ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 536.631+538.955

ТЕРМОДИНАМИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА СТАННАТА ПРАЗЕОДИМА

© 2020 г. А. В. Тюрин^{*a*}, А. В. Хорошилов^{*a*}, М. А. Рюмин^{*a*}, В. Н. Гуськов^{*a*}, А. В. Гуськов^{*a*}, П. Г. Гагарин^{*a*}, Г. Е. Никифорова^{*a*}, О. Н. Кондратьева^{*a*}, К. И. Печковская^{*a*}, Н. Н. Ефимов^{*a*}, В. М. Гуревич^{*b*}, К. С. Гавричев^{*a*}, *

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bИнститут аналитической химии и геохимии им. В.И. Вернадского РАН, ул. Косыгина 19, Москва, 119991 Россия

*e-mail: gavrich@igic.ras.ru Поступила в редакцию 25.08.2020 г. После доработки 03.09.2020 г. Принята к публикации 04.09.2020 г.

Образец станната празеодима $Pr_2Sn_2O_7$ был получен твердофазным взаимодействием оксидов при высокой температуре и охарактеризован методами рентгенофазового и рентгенофлуоресцентного анализов и сканирующей электронной микроскопии. Измерение теплоемкости, выполненное методами адиабатической и дифференциальной сканирующей калориметрии в диапазоне температур 7.9–1345 К, позволило определить температурные зависимости термодинамических функций $Pr_2Sn_2O_7$. Намагниченность станната празеодима изучена в температурном диапазоне 2–300 К. Оценены энтальпия образования и энергия Гиббса образования $Pr_2Sn_2O_7$, а также определен вид зависимости аномальной теплоемкости Шоттки.

Ключевые слова: термодинамика, Pr₂Sn₂O₇, магнетизм, аномалия Шоттки, термобарьерные материалы **DOI:** 10.31857/S0044457X2012020X

введение

Соединения с общей формулой $A_2B_2O_7$ (где A = лантаноиды, B = Ti, Sn, Zr, Hf), которые имеют структуру пирохлора с кубической кристаллической решеткой (пр. гр. *Fd3m*), имеют целый ряд интересных физических и физико-химических свойств, что привлекло к этим соединениям большое внимание [1]. В литературе имеются обобщенные сведения о термодинамических свойствах некоторых сложных оксидов редкоземельных элементов (**P3Э**) со структурой пирохлора [2].

Станнаты РЗЭ имеют высокие температуры плавления (выше 2000°С), химическую инертность и фазовую стабильность в широком температурном диапазоне, вследствие чего они рассматриваются как перспективные материалы для термобарьерных покрытий [3].

Оксиды со структурой пирохлора продемонстрировали ряд необычных состояний, связанных с геометрической фрустрацией, таких как спиновые стекла [4], кооперативный парамагнетизм [5], спиновый лед [6–8] и лед Кагоме [9, 10].

Результаты изучения магнитных свойств и теплоемкости станната празеодима при очень низких температурах, приведенные в работах [11–14], показали, что при температуре ниже 1 К происходит изменение магнитных свойств с пе-

реходом в состояние спинового льда, которое сопровождается аномалией теплоемкости с максимумом на зависимости C_{mag}/T при 0.86 К [14]. Интегрирование зависимости C_{mag}/T позволило рассчитать величину энтропии магнитной аномалии в нулевом поле $S_{\text{mag}} = 3.1 \, \text{Дж}/(\text{моль K})$. Авторы установили, что при наложении магнитного поля $\mu_0 H = 1 T$ энтропия магнитной аномалии при 10 К увеличилась с 3.1 до 4.5 Дж/(моль К). В области температур выше этого превращения аномалий магнитных свойств не выявлено. Помимо наличия этого особого состояния, некоторые станнаты парамагнитных лантаноидов могут претерпевать в области низких температур магнитное упорядочение [15].

