагнитного и спин-стекольного переходов. Основанием для этого служит наличие элементов магнитного ближнего порядка на всем протяжении фазового магнитного перехода от $T_{\rm C} = 170$ до 185 К.

Следует отметить, что сама протяженность ΔT областей с частотной зависимостью не является одинаковой для моно- и поликристаллического образцов FeCr₂S₄. На рис. 1а, к примеру, для поликристаллов FeCr₂S₄ этот интервал, начавшись вблизи точки Кюри, заканчивается у конца кривой $\chi'(T)$ при температуре ~40 К вследствие ее размытия. Тогда как для монокристаллического образца FeCr₂S₄, по данным [32], восприимчивости $\chi'(T)$ и $\chi''(T)$ в интервале температур от $T_{\rm C}$ до 100 К практически не зависят от частоты. Однако ниже 90 К, когда действительная часть восприимчивости $\chi'(T)$ начинает резко уменьшаться с понижением температуры, образец проявляет отчетливую частотную зависимость вплоть до T = 20 K. Далее $\chi'(T)$ перестает зависеть от частоты. Аналогичное поведение показывает и мнимая часть $\chi''(T)$ магнитной восприимчивости соединения.

В данных [33] по удельной теплоемкости полии монокристаллов FeCr₂S₄ при T = 0.1-30 К тоже существует различие. Так, удельная теплоемкость около 10 К для поликристаллов показывает аномалию λ -типа, тогда как в монокристаллах λ -аномалия отсутствует. На ее месте располагается широкий максимум с центром в области T = 5 К.

Различие в поведении поли- и монокристаллов $FeCr_2S_4$ может быть обусловлено взаимодействием нарушений, вызванных анионными и катионными дефектами, балансом заряда, деформацией решетки и магнитной анизотропией. Небольшое количество ионов хлора (1%) в монокристалле $FeCr_2S_4$, выращенном химическим транспортом, может оказаться достаточным для подавления в нем орбитального кристаллического порядка, как в манганите лантана, где малых изменений содержания кислорода достаточно для того, чтобы изменить баланс заряда и разрушить кооперативный эффект Яна—Теллера.

Общая точка зрения на затронутую выше проблему изложена в работах [34–36] по магнитным системам с конкурирующими ферро- (J_1) и антиферромагнитными (J_2) взаимодействиями. Такие системы при критических значениях $R_{\rm C} = J_1/J_2$ становятся неустойчивыми к любой пертурбации в магнитных взаимодействиях, что может форсировать их переход в состояние спинового стекла.

На рис. 1 показаны температурные зависимости действительной χ' (а) и мнимой χ" (б) частей динамической магнитной восприимчивости FeCr₂S₄ при частотах 10, 100, 1000 и 10000 Гц переменного магнитного поля напряженностью *H* = = 1 Э. Из рис. 1а видно, что синтезированный нами поликристаллический образец FeCr₂S₄ характеризуется температурой перехода из парамагнитного в ферримагнитное состояние $T_{\rm C} = 185~{\rm K}$ и размытой температурой перехода в локальное состояние кластерного спинового стекла $T_f \approx 155$ K. О том, что подобное спиновое стекло образуется в лабильной системе FeCr₂S₄, свидетельствует пологий максимум в области Т_f при снижении температуры, начиная от точки Кюри (рис. 1а). Магнитные кластеры, образующие такое спиновое стекло, были идентифицированы в [31] методом прецессии и релаксации положительных мюонов (μ SR). Полученные при T > 60 К спектры μ SR совместимы с коллинеарным ферримагнетизмом, но указывают на существенный спиновый беспорядок в масштабе нескольких постоянных решетки (~30 Å). Размеры этих искажений спиновой решетки, иначе говоря, магнитных кластеров, сильно возрастают в районе 150 К, где недалеко от $T_{\rm C}$ располагается размытый пик спинового стекла. Здесь магнитное состояние FeCr₂S₄ характеризуется как конгломерат быстро флуктуирующих микрообластей, обеспечивающих ближний спиновый порядок.

