_ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546.811.57:546.86.22

КВАЗИБИНАРНЫЙ РАЗРЕЗ Ад₂SnS₃-AgSbS₂

© 2020 г. Ш. Г. Мамедов^{а, *}, А. Н. Мамедов^{а, b}, Р. Д. Курбанова^а

^аИнститут катализа и неорганической химии им. академика М.Ф. Нагиева НАН Азербайджана, пр-т Г. Джавида, 113, Баку, AZ1143 Азербайджан

^bАзербайджанский технический университет, пр-т Г. Джавида, 25, Баку, AZ1073 Азербайджан

*e-mail: inorg.chem.mat@gmail.com Поступила в редакцию 22.04.2019 г. После доработки 10.06.2019 г. Принята к публикации 27.08.2019 г.

Впервые методами дифференциального термического, рентгенофазового и микроструктурного анализов, а также измерением микротвердости и плотности изучены фазовые равновесия в квазитройной системе $Ag_2S-SnS_2-Sb_2S_3$ по сечению $Ag_2SnS_3-AgSbS_2$. Установлено, что система $Ag_2SnS_3-AgSbS_2$ является квазибинарным разрезом эвтектического типа, построена ее диаграмма состояния. Координаты эвтектики равны 30 мол. % Ag_2SnS_3 и температуре 700 К. Определены узкие области твердых растворов на основе исходных компонентов. Границы твердых растворов при 300 К соответствуют 12 мол. % $AgSbS_2$ (со стороны Ag_2SnS_3) и 5 мол. % Ag_2SnS_3 (со стороны $AgSbS_2$). Область растворы на основе тройного сульфида Ag_2SnS_3 кристаллизуются в моноклинной сингонии. С увеличением содержания $AgSbS_2$ параметры моноклинной решетки увеличиваются от a = 6.270, b = 5.793, c = 13.719 Å (для чистого Ag_2SnS_3) до a = 6.278, b = 5.799, c = 13.726 Å (для сплава, содержащего 12 мол. % $AgSbS_2$). Эти твердые растворы относятся к типу замещения. Границы твердых растворых растворов уточнены с помощью температурно-концентрационной зависимости свободной энергии Гиббса в рамках модифицированного варианта модели регулярных растворов.

Ключевые слова: эвтектика, фазовая диаграмма, твердый раствор, рентгенографический анализ, система

DOI: 10.31857/S0044457X20010122

введение

Халькостаннаты серебра широко используются как перспективные функциональные материалы, обладающие полупроводниковыми, термоэлектрическими и фотоэлектрическими свойствами [1–14].

Боковые системы, составляющие квазитройную систему $Ag_2S-SnS_2-Sb_2S_3$, подробно изучены в работах [15–28]. Авторы [15] установили существование в системе Ag-Sn-S трех соединений серебра: Ag_8SnS_6 , Ag_2SnS_3 и $Ag_2Sn_2S_5$.

Соединение Ag_2SnS_3 характеризуется конгруэнтным плавлением при 936 К и кристаллизуется в моноклинной сингонии с параметрами: a = 6.27, b = 5.793, c = 13.719 Å, $\beta = 93.27^{\circ}$, пр. гр. $Pna2_1$ [15]. Соединение $Ag_2Sn_2S_5$ образуется по перитектической реакции при 955 К [15]. При изучении квазибинарной системы Ag_2S-SnS_2 авторы [16, 17] установили, что в системе образуются соединения $Ag_4Sn_3S_8$, Ag_8SnS_6 и Ag_2SnS_3 .

Соединение AgSbS₂, встречающееся в природе в виде минерала (миаргирит), получено в лабораторных условиях авторами [18, 19] при исследовании разреза $Ag_2S-Sb_2S_3$. По данным [19], этот разрез квазибинарный и образует два конгруэнтно плавящихся соединения: Ag_3SbS_3 и $AgSbS_2$; последнее кристаллизуется в моноклинной сингонии с параметрами a = 12.861, b = 4.409, c = 13.282 Å, $\beta = 98.21^{\circ}$ [20].

