ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 548.31

ОСОБЕННОСТИ СТЕРЕОХИМИИ ЛАНТАНИДОВ В СУЛЬФИДАХ

© 2020 г. В. Н. Сережкин^{а,} *, М. Албакаджажи^а, Д. В. Пушкин^а, Л. Б. Сережкина^а

^аСамарский национальный исследовательский университет им. академика С.П. Королева, ул. Академика Павлова, 1, Самара, 443011 Россия

> *e-mail: serezhkin@samsu.ru Поступила в редакцию 16.06.2020 г. После доработки 21.07.2020 г. Принята к публикации 27.07.2020 г.

С помощью полиэдров Вороного–Дирихле (ПВД) проведен кристаллохимический анализ 711 сульфидов, в структурах которых содержится 1199 координационных полиэдров LnS_n, где Ln – любой лантанид от La до Lu. Установлено, что в сульфидах встречаются атомы Ln(II), Ln(III) и Ce(IV), связывающие от 6 до 10 атомов серы, которые существуют в виде ионов S^{2–} или S[–]. Показано, что параметры ПВД позволяют определять валентное состояние атомов Ln в структурах сульфидов, а также различать ионы S^{2–} или S[–]. Охарактеризованы ПВД 2913 атомов серы и установлена зависимость кратности связей S–S от их длины. Дана количественная оценка лантанидного сжатия в полиэдрах Ln^{III}X_n в зависимости от природы халькогена X (O, S, Se или Te).

Ключевые слова: полиэдры Вороного–Дирихле, стереохимия, лантаниды, сульфиды, халькогениды, лантанидное сжатие

DOI: 10.31857/S0044457X20120156

введение

Соединения, в структурах кристаллов которых имеются координационные полиэдры LnS_n (Ln – лантанид), активно изучаются в последние десятилетия. Интерес к таким соединениям (далее условно - сульфидам) вызван практически важными особенностями их оптических, термоэлектрических, магнитных и ряда других физико-химических свойств [1-7]. Одновременно сульфиды Ln представляют и значительный теоретический интерес, так как позволяют оценить кристаллоструктурную роль гомоатомных взаимодействий S-S, которые являются важной особенностью стереохимии серы. Так, в сульфидах Ln встречаются межатомные контакты S-S, длина которых больше суммы ковалентных радиусов атомов серы (2.08 Å [8]), но меньше суммы их ван-дер-ваальсовых (3.6 Å [9]) радиусов. Поэтому в согласии с недавно принятыми рекомендациями IUPAC [10], такие контакты можно рассматривать как частный случай халькогеновых связей. Присутствие в структурах сульфидов разнообразных по длине контактов S–S затрудняет определение формальных зарядов атомов, особенно если в составе веществ присутствуют атомы элементов, способных существовать в разных валентных состояниях. Реальным примером может служить CsCuCeS₃ {156245}, для которого кроме двух возможных вариантов распределения формальных валентностей – Cs⁺Cu⁺Ce⁴⁺(S²⁻)₃

или $Cs^+Cu^{2+}Ce^{3+}(S^{2-})_3$ – авторы [11] с учетом результатов оценки магнитной восприимчивости предложили третий вариант – $Cs^+Cu^+Ce^{3+}(S^{2-})_2(S^-)$. В фигурных скобках здесь и далее указан код соединения в базах данных (цифровой в [12] или буквенный в [13]).

При кристаллохимическом анализе соединений, содержащих более 4800 кристаллографически разных координационных полиэдров (**KII**) LnX_n , где X = O [14], Se [15] или Te [16], было выяснено, что характеристики полиэдров Вороного-Дирихле (**ПВД**) дают возможность уверенно различать атомы Ln(II), Ln(III) и Ln(IV). Данные [14–16] позволяют допустить, что параметры ПВД пригодны для определения валентного состояния атомов Ln и в сульфидах. Проверка указанного предположения явилась основной целью настоящей работы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектами анализа были все сульфиды Ln, кристаллоструктурные характеристики которых содержатся в базах данных [12, 13] и отвечают трем основным требованиям: 1) в структурах соединений, сведения о которых опубликованы не ранее 1960 г., все атомы Ln образуют КП или "комплексы" LnS_n ; 2) отсутствует какое-либо разупорядочение в размещении атомов Ln или S, имеющих целочисленную степень окисления, и 3) структура изучена с фактором расходимости $R \le 0.1$. Последнее ограничение не учитывали только для моносульфидов LnS, которые принадлежат к структурному типу NaCl. Указанным условиям соответствовали данные для 711 соединений, содержащих соответственно 1199 и 2913 кристаллографически разных атомов Ln и S.