На рис. 16 при T = 75 К указанным областям соответствует максимум на температурной зависимости мнимой (χ ") части динамической магнитной восприимчивости FeCr₂S₄, связанный с магнитными потерями, при частотах 10, 100, 1000 и 10000 Гц переменного магнитного поля напряженностью H = 1 Э.

На рис. 2 показаны температурные зависимости действительной χ' (а) и мнимой χ'' (б) частей динамической магнитной восприимчивости FeCr₂S₄ при частотах 10, 100, 1000 и 10000 Гц переменного магнитного поля с амплитудой $H_{AC} = 17$ Э. Из сопоставления рис. 1а и 2а следует, что разница, наблюдаемая в поведении динамической восприимчивости, может быть результатом пиннинга доменной стенки. Это хорошо видно на рис. 2а, где показано, как сильное переменное поле с амплитудой $H_{AC} = 17$ Э преодолевает эффект пиннинга, приближая значение динамической восприимчивости к значению статической восприимчивости. Этот результат согласуется также с температурным поведением мнимой компоненты χ ", а именно: для более сильных модулирующих полей блокировка доменных стенок происходит при более низких температурах. С увеличением амплитуды переменного поля максимум восприимчивости χ " смещается в сторону понижения температуры, достигая T = 45 K (рис. 26).

Рост величины каспа на кривой χ' (рис. 2а) с увеличением модулирующего поля, с одной стороны, и независящее от поля положение кривых $\chi'(T)$ и $\chi''(T)$ в районе T = 60 К – с другой, предполагают два механизма релаксации. Один из них [28] можно объяснить закреплением доменной стенки из-за температурного изменения магнитно-кристаллической анизотропии, а другой – отнести к эффекту коэрцитивности доменной структуры вследствие начала структурной трансформации в FeCr₂S₄ при $T \sim 60$ К.

При снижении температуры поликристаллического FeCr₂S₄ в случае статического метода около $T_{\rm C} = 185$ К происходит ферримагнитный переход [28, 32], сопровождаемый расщеплением температурных зависимостей намагниченностей $\sigma(T)_{\rm ZFC}$ и $\sigma(T)_{\rm FC}$ и появлением в районе $T \approx 50$ К магнитной аномалии – каспа. Эта аномалия (при $T_{\rm касп}$) не наблюдается в случае динамической восприимчивости при стандартных ($H_{\rm AC} = 1$ Э) условиях проведения опыта. С дальнейшим охлаждением FeCr₂S₄ [33] на кривых $\sigma(T)_{\rm ZFC}$ и $\sigma(T)_{\rm FC}$ обнаруживается ступенчатое уменьшение (увеличение) намагниченностей при $T_{00} \approx 10$ К, которая считается температурой дальнего орбитального упорядочения за счет ян-теллеровского перехода.

Пик на кривой зависимости статической магнитной восприимчивости при температуре $T \approx 50$ К относится к числу важных и интересных особенностей магнитного поведения FeCr₂S₄. Хотя раныше говорилось, что он не наблюдается на кривых динамической восприимчивости при стандартных условиях проведения опыта, он фиксируется при других условиях (рис. 2a), а именно: при максимальной амплитуде $H_{AC} = 17$ Э прибора PPMS-9 и частотах переменного поля v = 10, 100, 1000 и 10000 Гц.

Как видно из рис. 2а, касп в действительности существует, а в случае динамических измерений восприимчивости для его наблюдения раньше не было поля достаточной амплитуды ($H_{AC} = 1$ Э). Теперь, когда амплитуда переменного поля достигла приборного максимума $H_{AC} = 17$ Э (рис. 2), касп стал отчетливо виден почти при той самой температуре T = 60 К, где он раньше наблюдался при статических измерениях намагниченности [28, 32]. Данный факт свидетельствует о возможности общей физической основы (амплитуды) для сопоставления результатов, полученных при статических и динамических измерениях. Опира-

ясь на них, можно с приемлемой долей достоверности говорить о близости результатов, полученных при статических измерениях намагниченности во внешнем постоянном поле 100 Э, и результатов, достигнутых при динамических измерениях с амплитудой переменного поля $H_{AC} = 17$ Э.