У соединений лантаноидов с неполностью заполненной *f*-орбиталью под действием кристаллического поля происходит расщепление электронных уровней. В результате этого некооперативного явления происходит постепенное термическое заселение возбужденных уровней, что вызывает появление аномального вклада в теплоемкость в широком температурном диапазоне, называемого аномалией Шоттки [16]. Вид аномальной кривой теплоемкости зависит от энергии и вырожденности электронных уровней. Внимание к изучению аномальных явлений в области низких температур связано, в частности, с тем, что они вносят вклад в общее значение стандартной энтропии и приведенной энергии Гиббса соединения. Вклад в энтальпию не имеет столь значительного влияния и часто не превышает ошибки значения изменения энтальпии при стандартных условиях. Информации по изучению теплоемкости станната празеодима в области 5–300 К в литературе не обнаружено.

В области высоких температур (360–1045 K) теплоемкость станната празеодима была изучена методом дифференциальной сканирующей калориметрии (ДСК) [17]. Полученные экспериментальные данные авторы описали с использованием уравнения Майера–Келли [18] (Дж/(моль K)):

$$C_p = (214.38 \pm 0.51) + (127.1 \pm 0.5) \times 10^{-3}T - (5.32 \pm 0.59) \times 10^{5}T^{-2}.$$

Энтальпии образования ряда станнатов РЗЭ (РЗЭ = La, Nd, Sm, Eu, Dy, Yb), полученные методом дроп-калориметрии, приведены в работе [19]. Однако для станната празеодима $Pr_2Sn_2O_7$ данных по энтальпии образования не найдено.

Основной целью данного исследования было определение температурных зависимостей термодинамических функций в широком температурном диапазоне на основании измерения теплоемкости методами адиабатической и дифференциальной сканирующей калориметрии. Термодинамические величины необходимы для расчетов стабильности вещества в области, недоступной для эксперимента, и оценки взаимодействий изученных соединений с другими веществами в области высоких температур. Кроме этого, было изучено магнитное поведение станната празеодима от 2 до 300 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и идентификация образцов

Образец станната празеодима Pr₂Sn₂O₇ синтезировали по методике, описанной в [20]. В качестве исходных реагентов использовали оксид олова SnO₂ (чистота 99.0%, Русхим) и предварительно прокаленный при 1273 К оксид празеодима Pr₆O₁₁ (чистота 99.9%, Химмед). Для получения станната празеодима со структурой пирохлора образец постадийно отжигали, причем на последней стадии отжиг продолжался 4 ч при 1673 К. Фазовый состав образца на разных стадиях синтеза контролировали методом рентгенофазового анализа (РФА). Исследования проводили на дифрактометре Bruker D8 Advance (Cu K_{α} -излучение, Ni-фильтр, Lynxeye-детектор, геометрия на отражение) в интервале углов $2\theta = 25^{\circ} - 85^{\circ}$ и шагом сканирования 0.0133°. Расчет кристалло-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 12 2020

графических параметров полученного станната празеодима проводили с помощью программного обеспечения Bruker TOPAS 4.

Химическую чистоту и соотношение катионов определяли методом рентгенофлуоресцентного анализа с помощью микрорентгенофлуоресцентного спектрометра Bruker M4 Tornado.

Морфологию синтезированного образца изучали методом растровой электронной микроскопии с помощью электронного микроскопа Carl Zeiss NVision 40.

Калориметрические измерения

Адиабатическая калориметрия. Измерение изобарной теплоемкости проводили в автоматизированной калориметрической установке БКТ-3 (АОЗТ ТЕРМИС, Менделеево Московской обл.), которая представляет собой адиабатический калориметр с дискретным вводом энергии. Для проверки надежности работы калориметра были проведены измерения теплоемкости эталонного образца бензойной кислоты марки К-2 в области 5–350 К. В результате установили, что аппаратура и методика измерений позволяют получать величины теплоемкости с погрешностью не более ±5% до 15 K, ±0.5% – от 15 до 350 К.

Дифференциальная сканирующая калориметрия. Термический анализ и измерение теплоемкости образца $Pr_2Sn_2O_7$ в интервале 320–1345 К проведили на установке синхронного термического анализа STA 449F1 Jupiter® фирмы Netzsch. Калибровку по температуре и чувствительности проводили измерением плавления стандартных образцов металлов в тиглях из платины-родия с крышкой и вкладышем из Al_2O_3 . По результатам калибровки погрешности составили 0.3 К по температуре и 0.2% по энтальпии. По результатам проверки теплоемкости сапфира максимальная погрешность (2.2% от справочных данных [21]) наблюдалась в конце температурного интервала измерений (1100–1300 K).