Большинство рассмотренных соединений (около 650, база данных ICSD [12]) представляют собой бинарные, тройные или четверные сульфиды, хотя в некоторых случаях атомы серы входят в состав комплексных тиоанионов, в частности TS_4^{Z-} , где T = B(III), Si(IV) или P(V). В остальных соединениях (более 50, Кембриджская база данных [13]) атомы серы содержатся в составе разнообразных органических ацидолигандов, например, дитиокарбамат-, дитиофосфинат-ионов.

Кристаллохимический анализ проводили с позиций развиваемой нами стереоатомной модели структуры кристаллов (СМСК), в рамках которой геометрическим образом любого атома является соответствующий ему ПВД [14–24]. На основании фундаментальных характеристик кристаллов были рассчитаны параметры ПВД всех атомов, а по методу пересекающихся сфер [24] – их координационные числа (КЧ). Все расчеты проводили с помощью комплекса программ TOPOS–InterMol [25].

Основные понятия СМСК неоднократно указывались в [14–24], поэтому для удобства читателя на примере сульфидов Ln напомним только важнейшие характеристики и обозначения, необходимые для понимания и обсуждения результатов. В общем случае ПВД атома Ln в сульфидах имеет состав $\text{LnS}_n Z_q$, где n - K Ч атома Ln, Z - атомы второй координационной сферы, а сумма n + q равна общему числу граней ПВД. В соответствии с критериями [24], невалентные контакты Ln/Z (слеш указывает наличие общей грани у ПВД атомов Ln и Z) не учитываются при определении KЧ атомов Ln.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

ПВД атомов лантанидов

По отношению к атомам серы атомы Ln проявляют все KЧ от 6 до 10 (табл. 1). Как и в кислородсодержащих соединениях [14], в сульфидах атомы Ln чаще всего реализуют KЧ = 8 (~44% случаев), которое существенно реже встречается в селенидах (~29% [15]) или теллуридах Ln (~13% [16]). В то же время с увеличением размера атома халькогена в ряду S–Se–Te доля октаэдров LnX₆, наоборот, закономерно растет (соответственно ~33, 49 и 62%, табл. 1), поэтому в селенидах и теллуридах для атомов Ln наиболее распространено KЧ = 6. Важнейшие характеристики ПВД атомов Ln указаны в табл. 1 и 2. В полном согласии с классическими представлениями для атомов Ln рост КЧ сопровождается увеличением средней длины связей Ln—S (табл. 2).

Как известно [14–16], дескриптором валентного состояния лантанида может служить радиус сферического домена (\mathbf{R}_{sd}) атома Ln, объем которого совпадает с объемом соответствующего ПВД. При фиксированном валентном состоянии лантанида \mathbf{R}_{sd} практически не зависит от его KЧ, однако существенно уменьшается при увеличении степени окисления Ln. Так, при переходах Ln²⁺ \rightarrow Ln³⁺ (Ln = Sm, Eu, Yb) в сульфидах \mathbf{R}_{sd} уменьшается в среднем на 0.11(2) Å, а при переходе Ce³⁺ \rightarrow Ce⁴⁺ – на 0.08 Å (табл. 2).