Тройное соединение $AgSbS_2$ (миаргирит) существует в двух формах: кубической высокотемпературной модификации (β) и моноклинной модификации (α), устойчивой при комнатной температуре. В работе [21] методами ДТА и порошковой рентгеновской дифракции детально изучено соединение $AgSbS_2$, синтезированное из элементов. Данные о температуре плавления соединения согласуются с данными [21, 22] в пределах ± 1 K, в то время как для перехода $\alpha \rightarrow \beta$ приведены несколько различающиеся данные: 653 [21], 648 [22] и 643 К [23]. Трудно осуществляется обратный переход $\beta \rightarrow \alpha$ [24, 21]. Структура α -модификации полностью не определена, параметры решетки AgSbS₂ (a = 13.227, b = 4.411, c = 12.880 Å, $\beta = 98.48^{\circ}$ [21]) аналогичны полученным в резуль-

Состав, мол. %		Термический эффект, К		П	
Ag_2SnS_3	AgSbS ₂	солидуса	ликвидуса	ПЛОТНОСТЬ, Г/СМ	Фазовой состав
100	0.00	_	935	4.60	Однофазный
95	5.0	765	930	4.63	α
90	10	865	920	4.66	α
80	20	700	895	4.71	$a + \beta$
70	30	700	865	4.77	$a + \beta$
60	40	700	835	4.83	$a + \beta$
50	50	700	805	4.89	$a + \beta$
40	60	700	765	4.95	$a + \beta$
30	70	700	700	5.01	$a + \beta$
20	80	700	735	5.08	$a + \beta$
15	85	700	750	5.12	$a + \beta$
10	90	725	770	5.16	$a + \beta$
5	95	755	775	5.21	β
0.00	100	—	785	5.25	Однофазный

Таблица 1. Состав, результаты ДТА, плотность и микроструктура сплавов разреза Ag₂SnS₃-AgSbS₂

тате рентгеновского исследования природных [25] и синтетических [26] образцов. Для β -AgSbS₂ структура определена как тип NaCl [21, 23, 27]. Значения параметра кубической решетки β -AgSbS₂, определенные в этих работах, мало отличаются от усредненной величины a = 5.651 Å.

Система $SnS_2-Sb_2S_3$ изучена в работе [28], авторы которой установили, что разрез является квазибинарным сечением тройной системы Sn-Sb-S. В системе обнаружено соединение $SnSb_2S_5$, плавящееся инконгруэнтно при 735 К.

В связи с практической ценностью материалов на основе халькогенидов серебра возникает необходимость более глубокого изучения их взаимодействия.

В настоящей работе представлены результаты исследования разреза Ag₂SnS₃-AgSbS₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследования системы Ag_2SnS_3 – $AgSbS_2$ синтезировали 14 сплавов. При синтезе использовали элементы (серебро марки "ос. ч." 16, олово квалификации B4, сурьму Су4 и серу B-5) по меньшей мере 99.99 мас. % чистоты и предварительно синтезированные соединения Ag_2SnS_3 и $AgSbS_2$. Расчет рентгенограммы $AgSbS_2$ показал,

что нами получена кубическая модификация с параметром решетки a = 5.6523 Å (табл. 1).

Сплавы системы Ag₂SnS₃-AgSbS₂ синтезировали из лигатур ампульным методом в вертикальной печи. Максимальная температура синтеза сплавов составляла 1140 К. Синтез продолжался 4 ч с применением механического перемешивания, затем проводили медленное охлаждение. Отжиг сплавов системы Ag₂SnS₃-AgSbS₂ проводили в вакуумированных и запаянных кварцевых ампулах при 500-700 К в течение 300 ч. Отожженные образцы закаляли в холодной воде. Взаимодействие в системе Ag₂SnS₃-AgSbS₂ изучали методами дифференциального термического (ДТА), рентгенофазового (РФА) и микроструктурного (МСА) анализов, а также измерением микротвердости и определением плотности. РФА проводили на рентгеновском приборе модели Д2 PHASER (Cu K_{α} -излучение, Ni-фильтр). ДTA выполняли на пирометре HTP-73 в температурном интервале 298-1000 К. Скорость нагрева составляла 15 град/мин. В качестве стандарта использовали окись алюминия. Дифрактограммы снимали на установке D2 Phaser (Cu K_{α} -излучение, Niфильтр). МСА проводили на микроскопе МИМ-7, а микротвердость образцов измеряли на микротвердомере ПМТ-3 при нагрузках, выбранных в результате измерения микротвердости каждой

Рис. 1. Фазовая диаграмма Ag₂SnS₃-AgSbS₂.

фазы. Плотность определяли пикнометрическим методом.

Фазовая диаграмма системы Ag_2SnS_3 — $AgSbS_2$ (рис. 1) построена на основании результатов физико-химического анализа (ДТА, МСА, РФА, измерение микротвердости и плотности) с привлечением термодинамических расчетов.