Более подробное описание методик калориметрических измерений приведено в работе [20].

Измерение магнитных свойств

Магнитные свойства станната празеодима были измерены в интервале температур 2–300 К с использованием PPMS-9 фирмы Quantum Design с опцией измерения намагниченности [22] в магнитном поле 1 кЭ. Измерения проводили в процессе охлаждения образца. Чтобы исключить ориентацию поликристаллов вдоль линий магнитного поля, смоченный минеральным маслом образец запаковывали в полиэтилен. Вклад минерального масла и полиэтилена учитывали при расчете магнитной восприимчивости образца.

1670

Обработка данных по теплоемкости

В изученном диапазоне температур значения экспериментальной теплоемкости, полученные методами адиабатической и дифференциальной сканирующей калориметрии, были сглажены с использованием линейной комбинации ортонормированных полиномов [23]:

$$C_p^0 = \sum_{j}^m A_j \left[1 - \exp(-0.001T) \right]^j, \tag{1}$$

где A_j — коэффициент *j*-того члена уравнения, T — абсолютная температура.

В области высоких температур теплоемкость, полученная методом ДСК, описана с помощью уравнения Майера—Келли [18]. При этом учитывалось, что ошибка определения теплоемкости в методе адиабатической калориметрии значительно меньше, чем при ДСК, в связи с чем значения в интервале выше 300 К были использованы как опорные при расчете теплоемкости в области высоких температур.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Описание образца $Pr_2Sn_2O_7$

Изучение методом рентгеновской дифракции (рис. S1) показало, что синтезированный образец станната празеодима $Pr_2Sn_2O_7$ при комнатной температуре имел структуру пирохлора с параметром решетки *a* = 10.605(1) Å, который хорошо коррелирует с литературными значениями [24–26]. Рефлексов, свидетельствующих о наличии примесных фаз, не обнаружено.

Размер частиц полученного образца, определенный по уширению рефлексов на рентгенограмме и по данным электронной микроскопии (рис. S2) составил более 100 нм.

Химический анализ полученного станната празеодима подтвердил, что в пределах погрешности метода соединение можно считать стехиометрическим по металлам.

$Tеплоемкость Pr_2Sn_2O_7$

Измерение теплоемкости в области низких температур было выполнено на образце массой 0.9915 г в диапазоне 7.90—346.58 К в 112 экспериментальных точках (табл. S1). Для расчета мольной теплоемкости использовано значение молярной массы 631.23112 г/моль из данных [27]. Изображенная на рис. 1 температурная зависимость теплоемкости в диапазоне 7.9—346 свидетельствует об отсутствии аномалий, связанных с фазовыми превращениями.

Измерения в области высоких температур проведены методом ДСК на образце массой 69.36 мг со скоростью сканирования 20 К/мин. Темпера-

Рис. 1. Теплоемкость Pr₂Sn₂O₇ в интервале 0–1345 К: *1* – данные [17], *2* – данная работа, *3* – теплоемкость La₂Sn₂O₇ [20].

турная зависимость теплоемкости, полученная двумя методами в широком интервале температур 7.90—1345 К, была сглажена с помощью методики, описанной в [23]. Значения коэффициентов уравнения (1), описывающего теплоемкость $Pr_2Sn_2O_7$, приведены в табл. S2. Разброс экспериментальных точек относительно сглаженной кривой показан на рис. S3. С использованием сглаженной зависимости теплоемкости рассчитаны значения энтропии, изменения энтальпии и приведенной энергии Гиббса в изученном температурном диапазоне (табл. 1).

Полученную температурную зависимость теплоемкости $Pr_2Sn_2O_7$ в области 320—1345 К описали с помощью уравнения Майера—Келли [18], широко используемого в базах данных (Дж/(моль К)),

$$C_{p}(T) = 266.663 + 0.0451620839T - 4463149.36T^{-2},$$

$$(R^{2} = 0.999941).$$
(2)

Общий вид полученной температурной зависимости станната празеодима показан на рис. 1. Там же для сопоставления приведена теплоемкость диамагнитного станната лантана [19] и данные по теплоемкости $Pr_2Sn_2O_7$ из работы [17]. Анализ показал, что приведенная в [17] температурная зависимость теплоемкости в интервале температур 360—1045 К лежит выше полученных нами значений (от 6.7% при 300 К до 10.9% при 1000 К) и имеет вид прямой, не характерный для теплоемкости в этом температурном диапазоне.