Причину происхождения пика при T = 60 К в FeCr₂S₄, которая ранее обсуждалась в [32], в настоящее время связывают с низкотемпературным структурным переходом вследствие статического кооперативного эффекта Яна–Теллера. При этом магнитный спин-переориентационный переход, обусловленный наличием в FeCr₂S₄ конкурирующих спин-орбитального и ян–теллеровского взаимодействий, отождествляется с началом ближнего орбитального порядка.

Итак, $T_{\text{касп}}$ – это температура начала ближнего орбитального порядка в FeCr₂S₄, который замещает дальний спиновый порядок, существующий в FeCr₂S₄ ниже точки Кюри T_{C} = 185 К. Процесс разрушения ферримагнетизма начинается при температуре ~60 К ($T_{\text{касп}}$), что проявляется в уменьшении восприимчивости на рис. 2а. То, что ближний кристаллографический порядок – диапазон орбитального упорядочения – в FeCr₂S₄ начинается при T = 60 К, подтверждено экспериментально ультразвуковыми исследованиями в [29].

В этом случае магнитное состояние $FeCr_2S_4$ можно охарактеризовать как практически ближний спиновый порядок, т.е. состоящее из взаимодействующих и/или не взаимодействующих магнитных кластеров. Пологий максимум при T == 155 K на рис. 1а, отнесенный нами к образованию в $FeCr_2S_4$ спинового стекла, может быть также рассмотрен просто как ансамбль или конгломерат особо крупных кластеров с эффективной температурой Кюри T = 155 K.

Модель Нееля для FeCr₂S₄ не является справедливой как в области критической точки $T_{\rm C} = 170$ K, так и при снижении температуры от $T_{\rm kacn} = 60$ K, когда начинается замораживание орбитальной жидкости. Этот процесс замораживания завершается при T = 10 K переходом системы в новую орбитально упорядоченную фазу. Не будучи подвержено влиянию внешнего магнитного поля как структурный переход, указанное орбитальное замораживание одинаково по температуре как для $H_{\rm AC} = 1$ Э, так и для $H_{\rm AC} = 17$ Э, т.е. не зависит от амплитуды модулирующего поля.

Однако на рис. 26 данному орбитальному переходу, растянутому по температуре от 10 до 60 К и не зависящему от амплитуды переменного тока, отвечает пик магнитных потерь, величина и положение которого подвержены влиянию как внешнего постоянного, так и переменного модулирующего поля. Рис. 16 и 26 показывают, что пик на мнимой части динамической восприим-

Рис. 2. Температурные зависимости действительной χ' (а) и мнимой χ'' (б) частей динамической магнитной восприимчивости FeCr₂S₄ при частотах 10, 100, 1000 и 10000 Гц переменного магнитного поля напряженностью H_{AC} = 17 Э.

чивости $\chi''(T)$, располагавшийся ранее при амплитуде $H_{AC} = 1$ Э на оси температур при значении T = 75 К резко смещается влево на 30° и занимает позицию T = 45 К в случае усиления амплитуды переменного поля до $H_{AC} = 17$ Э. Не трудно подсчитать, какому значению внешнего постоянного поля будет соответствовать наблюдаемый спад положения пика магнитных потерь по температуре.

Таким образом, мы вновь возвращаемся к рассмотрению перехода при $T_{\text{касп}}$ и его оценке как явления или аномалии, имеющей двойственный характер благодаря участию орбитальных и спиновых степеней свободы. Как упоминалось, независимость от внешнего поля положения кривых $\chi'(T)$ и $\chi''(T)$ в районе $T_{\text{касп}} = 60$ K, скорее всего, обусловлена началом структурной трансформации — процессом орбитального замораживания, одинаковым по температуре как для $H_{AC} = 1$ Э, так и для $H_{AC} = 17$ Э. С другой стороны, рост амплитуды и смещение пика магнитных потерь на мнимой части динамической восприимчивости $\chi''(T)$ от значения T = 75 до 45 К связаны с распадом дальнего спинового порядка FeCr₂S₄ и образованием конечных магнитных кластеров, величина и количество которых определяются степенью деструкции бесконечного ферримагнитного кластера в результате возникновения орбитальной фазы при снижении температуры.