При обсуждении влияния валентного состояния атомов Ln на их $R_{\rm sd}$ (или $V_{\Pi B \Pi}$) следует особо отметить уникальные особенности моносульфидов. При стандартных условиях они все относятся к структурному типу NaCl и формально содержат атомы двухвалентных лантанидов с КЧ = 6. Однако, несмотря на изоструктурность, по своим электрофизическим свойствам моносульфиды резко различаются. Известно [8, 26], что некоторые из них являются полупроводниками Ln^{II}S, а остальные, обладающие металлической проводимостью, представляют собой Ln^{III}S(ē). В табл. 2 характеристики ПВД всех атомов Ln в моносульфидах указаны в отдельных строках "LnS" без учета валентного состояния лантанида (II или III). Различить эти два типа моносульфидов легко позволяет рис. 1, на котором кривая а показывает зависимость R_{sd} атомов Ln от атомного номера (Z) лантанида в изоструктурных кристаллах "LnS", а пунктирная кривая б характеризует зависимость $R_{sd} = f(Z)$ для атомов Ln^{III} с KЧ = 6 в структурах всех остальных сульфилов, в которых трехвалентное состояние лантанидов не вызывает сомнений. Сравнение кривых а и б на рис. 1 свидетельствует о том, что большинство LnS являются соединениями $Ln^{III}S(\bar{e})$, поскольку именно для них значения $R_{sd}(Ln)$ на кривых *а* и б практически совпадают. Скачкообразный рост R_{sd} атомов Ln на кривой а (рис. 1) наблюдается только для моносульфидов Sm, Eu и Yb, которые являются полупроводниками Ln^{II}S.

Для полноты картины на рис. 1 приведены также зависимости $R_{sd} = f(Z)$ для изоструктурных LnSe (кривая *в* [15]) и LnTe (кривая *г* [16]), которые, как и LnS, принадлежат к структурному типу NaCl. Отметим, что кривые *a*, *в* и *г* почти одинаковые по форме и, независимо от природы халькогена X (S, Se или Te), указывают на наличие атомов Sm^{II}, Eu^{II} и Yb^{II} во всех монохалькогенидах LnX. Принципиальное различие этих кривых заключается только в двухвалентном состоянии для Tm^{II}Te (рис. 1, *г*) и наличии плеча для TmSe