<i>Т</i> , К	$C_p^0(T)$, Дж/(моль К)	$S^{0}(T)^{*}, $ Дж/(моль К)	$H^0(T) - H^0(0)^*$, Дж/моль	${\it \Phi}^0({\it T})^*,$ Дж/(моль К)
5	0.169	0.0563	0.211	0.0141
10	1.350	0.4500	3.375	0.1125
15	4.556	1.519	17.09	0.3797
20	8.898	2.966	44.49	0.7415
25	13.02	5.385	99.09	1.421
30	17.56	8.154	175.4	2.308
35	22.44	11.22	275.2	3.359
40	27.62	14.55	400.3	4.547
45	33.03	18.12	551.8	5.854
50	38.62	21.89	730.9	7.268
60	50.19	29.94	1175	10.37
70	62.04	38.57	1736	13.77
80	73.92	47.63	2415	17.44
90	85.66	57.01	3214	21.31
100	97.12	66 64	4128	25.36
110	108.2	76.41	5155	29.55
120	118.9	86.29	6290	33.87
130	129.0	96.21	7530	38.28
140	138.6	106.1	8868	42 77
150	147 7	116.0	10300	47.33
160	156.3	125.8	11820	51 94
170	164.3	135.5	13430	56 53
180	171.9	145.1	15110	61 20
190	178.9	154.6	16860	65.88
200	185 5	164.0	18680	70.57
210	191.6	173.2	20569	75.22
220	197.4	182.2	22510	79.90
230	202.7	191.1	24520	84.50
240	207.7	199.8	26570	89.13
250	212.4	208.4	28670	93.74
260	216.8	216.8	30810	98.33
270	220.8	225.1	33000	102.9
280	224.6	233.2	35230	107.4
290	228.2	241.1	37490	111.9
298.15	231.0	247.5	39370	115.5
300	231.6	248.9	39790	116.3
310	234.7	256.6	42130	120.7
320	237.7	264.1	44490	125.0
330	240.5	271.4	46880	129.4
340	243.2	278.7	49300	133.7
350	245.7	285.7	51740	137.9
400	256.4	319.3	64300	158.5
500	271.5	378.2	90760	196.7
600	281.7	428.7	118400	231.4
700	289.2	472.7	147000	262.7
800	295.7	511.8	176300	291.4
900	301.8	546.9	206100	317.9
1000	307.6	579.0	236600	342.4
1100	312.8	608.6	267600	365.3
1200	317.5	636.0	299100	386.8
1300	322.5	661.6	331100	406.9
1345	325.1	672.7	345700	415.6

Таблица 1. Сглаженные значения термодинамических функций Pr₂Sn₂O₇ в области 5–1345 К

* Значение энтропии, изменения энтальпии и приведенной энергии Гиббса рассчитаны без учета энтропии перехода в спиновое стекло (Δ*S* = 3.1 Дж/(моль K)) [14].

Рис. 2. Температурная зависимость магнитной восприимчивости (1) и произведения $\chi T(2)$ образца $Pr_2Sn_2O_7$ в магнитном поле 1000 Э. На вставке приведена температурная зависимость обратной магнитной восприимчивости: точки – экспериментальные данные, линия – аппроксимация уравнением Кюри–Вейса.

Магнитная восприимчивость

Измерения магнитной восприимчивости Pr₂Sn₂O₇ проводили в диапазоне температур 2-300 К в магнитном поле напряженностью 1000 Э в процессе охлаждения исследуемого образца. Во всем исследованном диапазоне температур зависимость магнитной восприимчивости имеет вид, характерный для парамагнетиков (рис. 2). При температуре 300 К значение у Составляет 2.67 см³ К/моль, что заметно меньше теоретической величины для двух невзаимодействующих ионов Pr³⁺ $(3.2 \text{ см}^3 \text{ K/моль}, 4f^2, {}^3H_4, g = 4/5)$ и существенно больше теоретической величины для двух невзаимодействующих ионов Pr^{4+} (1.6 см³ К/моль, 4 f^1 , ${}^{2}F_{5/2}, g = 6/7$) [28]. Такое отклонение может указывать на существование в исследуемом образце ионов празеодима в разных степенях окисления, и/или о наличии достаточно сильных антиферромагнитных взаимодействий между ионами Pr³⁺.