ЗАКЛЮЧЕНИЕ

Показано, что орбитальному переходу в FeCr_2S_4 , не зависящему от амплитуды переменного тока,

при температуре T = 60 К отвечает пик магнитных потерь, величина и положение которого подвержены влиянию как внешнего постоянного, так и переменного модулирующего поля. Такой результат объясняется влиянием на характер перехода орбитального и спинового степеней свободы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 18-03-01070 и 17-03-01114). Часть работы выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Aminov T.G., Shabunina G.G., Novotortsev V.M. // Russ. J. Inorg. Chem. 2014. V. 59. № 11. Р. 1312. [Аминов Т.Г., Шабунина Г.Г., Новоторцев В.М. // Журн. неорган. химии. 2014. Т. 59. № 11. С. 1557.] https://doi.org/10.1134/S0036023614110035
- Aminov T.G., Shabunina G.G., Busheva E.V. et al. // Russ. J. Inorg. Chem. 2017. V. 62. Р. 361. [Аминов Т.Г., Шабунина Г.Г., Бушева Е.В. и др. // Журн. неорган. химии. 2017. Т. 62. № 3. С. 347.] https://doi.org/10.1134/S0036023617030020
- 3. *Aminov T.G., Shabunina G.G., Busheva E.V. et al.* // Russ. J. Inorg. Chem. 2018. V. 63. Р. 519. [*Аминов Т.Г., Шабунина Г.Г., Бушева Е.В. и др.* // Журн. неорган. химии. 2018. Т. 63. № 4. С. 487.] https://doi.org/10.1134/S0036023618040022
- 4. *Aminov T.G., Shabunina G.G., Efivov N.N. et al.* // Inorg. Mater. 2017. V. 53. Р. 1150. [*Аминов Т.Г., Шабунина Г.Г., Ефимов Н.Н. и др.* // Неорган. материалы. 2017. Т. 53. № 11. С. 1173.] https://doi.org/10.1134/S0020168517110024
- Marenkin S.F., Izotov A.D., Fedorchenko I.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. Р. 295. [Маренкин С.Ф., Изотов А.Д., Федорченко И.В. и др. // Журн. неорган. химии. 2015. Т. 60. № 3. С. 343.] https://doi.org/10.1134/S0036023615030146
- Ramirez A.P., Cava R.J., Krajewski J. // Nature. 1997.
 V. 386. P. 156. https://doi.org/10.1038/386156a0
- Fritsch V., Deisenhoi'er J., Fichtl R. et al. // Phys. Rev. B. 2003. V. 67. P. 144419. https://doi.org/10.1103/PhysRevB.67.144419
- Siratori K., Kita E. // J. Phys. Soc. Jpn. 1980. V. 48. P. 1443. https://doi.org/10.1143/JPSJ.48.1443
- Hemberger J., Lunkenheimer P., Fichtl R. et al. // Nature. 2005. V. 434. P. 364. https://doi.org/10.1038/nature03348