	/	2			, ,	
_	KTT	ТТВ полиэдра ВД	Комплекси	ы LnS _n	$\operatorname{LnSe}_n[15]$	LnTe _n [16]
Форма КП атома Ln	полиэдра ВД		число атомов Ln	доля в выборке, %		
Тетраэдр	34	{3/4}	_	_	0.8	0.3
Октаэдр	4 ⁶	{3/8}	391	32.6	49.1	62.0
Тригональная призма	324252	{3/8}	5	0.4	_	_
Одношапочная тригональная призма	3 ² 4 ⁵	{3/6 4/2}	101	8.4	6.5	2.1
Пентагональная бипирамида	4 ⁵ 5 ²	{3/10}	95	7.9	3.4	_
Гексагональная бипирамида	4 ⁶ 6 ²	{3/12}	316	26.3	3.3	_
Двухшапочная тригональная призма	4 ⁶ 5 ²	{3/10 4/1}	194	16.2	12.1	2.1
Тригональный додекаэдр	4 ⁴ 5 ⁴	{3/12}	9	0.8	12.8	7.4
Куб	38	{4/6}	6	0.5	0.2	1.2
Квадратная антипризма	4 ⁸	{3/8 4/2}	_	_	0.3	2.1
Трехшапочная тригональная призма	4 ³ 5 ⁶	{3/14}	78	6.5	8.7	_
Одношапочная квадратная антипризма	4 ⁵ 5 ⁴	{3/12 4/1}	2	0.2	2.8	22.8
Сфенокорона	4 ⁶ 5 ⁴	{3/12 4/2}	1	0.1	0.2	_
Двухшапочная квадратная антипризма	4 ² 5 ⁸	{3/16}	1	0.1	—	—
	Форма КП атома Ln Форма КП атома Ln Тетраэдр Октаэдр Тригональная призма Одношапочная тригональная призма Пентагональная бипирамида Гексагональная бипирамида Гексагональная бипирамида Двухшапочная тригональная призма Тригональный додекаэдр Куб Квадратная антипризма Трехшапочная тригональная призма Одношапочная квадратная антипризма Сфенокорона Двухшапочная квадратная антипризма	П П КТТ полиэдра ВД Тетраэдр 3 ⁴ Октаэдр 4 ⁶ Тригональная призма 3 ² 4 ² 5 ² Одношапочная тригональная призма 3 ² 4 ⁵ Пентагональная бипирамида 4 ⁶ 6 ² Двухшапочная тригональная призма 4 ⁶ 5 ² Тригональный додекаэдр 4 ⁴⁵⁴ Куб 3 ⁸ Квадратная антипризма 4 ³ 5 ⁶ Одношапочная квадратная антипризма 4 ⁵⁵⁴	Форма КП атома Ln КTT полиэдра ВД ТТВ полиэдра ВД Тетраэдр 3 ⁴ {3/4} Октаэдр 4 ⁶ {3/8} Тригональная призма 3 ² 4 ² 5 ² {3/8} Одношапочная тригональная призма 3 ² 4 ⁵ {3/6 4/2} Пентагональная бипирамида 4 ⁶ 6 ² {3/10} Гексагональная бипирамида 4 ⁶ 5 ² {3/10} Куб 3 ⁸ {4/6} Куб 3 ⁸ {4/6} Квадратная антипризма 4 ³ 5 ⁶ {3/14} Одношапочная квадратная антипризма 4 ⁵ 5 ⁴ {3/12 4/1} Кренокорона 4 ⁶ 5 ⁴ {3/12 4/2}	КГТ ГТВ КПТ Полиэдра КОМПлекси Форма КП атома Ln ВД ВД ВД Число атомов Ln Тетраэдр 3 ⁴ {3/4} - 46 3/8} 391 Октаэдр 4 ⁶ {3/8} 5 391 5 0 Октаэдр 3 ² 4 ² 5 ² {3/8} 5 0 101 101 Пентагональная призма 3 ² 4 ⁵ 5 ² {3/10} 95 101 95 Гексагональная бипирамида 4 ⁶ 6 ² {3/12} 316 101 Двухшапочная тригональная призма 4 ⁶ 5 ² {3/10 4/1} 194 Тригональный додекаэдр 4 ⁴ 5 ⁴ {3/12} 9 Куб 3 ⁸ {4/66} 6 Квадратная антипризма 4 ³ 5 ⁶ {3/14} 78 Одношапочная квадратная антипризма 4 ⁶ 5 ⁴ {3/12 4/1} 2 Куб 3 ⁸ {4/66} 6 4 Куб 3 ⁸ {3/14} 78 0 <td< td=""><td>КТТ ГТВ Комплексы LnS_n Форма КП атома Ln ВД Полиэдра ВД число атомов Ln число Тетраэдр 3⁴ {3/4} 3/4 - - - Октаэдр 4⁶ {3/8} 391 32.6 - - Октаэдр 4⁶ {3/8} 5 0.4 - - Одношапочная тригональная призма 3²4²5² {3/6} 101 8.4 Пентагональная бипирамида 4⁵5² {3/10} 95 7.9 Гексагональная бипирамида 4⁶5² {3/10 4/1} 194 16.2 Двухшапочная тригональная призма 4⁶5² {3/12} 9 0.8 Куб 3⁸ {4/6} 6 0.5 Квадратная антипризма 4³5⁶ {3/14} 78 6.5 Одношапочная квадратная антипризма 4⁶5⁴ {3/12 4/2} 1 0.1 Двухшапочная квадратная антипризма 4²5⁸ {3/16} 1 0.1 </td><td>КТТ Полиэдра КТТ ТТВ Комплексы LnSn LnSen [15] Форма КП атома Ln ВД ВД Число атомов Ln Число атомов</td></td<>	КТТ ГТВ Комплексы LnS _n Форма КП атома Ln ВД Полиэдра ВД число атомов Ln число Тетраэдр 3 ⁴ {3/4} 3/4 - - - Октаэдр 4 ⁶ {3/8} 391 32.6 - - Октаэдр 4 ⁶ {3/8} 5 0.4 - - Одношапочная тригональная призма 3 ² 4 ² 5 ² {3/6} 101 8.4 Пентагональная бипирамида 4 ⁵ 5 ² {3/10} 95 7.9 Гексагональная бипирамида 4 ⁶ 5 ² {3/10 4/1} 194 16.2 Двухшапочная тригональная призма 4 ⁶ 5 ² {3/12} 9 0.8 Куб 3 ⁸ {4/6} 6 0.5 Квадратная антипризма 4 ³ 5 ⁶ {3/14} 78 6.5 Одношапочная квадратная антипризма 4 ⁶ 5 ⁴ {3/12 4/2} 1 0.1 Двухшапочная квадратная антипризма 4 ² 5 ⁸ {3/16} 1 0.1	КТТ Полиэдра КТТ ТТВ Комплексы LnSn LnSen [15] Форма КП атома Ln ВД ВД Число атомов Ln Число атомов