Преимущественный характер возможных магнитных взаимодействий в образце $Pr_2Sn_2O_7$ можно определить, проведя аппроксимацию зависимости обратной магнитной восприимчивости от температуры уравнением закона Кюри–Вейса $\chi = C/(T - \theta)$, где С – постоянная Кюри, θ – парамагнитная температура Кюри (постоянная Вейса). В результате наилучшей аппроксимации температурной зависимости обратной магнитной восприимчивости уравнением Кюри–Вейса в диапазоне температур 100–300 К (вставка на рис. 2) получены следующие параметры аппроксимации: С = 3.03 см³ К/моль, $\theta = -45$ К. Отрицательный знак парамагнитной температуры Кюри указывает на преимущественно антиферромагнитный характер возможных магнитных взаимодействий в Pr₂Sn₂O₇.

Предположив, что в образце сосуществуют ионы празеодима в степенях окисления Pr^{3+} и Pr^{4+} , соотношение этих ионов можно оценить по формуле:

$$\alpha \chi T_{_{\text{reop}Pr}^{^{3+}}} + (1 - \alpha) \chi T_{_{\text{reop}Pr}^{^{4+}}} = \chi T_{_{^{3}\text{KCII}}}, \qquad (3)$$

где α – доля ионов \Pr^{3+} , $\chi T_{\text{теор} \Pr^{3+}}$ – теоретическое значение χT для невзаимодействующих ионов \Pr^{3+} , $\chi T_{\text{теор} \Pr^{4+}}$ – теоретическое значение χT для невзаимодействующих ионов \Pr^{4+} , $\chi T_{3\text{ксп}}$ – экспериментальное значение χT . В качестве экспериментального значения χT можно использовать значение постоянной Кюри ($\chi T_{3\text{ксп}}$ = C), либо значение $\chi T_{3\text{ксп}}$ при 300 К. И в том, и в другом случае получается, что в образце должно присутствовать большое (>10%) количество ионов \Pr^{4+} , что не подтверждается структурными данными.

С другой стороны, ион \Pr^{3+} имеет четное число *f*-электронов (так называемый некрамерсовский ион), и кристаллическое поле может полностью снять вырождение, что приведет к немагнитному основному состоянию, а следовательно, занижению экспериментальных значений χT по отношению к теоретической величине для \Pr^{3+} . Полагаем, что это обоснование заниженных значений χT более вероятно.

Рис. 3. Зависимость энтальпии образования станнатов РЗЭ от ионного радиуса РЗЭ по данным работы [17].

Полученные нами данные по магнитной восприимчивости $Pr_2Sn_2O_7$ удовлетворительно согласуются с данными работ [13, 15].

Оценка энтальпии образования Pr₂Sn₂O₇

Представляет интерес оценка энтальпии образования станната празеодима. К сожалению, нам не удалось найти в литературе сведений об экспериментальном определении этой термодинамической величины, однако ее можно оценить исхоля из данных для ряда станнатов лантаноидов. приведенных в [18], полагая, что в изоструктурных соединениях существует корреляция между энтальпиями образования из оксидов и радиусами иона лантаноидов, как это было показано в работе [29]. На рис. 3 построена зависимость $\Delta_{f}H^{\text{ox}} = f(R_{i})$, в которой ионные радиусы заимствованы из работы [30] для КЧ = 8. Из этой завиможно оценить симости величину $\Delta_{f}H^{\text{ox}}$ (Pr₂Sn₂O₇) = -112 ± 3 кДж/моль. Использование данных по энтальпиям образования оксидов $\Delta_f H^{\circ}(\Pr_2 O_3) = -1809.6 \pm 6.7$ кДж/моль [30] и $\Delta_{\ell} H^{\circ}(SnO_2) = -577.6 \pm 0.2$ кДж/моль [18] позволяет оценить энтальпию образования станната празеодима из элементов $\Delta_{f} H^{\circ}(\Pr_{2} \operatorname{Sn}_{2} \operatorname{O}_{7}) = -3077 \pm$ ± 8 кДж/моль. Энергия Гиббса образования из элементов, рассчитанная с учетом энтропии перехода в спиновый лед (S_{mag}= 3.1 Дж/(моль К), $\Delta S^{0}(\Pr_{2}Sn_{2}O_{7}, 298 \text{ K}) = 250.6 \text{Дж/(моль K)}), \text{ соста$ вила $\Delta_f G^{\circ}(\Pr_2 \operatorname{Sn}_2 \operatorname{O}_7) = -2870 \pm 10 \text{ кДж/моль. Не-$ обходимые для расчета значения энтропии Pr (73.931 Дж/(моль K)), Sn (44.141 Дж/(моль K)) и O_2 (205.036 Дж/(моль K)) заимствованы из [31].