Синтезированные и отожженные сплавы подвергали ДТА. По данным ДТА, на термограммах сплавов, содержащих 12–95 мол. % AgSbS₂, имеется по три тепловых эффекта. Все тепловые эффекты обратимые, эндотермические. Установлено, что взаимодействие между соединениями Ag_2SnS_3 и AgSbS₂ имеет несложный характер, его диаграмма состояния относится к эвтектическому типу. Результаты термического анализа сплавов системы Ag_2SnS_3 –AgSbS₂ свидетельствуют о наличии тепловых эффектов при 653 и 700 К (табл. 1).

Исследование микроструктуры показало, что отожженные сплавы разреза Ag_2SnS_3 — $AgSbS_2$ двухфазные, за исключением сплавов вблизи исходных компонентов: 0–12 и 95–100 мол. % $AgSbS_2$. Вышеуказанные сплавы имеют структуру твердых растворов.

Результаты РФА сплавов исследуемой системы согласуются с данными ДТА и подтверждают существование твердых растворов на основе Ag_2SnS_3 и $AgSbS_2$. Сравнение дифрактограмм сплавов состава 0–12 мол. % $AgSbS_2$ показало, что они идентичны дифрактограмме Ag_2SnS_3 (рис. 2). Следовательно, сплавы являются твердыми растворами на основе Ag_2SnS_3 . Дифрактограммы сплавов состава 95-100 мол. % AgSbS₂ идентичны дифрактограмме AgSbS₂, т.е. сплавы являются твердыми растворами на основе AgSbS2. На диаграмме Ag₂SnS₃-AgSbS₂ наблюдаются две изотермические линии (653, 700 К). Изотермическая линия при 653 К соответствует полиморфному превращению соединения AgSbS₂. Для определения границ твердых растворов были синтезированы сплавы 90, 91, 93, 95, 98 мол. % исходных компонентов (Ag_2SnS и $AgSbS_2$), которые отжигали в течение 350 ч при 650 и 450 К, затем закаляли. После тщательного изучения микроструктуры этих сплавов находили границы растворимости. Структурные и оптические свойства определяли для монокристаллических образцов сплавов. Монокристаллы были выращены методами направленной кристаллизации и химических транспортных реакций. Для выращивания монокристаллов $(Ag_2SnS_3)_{1-x}(AgSbS_2)_x$ предварительно синтезировали поликристаллические сплавы в количестве 7–10 г, которые потом измельчали, переносили в ампулу с зауженным дном, вакуумировали и помещали в двухзонную печь с заранее установленным градиентом температур. Печь перемещалась со скоростью 3 мм/ч, тогда как ампула оставалась неподвижной. В ходе неоднократных опытов уточняли температуры зон печи и скорость ее движения (табл. 2). В результате получены совершенные монокристаллы стехиометрического состава, пригодные для структурных и оптических измерений.

Рис. 2. Дифрактограммы сплавов системы Ag_2SnS_3 -AgSbS₂: 1 – AgSbS₂, 2 – 95, 3 – 20, 4 – 12 мол. % AgSbS₂, 5 – Ag₂SnS₃.

ТЕРМОДИНАМИЧЕСКИЕ РАСЧЕТЫ

Границы твердых растворов α (Ag₂SnS₃) и β (AgSbS₂) в квазибинарных разрезах Ag₂SnS₃—AgSbS₂ уточняли с помощью температурно-концентрационной зависимости свободной энергии Гиббса. Соединения Ag₂SnS₃ и AgSbS₂ существенно отличаются по составу и кристаллографическим данным [16, 21]. Поэтому для термодинамических расчетов использовали модифицированный вариант модели регулярных растворов, учитывающий зависимость параметра смешения от состава и температуры по уравнению, которое успешно апробировано в [29–32]:

$$\Delta G_T^0 = [a + b(1 - x)^2](1 - x)x + + RT[x \ln(x) + (1 - x)\ln(1 - x)].$$
(1)

Здесь первое слагаемое представляет энтальпию смешения твердых растворов в рамках асимметричного варианта модели регулярных раство-

Рис. 3. Зависимости свободной энергии смешения Гиббса (Дж моль⁻¹) сплавов (Ag₂SnS₃)_{1 – x} (AgSbS₂)_x от состава при температурах 300 (*I*), 400 (*2*), 550 (*3*), 600 (*4*) и 620 K (5): 1) [14000 – 7000(1 – x)²](1 – x)x + + 8.314 × 300[xln(x) + (1 – x)ln(1 – x)], 2) [15500 – -6000(1 – x)²](1 – x)x + 8.314 × 400[xln(x) + (1 – x)ln(1 – x)], 3) [18000 – 6000(1 – x)²](1 – x)x + 8.314 × 550[xln(x) + + (1 – x)ln(1 – x)], 4) [18000 – 6000(1 – x)²](1 – x)x + + 8.314 × 600[xln(x) + (1 – x)ln(1 – x)], 5) [18000 – 6000(1 – x)²](1 – x)x + 8.314 × 620[xln(x) + (1 – x)ln(1 – x)].