Таблица 1. Характеристики КП LnX_n (X = S, Se или Te) и соответствующих им "упрощенных" ПВД*

* Каждому геометрическому сорту комплексов LnX_n отвечает упрощенный ПВД (он не учитывает грани Ln/Z) некоторого комбинаторно-топологического типа (**KTT**) с определенным топологическим типом вершин (**TTB**). В символе **K**TT строчные числа указывают число вершин у грани, а надстрочные — общее число таких граней. В обозначениях TTB первое число указывает число ребер ПВД, пересекающихся в вершине, а второе (после слеша) — общее количество таких вершин. Поскольку "упрощенные" ПВД дуальны КП (число вершин одного полиэдра равно числу граней другого и наоборот), TTB одновременно характеризует тип и число граней КП.

(рис. 1, *в*), для которого R_{sd} ближе к состоянию Tm^{III}, а не Tm^{II}, как в случае TmTe. Заметим, что, по данным спектроскопических измерений и квантово-химических расчетов (LSDA и LSDA + U) [27], промежуточное валентное поведение TmSe, в котором заряд на атоме Tm колеблется между 2+ и 3+, вызвано особенностями зонной структуры кристаллов [26]. Характеристики ПBД показывают, что способность Tm к образованию двухвалентного состояния в TmX резко уменьшается при изменении X в ряду Te \rightarrow Se \rightarrow S.

Учитывая данные табл. 2, рассмотрим упомянутый выше CsCuCeS₃ {156245} [11]. В этой структуре для ПВД атома церия с KЧ = 6 R_{sd} = 1.674 Å, тогда как для 117 атомов Ce^{III} среднее R_{sd} = 1.742(18) Å. В то же время в единственном охарактеризованном комплексе Ce(IV) (CeL₄, где L – N,N-диэтилдитиокарбамат {AQORON} [28]), который содержит КП CeS₈, для атома Ce^{IV} R_{sd} = 1.649 Å. Поскольку R_{sd} (Ce) в структуре CsCuCeS₃ отличается от R_{sd} (Ce^{III}) на 0.068 Å, т.е. почти на 4 $\sigma(R_{sd})$, а от R_{sd} (Ce^{IV}) всего на 0.025 Å, мы считаем, что этот сульфид следует рассматривать как Cs⁺Cu⁺Ce⁴⁺(S²⁻)₃. Дополнительным аргументом является то, что кратчайшее расстояние между

атомами серы в этой структуре (3.69 Å) превышает сумму ван-дер-ваальсовых радиусов атомов серы (3.6 Å [9]). Этот факт исключает наличие ионов S⁻, необходимых для предложенного в [11] третьего варианта распределения формальных валентностей в виде Cs⁺Cu⁺Ce³⁺(S²⁻)₂(S⁻). На наш взгляд, выявленные в [11] особенности магнитных свойств CsCuCeS₃ могут быть следствием взаимодействий между атомами Ce и Cu, на существование которых указывает присутствие в ПВД атомов Се⁴⁺ четырех одинаковых граней Ce/Cu c d(Ce-Cu) = 3.32Å. За счет таких контактов Ce/Cu в структуре CsCuCeS₃ возникают перпендикулярные [010] незначительно гофрированные 2D-сетки 4⁴ [29] из последовательно чередующихся атомов Се и Си, расстояние между которыми (3.32 Å) почти совпадает с суммой их орбитальных радиусов (3.20 Å).