Аномалия Шоттки

Как описано выше, теплоемкость парамагнитных соединений лантаноидов имеет аномальный вклад, связанный с расщеплением электронных уровней под действием поля кристалла, причем вид температурной зависимости аномального вклада в теплоемкость может существенно зависеть не только от свойств иона лантаноида, но и от структуры кристалла. Соответственно, и энтропия аномалии, которая рассчитывается из данных по теплоемкости, также индивидуальна для каждого соединения.

Аномальную зависимость теплоемкости соединений с *f*-электронами от температуры можно оценить путем расчета по частотам электронных уровней. Для различных соединений празеодима (+3) частоты электронных уровней несколько рознятся. Например, для $PrPO_4$ одна группа уровней (³*H*₄) лежит ниже 200 см⁻¹, в то время как другая (³*H*₅) – выше 2000 см⁻¹ [32, 33], в связи с чем в области ниже 300 К теплоемкость имеет вид выраженного плавного максимума. Для оксида празеодима Pr_2O_3 в диапазоне ниже 1000 см⁻¹ уровни расположены равномерно [34], и аномальная теплоемкость имеет два пологих максимума.

Вторым путем оценки аномальной теплоемкости является сопоставление теплоемкости изучаемого вещества и его диамагнитного структурного аналога (соединений La или Lu) или соединения гадолиния, у которого аномалия Шоттки фиксируется только в области ниже 20 K, по методу [34]:

$$C_{\mathrm{an}}(T) = C_p \left(\mathrm{Ln}_2 \mathrm{Sn}_2 \mathrm{O}_7, T \right) - C_{\mathrm{lat}} \left(\mathrm{Ln}_2 \mathrm{Sn}_2 \mathrm{O}_7 \right), \quad (4)$$

где

$$C_{\text{lat}} (\text{Ln}_2 \text{Sn}_2 \text{O}_7) = (1 - f) C_p (\text{Gd}_2 \text{Sn}_2 \text{O}_7) + f C_n (\text{La}_2 \text{Sn}_2 \text{O}_7).$$
(5)

Коэффициент *f* в уравнении (5) можно рассчитать из кристаллографических параметров

$$f = [V(Pr_2Sn_2O_7) - V(La_2Sn_2O_7)]/[V(Gd_2Sn_2O_7) - V(La_2Sn_2O_7)],$$
(6)

где $V(Ln_2Sn_2O_7)$, $V(La_2Sn_2O_7)$ и $V(Gd_2Sn_2O_7)$ – объемы элементарных ячеек.

К сожалению, данных по теплоемкости станната гадолиния в области низких температур в литературе не обнаружено, в связи с чем мы провели не количественную, а качественную оценку аномалии Шоттки $Pr_2Sn_2O_7$, определив разность теплоемкостей станната празеодима и станната лантана [19].

Рис. 4. Аномальная теплоемкость $Pr_2Sn_2O_7$: о – значения, рассчитанные на 1 грамм-атом празеодима как половина разности теплоемкости станнатов празеодима и лантана; сплошная линия – сумма теплоемкостей от вкладов колебаний с частотами 50, 350 и 900 см⁻¹. Приведенные ошибки составляют 0.5% от экспериментальных значений теплоемкости $Pr_2Sn_2O_7$.