ров, второе слагаемое — конфигурационную энтропию смешения твердых растворов в рамках модели немолекулярных соединений. Постоянные *а* и *b* в уравнении (1) определены по экспериментальным данным ДТА для температур 700 и 620 К. Результаты расчета по уравнению (1) применительно к системе Ag_2SnS_3 — $AgSbS_2$ приведены на рис. 3 (кривые границ твердых растворов α и β). Расчеты выполнены и визуализированы с помощью программы OriginLab2018.

Для выбора состава твердых растворов и определения условий выращивания монокристаллов использовали уравнение [32], связывающее коор-

Состав	Скорость перемещения печи, мм/ч	Масса монокристаллов, г	Размер монокристаллов, мм
$(Ag_2SnS_3)_{0.998}(AgSbS_2)_{0.002}$	3.0	7.2	7×18
(Ag ₂ SnS ₃) _{0.996} (AgSbS ₂) _{0.004}	3.0	7.3	7 × 18
(Ag ₂ SnS ₃) _{0.994} (AgSbS ₂) _{0.006}	3.5	7.3	7×20

Таблица 2. Оптимальный режим выращивания монокристаллов твердых растворов (Ag₂SnS₃)_{1 - x}(AgSbS₂)_x, 800-900 K

динаты фазовой диаграммы и кинетические параметры кристаллизации:

$$\chi = x_i^s / x_i^l = k_i^s / k_i^l, \qquad (2)$$

 x_i^l и x_i^s — мольные доли второго компонента в равновесных жидком и твердом растворах (1)Ag₂SnS₃—(2)AgSbS₂ соответственно; χ — коэффициент распределения этого компонента в равновесных жидкой и твердой фазах: k_i^l — константа скорости перехода вещества *i* из жидкой фазы в твердую; k_i^s — константа скорости перехода вещества *i* из твердой фазы в жидкую. Расчеты на основе координат фазовой диаграммы показали, что значения коэффициента распределеных жидких и твердых растворах изменялись в пределах χ = 1.05–1.15. Следова-

тельно, константы скоростей перехода вещества из жидкой фазы в твердую и из твердой фазы в жидкую соизмеримы, что обосновывает использование метода выращивания монокристаллов твердых растворов $(1 - x)Ag_2SnS_3-(x)AgSbS_2$.

ЗАКЛЮЧЕНИЕ

Система Ag₂SnS₃-AgSbS₂ эвтектическая, являющаяся квазибинарным разрезом квазитройной системы $Ag_2S-SnS_2-Sb_2S_3$. Координаты эвтектики равны 30 мол. % Ag₂SnS₃ и температуре 700 К. Выявлены узкие области гомогенности на основе исходных компонентов. Границы твердых растворов при 300 К соответствуют 12 мол. % AgSbS₂ (со стороны Ag₂SnS₃) и 5 мол. % Ag₂SnS₃(со стороны AgSbS₂). Для определения границ твердых растворов на основе Ag_8SnS_6 и Ag_3SbS_3 , различающихся по составу и кристаллографическим данным, успешно апробирован асимметричный вариант модели регулярных растворов. Для выбора состава твердых растворов и определения условий выращивания монокристаллов использовано уравнение, связывающее координаты фазовой диаграммы и кинетические параметры кристаллизации.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Avellaneda D., Nair M.T., Nair P.K.* // J. Thermochem. Soc. 2010. V. 158. № 6. P. 346.
- Fiechter S., Martinez M., Schmidt G. et al. // J. Phys. Chem. Solid. 2003. V. 64. P. 1859. https://doi.org/10.1016/S0022-3697(03)00172-0