Отметим также, что природа серосодержащих лигандов и состав соединений практически не влияют на объем ПВД атомов Ln, который зависит от их валентного состояния. Так, например, для атомов Nd(III) с KЧ = 8 в комплексе $\{AsPh_4\}[Nd\{S_2P(OC_3H_7)_2\}_4]$ {CAMDID} или сульфидах Nd₂S₃ {72290} и Nd₂Mn₃Sb₄S₁₂ {422013} со-

La KII		Число		D Å	۵ Å	C	d(Ln–S), Å			
Ln	КЧ	атомов	N_f	$K_{\rm sd}, A$	$D_{\rm A}, {\rm A}$	<i>G</i> ₃	диапазон	среднее	μ	
LaS	6	9	6(0)	1.815(2)	0	0.0833(3)	2.92-2.93	2.926(4)	54	
La ³⁺	6	8	14(3)	1.770(43)	0.022(25)	0.0823(14)	2.84 - 2.96	2.91(3)	48	
	7	17	13(1)	1.770(15)	0.054(24)	0.0816(8)	2.74 - 3.45	2.96(10)	119	
	8	101	14(1)	1.754(14)	0.050(23)	0.0811(5)	2.81-3.59	3.00(11)	808	
	9	21	13(1)	1.752(19)	0.036(18)	0.0802(3)	2.80 - 3.62	3.06(14)	189	
	10	1	15	1.785	0.011	0.0789	3.11-3.35	3.18(9)	10	
	Bce	148	14(2)	1.756(19)	0.047(24)	0.0811(8)	2.74-3.62	3.01(12)	1174	
CeS	6	12	6(0)	1.791(2)	0	0.0833 (3)	2.88 - 2.90	2.886(4)	72	
Ce ³⁺	6	6	12(3)	1.781(25)	0.005(9)	0.0832(12)	2.79-2.95	2.88(3)	36	
	7	15	13(1)	1.755(18)	0.054(30)	0.0816(10)	2.74 - 3.46	2.94(11)	105	
	8	77	14(1)	1.739(12)	0.055(26)	0.0811(5)	2.78 - 3.49	2.98(10)	616	
	9	19	13(1)	1.731(18)	0.030(17)	0.0802(4)	2.77 - 3.52	3.03(14)	171	
	Bce	117	13(1)	1.742(18)	0.049(28)	0.0811(9)	2.74 - 3.52	2.98(11)	928	
Ce ⁴⁺	6	1	10	1.674	0	0.0829	2.71 - 2.73	2.72(1)	6	
	8	1	12	1.649	0.027	0.0809	2.80 - 2.83	2.81(1)	8	
	Bce	2	11(1)	1.662(18)	0.014(19)	0.0819(14)	2.71 - 2.83	2.77(5)	14	
PrS	6	9	6(0)	1.780(2)	0	0.0833(3)	2.86 - 2.88	2.869(4)	54	
Pr ³⁺	6	9	11(3)	1.765(29)	0.019(23)	0.0832(16)	2.77 - 2.92	2.85(3)	54	
	7	12	12(1)	1.744(13)	0.064(26)	0.0825(11)	2.71 - 3.50	2.90(11)	84	
	8	45	13(2)	1.734(12)	0.050(26)	0.0813(6)	2.76 - 3.55	2.97(11)	360	
	9	10	13(1)	1.721(18)	0.030(18)	0.0802(5)	2.76 - 3.44	3.01(15)	90	
	Bce	76	13(2)	1.737(20)	0.046(28)	0.0815(12)	2.71-3.55	2.95(12)	588	
NdS	6	10	6(0)	1.767(3)	0	0.0833(3)	2.84 - 2.86	2.848(4)	60	
Nd ³⁺	6	8	11(2)	1.747(23)	0.015(15)	0.0826(12)	2.76-2.91	2.84(3)	48	