Для описания изображенной на рис. 4 температурной зависимости аномальной теплоемкости $Pr_2Sn_2O_7$ в области ниже 300 К использовали аддитивный подход, представив ее как сумму от трех вкладов для энергетических уровней с частотами 50, 350 и 900 см⁻¹. При оценке возможного вклада аномалии Шоттки использовали уравнение [16]:

$$C_{x} = \frac{R}{T^{2}} \Big\{ \Sigma_{i} g_{i} \left(\varepsilon_{i} / kT \right)^{2} \exp\left(-\varepsilon_{i} / kT \right) \Big\} \Big/ Z - \\ - \left[\left\{ \Sigma_{i} g_{i} \left(\varepsilon_{i} / kT \right) \exp\left(-\varepsilon_{i} / kT \right) \right\} / Z \right]^{2},$$
(7)

где R — универсальная газовая постоянная, ε_i — энергия *i*-го уровня, g_i — степень его вырождения, k — константа Больцмана, T — абсолютная температура, Z — статсумма.

Можно видеть, что полученные модельные значения удовлетворительно коррелируют с экспериментальными данными, что позволяет отнести выявленную в области 0-300 К аномальную теплоемкость за счет аномалии Шоттки. Необходимо отметить, что у соединений празеодима помимо области спектра с относительно низкими частотами, имеется и группа частот в области выше 2000 см^{-1} , в результате чего происходит заметный рост энтропии вещества в области высоких температур.

ЗАКЛЮЧЕНИЕ

В результате измерения теплоемкости определены температурные зависимости термодинамических свойств $Pr_2Sn_2O_7$ в диапазоне 7–1345 К. В ходе анализа теплоемкости в интервале выше 7 К выявлено наличие аномалии, связанной с термическим заселением электронных уровней, расщепленных под действием кристаллического поля (аномалия Шоттки), которая характеризуется двумя плавными максимумами. В результате изучения магнитных свойств в температурном диапазоне 2–300 К показан антиферромагнитный характер возможных магнитных взаимодействий в станнате празеодима. Оценены значения энтальпии и энергии Гиббса образования $Pr_2Sn_2O_7$.

БЛАГОДАРНОСТЬ

Данное исследование выполнено в рамках госзадания ИОНХ РАН на проведение фундаментальных исследований с использованием оборудования ЦКП ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Таблица S1. Экспериментальная теплоемкость Pr₂Sn₂O₇, Дж/(моль K).

Таблица S2. Коэффициенты уравнения (1) для теплоемкости $Pr_2Sn_2O_7$.

Рис. S1. Рентгенограмма образца Pr₂Sn₂O₇.

Рис. S2. Микрофотография керамики Pr₂Sn₂O₇.

Рис. S3. Отклонение экспериментальных теплоемкостей $Pr_2Sn_2O_7$ от сглаженных значений.

СПИСОК ЛИТЕРАТУРЫ

- Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
- Guskov V.N., Gavrichev K.S., Gagarin P.G., Guskov A.V. // Rus. J. Inorg. Chem. 2019. V. 64. № 10. Р. 1265. https://doi.org/10.1134/S0036023619100048 [Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1072.]
- Wang J., Xu F., Wheatley R.J. et al. // Mater. Des. 2015. V. 85. P. 423. https://dx.doi.org/0.1016/j.matdes.2015.07.022
- 4. *Greedan J.E., Sato M., Yan Xu, Razavi F.S.* // Sol. State Commun. 1986. V. 59. № 12. P. 895. https://doi.org/10.1016/0038-1098(86)90652-6