- 3. *Gurieva G., Levchenko G., Levchenko S. et al.* // Thin Solid Films. 2013. V. 535. № 2. P. 384. https://doi.org/10.1016/j.tsf.2012.11.104
- 4. *Kim K.M., Tampo H., Shibata H. et al.* // Thin Solid Films. 2013. V. 536. № 1. P. 111. https://doi.org/10.1016/j.tsf.2013.03.119
- Delgado G.E., Mora A.Y., Marcano G. et al. // Mater. Res. Bull. 2003. V. 38. P. 1949. https://doi.org/10.1016/j.materresbull.2003.09.017
- Parasyuk O.V., Gulay L.D., Piskach L.V. et al. // J. Alloys Compd. 2002. V. 339. P. 140. https://doi.org/10.1016/S0925-8388(01)01985-5
- Parasyuk O.V., Chykhrij S.I., Bozhko V.V. et al. // J. Alloys Compd. 2005. V. 399. P. 32. https://doi.org/10.1016/j.jallcom.2005.03.008
- Parasyuk O.V., Fedorchuk A.O., Kogut Yu.M. et al. // J. Alloys Compd. 2010. V. 500. P. 26. https://doi.org/10.1016/j.jallcom.2010.03.198
- Parasyuk O.V., Olekseyuk I.D., Piskach L.V. et al. // J. Alloys Compd. 2005. V. 399. P. 173. https://doi.org/10.1016/j.jallcom.2005.03.023
- 10. *Zmiy O.F., Gulay L.D., Ostapyuk T.A. et al.* // Chem. Matuls Alloys. 2008. № 1. P. 115.
- 11. *Babanly M.B., Yusibov Y.A., Abishev V.T.* Ternary chalcogenides based on copper and silver. Baku, 1993. 342 p.
- 12. *Belandria E., Fernandez B.J.* // Jpn. Appl. Phys. 2000.V. 39. P. 293.
- Aliev O.M., Asadov M.M., Azhdarova D.S. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 6. P. 833. https://doi.org/10.1134/S0036023618060037
- Gurbanov G.R., Adygezalova M.B. // Russ. J. Inorg. Chem. 2018. V. 63. № 1. P. 111. https://doi.org/10.1134/S0036023618010096
- Kokhan O.P. The Interactions in Ag₂X-B^{IV}X₂ (BIV Si, Ge, Sn; X – S, Se) Systems and the Properties of Compounds. Ph. D. thesis. Uzhgorod: Uzhgorod State Univ, 1996.
- Wang N., Fan A.K. // Neues Jahrb. Mineral. Abh. 1989.
 V. 160. P. 33.
- 17. *Kitazawa H., Kitakeze A., Sugaki A. //* Collected abstract mineral. Soc. Japan. 19. 1985.
- 18. *Ковалева И.С., Попова Л.Д., Гендлер Ф.М. и др. //* Изв. АН СССР. Неорган. материалы. 1970. Т. 6. С. 1345.
- Keighin C.W., Noneva R.M. // Mineralium Deposita. 1969. V. 4. P. 153.
- Miargyrite AgSbS₂ // Mineral Data Publishing. Version1. 2001–2005. handbookofmineralogy.org/pdfs/miargyrite.pdf
- 21. Bohac P., Orliukas A., Gäumann A. // Helv. Phys. Acta. 1977. V. 50. P. 853.
- 22. *Koh J., Itagaki K.* // Transactions of the Japan Institute of Metals. 1984. V. 25. № 5. P. 367.
- 23. Висков В.С., Ковалева И.С., Токбаева К. и др. // Изв. АН СССР. Неорган. материалы. 1975. Т. 11. № 10. С. 1879.

- 24. Hall H.T. The systems Ag-Sb-S, Ag-As-S, and Ag-Bi-S: Phase relations and mineralogical significance. Ph. D. thesis. Brown University, 1966. 172 p.
- 25. Knowles C.R. // Acta Crystallogr. 1964. V. 17. P. 847.
- 26. Ненашева С.Н., Пеньков И.Н., Сафин И.А. // Докл. AH CCCP. 1968. T. 183. C. 90.
- 27. Geller S., Wernick J.H. // Acta Crystallogr. 1959. V. 12. P. 46.
- 28. Рустамов П.Г., Курбанова Р.Д., Мовсумзаде А.А. // Докл. АН АзССР. 1987. № 1. С. 27.

- 29. Mamedov A.N., Tagiev E.R., Aliev Z.S. et al. // Inorg. Mater. 2016. V. 52. № 6. P. 543. https://doi.org/10.1134/S002016851606008X
- 30. Asadov S.M., Mamedov A.N., Kulieva S.A. // Inorg. Mater. 2016. V. 52. № 9. P. 876. https://doi.org/10.1134/S0020168516090016
- 31. Mamedov A.N., Akhmedova N.Ya., Asadov C.M. et al. // Chemical Problems 2019. V. 17. № 1. P. 16. https://doi.org/10.32737/2221-8688-2019-1-16-25
- 32. Gurbanov G.R., Mamedov S.G., Adygezalova M.B. et al. // Russ. J. Inorg. Chem. 2017. V. 62. P. 1659. https://doi.org/10.1134/S0036023617120099

Nº 2

2020

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