- Yamasaki Y., Miyasaka S., Kaneko Y. et al. // Phys. Rev. Lett. 2006. V. 96. P. 207204. https://doi.org/10.1103/PhysRevLett.96.207204
- Weber S., Lunkenheimer P., Fichtl R. et al. // Phys. Rev. Lett. 2006. V. 96. P. 157202. https://doi.org/10.1103/PhysRevLett.96.157202
- Sushkov A.B., Tchernyshyov O., Ratcliff W. et al. // Phys. Rev. Lett. 2005. V. 94. P. 137202. https://doi.org/10.1103/PhysRevLett.94.137202
- 13. *Hemberger J., Rudolf T., Krug von Nidda H.-A. et al.* // Phys. Rev. Lett. 2006. V. 97. P. 087204. https://doi.org/10.1103/PhysRevLett.97.087204
- Hemberger J., Krug von Nidda H.-A., Tsurkan V. et al. // Phys. Rev. Lett. 2007. V. 98. P. 147203. https://doi.org/10.1103/PhysRevLett.98.147203
- Rudolf T., Kant Ch., Mayr F. et al. // New J. Phys. 2007. V. 9. P. 76. https://doi.org/10.1088/1367-2630/9/3/076
- 16. van Stapele R.P. // Ferromagnetic Materials. Amsterdam: North Holland, 1982. V. 3. P. 606.
- Bergman D., Alicea J., Gull E. et al. // Nat. Phys. 2007. V. 3. P. 487. https://doi.org/10.1038/nphys622
- Fritsch V., Hemberger J., Biittgen N. et al. // Phys. Rev. Lett. 2004. V. 92. P. 116401. https://doi.org/10.1103/PhysRevLett.92.116401
- Krimmel A., Miicksch M., Tsurkan V. et al. // Phys. Rev. Lett. 2005. V. 94. P. 237402. https://doi.org/10.1103/PhysRevLett.94.237402
- Krimmel A., Miicksch M., Tsurkan V. et al. // Phys. Rev. 2006. V. 73. P. 014413. https://doi.org/10.1103/PhysRevB.73.014413
- Kalvius G.M., Hartmann O., Krimmel A. et al. // J. Phys.: Condens. Matter. 2008. V. 20. P. 252204. https://doi.org/10.1088/0953-8984/20/25/252204
- Shirane G., Cox D.E., Pickard S.J. // J. Appl. Phys. 1964. V. 35. P. 954. https://doi.org/10.1063/1.1713556
- 23. Broquetas Colominas C., Ballestracci R., Roult G. // Physique. 1964. V. 25. P. 526. https://doi.org/10.1051/jphys:01964002505052600
- Eibschutz M., Shtrikman S., Tennebaum V. // Phys. Lett. A. 1967. V. 24. P. 563. https://doi.org/10.1016/0375-9601(67)90615-9
- Spender M.R., Morrish A.H. // Solid State Commun. 1972. V. 11. P. 1417. https://doi.org/10.1016/0038-1098(72)90556-X
- Mertinat M., Tsurkan V., Samusi D. et al. // Phys. Rev. B. 2005. V. 71. P. 100408. https://doi.org/10.1103/PhysRevB.71.100408
- Tsurkan V., Baran M., Szymczak R. et al. // Physica B. 2001. V. 296. P. 301. https://doi.org/10.1016/S0921-4526(00)00760-2
- 28. Aminov T.G., Shabunina G.G., Efimov N.N. et al. // Inorg. Mater. 2019. V. 55. Р. 210. [Аминов Т.Г., Шабунина Г.Г., Ефимов Н.Н. и др. // Неорган. материалы. 2019.

T. 55. № 3. C. 236.]

https://doi.org/10.1134/S0020168519030038

- Maurer D., Tsurkan V., Horn S. et al. // J. Appl. Phys. 2003. V. 93. P. 9173. https://doi.org/10.1063/1/1570930
- Fichtl R., Tsurkan V., Lunkenheimer P. et al. // Phys. Rev. Lett. 2005. V. 94. P. 027601. https://doi.org/10.1103/ PhysRevLett.94.027601
- Kaivius A., Krimmel O., Hartmann R. et al. // J. Phys.: Condens. Matter. 2010. V. 22. P. 052205. https://doi.org/10.1088/0953-89/22/5/052205
- 32. *Tsurkan V., Hemberger J., Klem M. et al.* // J. Appl. Phys. 2001. V. 90. № 9. P. 4636. https://doi.org/10.1063/1.1405827

- 33. Shen C., Yang Z., Tong R. et al. // J. Appl. Phys. 2011. V. 109. P. 07E144. https://doi.org/10.1063/1.3562449
- Binder K., Kinzel W., Stauffer D. // Z. Phys. B. 1979.
 V. 36. P. 161. https://doi.org/10.1007/BF01320217
- Sarbach S. // J. Phys. C: Sol. State Phys. 1980. V. 13. P. 5033. https://doi.org/10.1088/0022-3719/13/26/021
- Benyossef A., Boccara N. // J. Phys. C: Sol. State Phys. 1982. V. 15. P. 1381. https://doi.org/10.1088/0022-3719/15/1/001