- Gardner J.S., Dunsiger S.R., Gaulin B.D. et al. // Phys. Rev. Lett. 1999. V. 82. P. 1012. https://doi.org/10.1103/PhysRevLett.82.1012
- Harris M.J., Bramwell S.T., McMorrow D.F. et al. // Phys. Rev. Lett. 1997. V. 79. P. 2554. https://doi.org/10.1103/PhysRevLett.79.2554
- Ramirez A.P., Hayashi A., Cava R.J. et al. // Nature. 1999. V. 399. P. 333. https://doi.org/10.1038/20619
- Bramwell S.T., Gingras M.J.P. // Science. 2001. V. 294. P. 1495. https://doi.org/10.1126/science.1064761
- Matsuhira K., Hiroi Z., Tayama T. et al. // J. Phys.: Condens. Matter. 2002. V. 14. P. L559. https://doi.org/10.1088/0953-8984/14/29/101
- 10. *Hiroi Z., Matsuhira K., Takagi S. et al.* // J. Phys. Soc. Jpn. 2003. V. 72. № 2. P. 411. https://doi.org/10.1143/JPSJ.72.411
- 11. *Matsuhira K., Hinatsu Y., Tenya K. et al.* // J. Phys. Soc. Jpn. 2002. V. 71. № 6. P. 1576. https://doi.org/10.1143/JPSJ.71.1576
- Matsuhira K., Sekine C., Paulsen C., Hinatsu Y. // J. Magn. Magn. Mater. 2004. V. 272–276. P. e981. https://doi.org/10.1016/j.jmmm.2003.12.500
- Martin N., Bonville P., Lhotel E. et al. // Phys. Rev. X. 2017. V. 7. P. 041028-1. https://doi.org/10.1103/PhysRevX.7.041028
- 14. Zhou H.D., Wiebe C.R., Janik J.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 227204-1
- Blöte H.W.J., Wielinga R.F., Huiskamp W.J. // Physica. 1969. V. 43. № 4. P. 549. https://doi.org/10.1016/0031-8914(69)90187-6
- Tari A. // The specific heat of matter at low temperatures. Imperial College Press, 2003. 211 p. https://doi.org/10.1142/9781860949395 0006
- Denisova L.T., Irtyugo L.A., Beletskii V.V., Denisov V.M. // Phys. Sol. State. V. 58. № 7. P. 1300. [Денисова Л.Т., Иртюго Л.А., Белецкий В.В., Денисов В.М. // ФТТ. 2016. Т. 58. № 7. С. 1259]. https://doi.org/10.1134/S1063783416070131
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.ja-1347a029
- Lian J., Helean K.B., Kennedy B.J. et al. // J. Phys. Chem. B. 2006. V. 110. P. 2343. https://doi.org/10.1021/jp055266c

- 20. Ryumin M.A., Nikiforova G.E., Tyurin A.V. et al. // Inorg. Mater. 2020. V. 56. № 1. Р. 97. [Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102.]. https://doi.org/10.1134/S0020168520010148
- 21. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. NBS. 1982. V. 87. № 2. P. 159. https://doi.org/10.6028/jres.087.012
- 22. https://www.qdusa.com/products/ppms.html#productFeatures
- 23. *Gurevich V.M., Khlyustov V.G.* // Geokhimiya. 1979. № 6. Р. 829. (in Russian) [*Гуревич В.М., Хлюстов В.Г.* // Геохимия. 1979. № 6. С. 829.]
- 24. Brisse F, Knop O. // Can. J. Chem. 1968. V. 46. № 6. P. 859. https://doi.org/10.1139/v68-148
- 25. Whinfreyd C., Eckar O., Tauber A. // J. Am. Chem. Soc. 1960. V. 82. № 11. P. 2695. https://doi.org/10.1021/ja01496a010
- 26. Kennedy B.J., Hunter B.A., Howard C.J. // J. Sol. State Chem. 1997. V. 130. P. 58. https://doi.org/10.1006/jssc.1997.7277
- 27. Wieser M.E. // Pure Appl. Chem. 2006. V. 78. № 11. P. 2051. https://doi.org/10.1351/pac2006781112051
- 28. *Kahn O.* Molecular magnetism. New York: VCH Publishers, 1993.
- Ushakov S.V., Helean K.B., Navrotsky A. // J. Mater. Res. 2011. V. 16. P. 2623. https://doi.org/10.1557/JMR.2001.0361
- 30. Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- 31. http://www.chem.msu.su/cgi-bin/tkv.pl
- Kowalski P.M., Beridze G., Vinograd V., Bosbach D. // J. Nuclear Mater. 2015. V. 464. P.147. https://doi.org/10.1016/j.jnucmat.2015.04.032
- Thiriet C., Konings R.J.M., Javorsky P. et al. // J. Chem. Thermodyn. 2005. V. 37. P. 131. http://doi.org/101016/j.jct.2006.02.006
- 34. Gruber J.B., Justice B.H., Westrum E.F., Jr., Zandi B. // J. Chem. Thermodyn. 2002. V. 34. P. 457. https://doi.org/10.1006/jcht.2001.0860