	7	15	13(1)	1.733(13)	0.063(22)	0.0823(11)	2.71-3.48	2.89(10)	105	
	8	63	13(2)	1.725(15)	0.044(29)	0.0813(7)	2.75 - 3.55	2.95(10)	504	
	9	8	13(1)	1.707(21)	0.027(24)	0.0802(6)	2.75 - 3.48	2.99(16)	72	
	Bce	94	13(2)	1.726(18)	0.043(29)	0.0815(10)	2.71-3.55	2.93(11)	729	
SmS	6	20	6(0)	1.844(20)	0	0.0833(3)	2.85-2.99	2.97(3)	120	
Sm ³⁺	6	15	13(4)	1.745(18)	0.020(34)	0.0837(17)	2.74-2.89	2.81(3)	90	
	7	14	12(1)	1.716(14)	0.052(21)	0.0822(10)	2.73-3.46	2.86(11)	98	
	8	45	13(1)	1.709(13)	0.048(28)	0.0813(5)	2.71-3.44	2.92(11)	360	
	9	5	13(1)	1.693(25)	0.017(12)	0.0800(5)	2.82-3.35	2.96(12)	45	
F 6	Bce	79	13(2)	1.716(21)	0.041(30)	0.0818(14)	2.71-3.46	2.90(11)	593	
EuS	6	14	6(0)	1.852(1)	0	0.0833(3)	2.98-2.99	2.985(2)	84	
Eu ²⁺	7	9	15(2)	1.808(23)	0.065(36)	0.0818(17)	2.85-3.35	3.03(9)	63	
	8	45	15(3)	1.809(23)	0.039(31)	0.0813(11)	2.81-3.64	3.09(12)	360	
	9	9	15(3)	1.786(16)	0.026(26)	0.0799(4)	2.94-3.51	3.12(13)	81	
	10	1	1/	1.810	0.062	0.0802	2.97 - 3.49	3.23(22)	10	
_ 2+	Все	/8	13(4)	1.814(27)	0.034(33)	0.0815(14)	2.81 - 3.64	3.08(12)	598	
Eu⁵⁺	6	3	8(3)	1.747(4)	0	0.0839(1)	2.80 - 2.81	2.80/(4)	18	
	/	8	13(2)	1.724(15)	0.077(24)	0.0830(12)	2.78 - 3.04	2.86(6)	50 100	
	ð Des	21	14(3)	1.704(15) 1.712(20)	0.021(22)	0.0808(4)	2.82 - 3.23	2.92(8)	108	
CAS	все	32	13(3)	1.713(20) 1.725(2)	0.033(34)	0.0810(14)	2.78 - 3.23	2.90(8)	242	
Ous	0	9	0(0)	1.723(3) 1.727(17)		0.0833(3)	2.11-2.19	2.780(4)	54 54	
Gd ³ ⁺	0	9 15	11(3) 12(1)	1./3/(1/) 1.70A(15)	0.008(12)	0.0841(1/)	2.73 - 2.84	2.79(2)	54 105	
	/ 0	13	12(1) 12(1)	1.704(13) 1.606(12)	0.031(21)	0.0823(9)	2.71 - 3.44	2.04(13)	105	
	ð	54 2	13(1) 12(0)	1.090(13)	0.048(20)	0.0813(3)	2.12 - 3.33	2.90(11)	272	
	Page	5 61	13(0) 12(2)	1.003(8) 1.702(22)	0.024(7)	0.0800(2)	2.78 - 3.09	2.90(9)	21	
The	DCe	2	13(2)	1.702(22) 1.712(1)	0.042(27)	0.0019(14)	2.71 - 3.44	2.0/(11) 2.750(1)	438	
105	0	3	0(0)	1./12(1)	U	0.0000(0)	2./30-2./01	2.739(1)	1ð	

Таблица 2. Важнейшие характеристики ПВД атомов Ln*

Таблица 2. Окончание

In KU		Число	Na	R.Å	D. Å	G	d(Ln–S), Å			
LII	K I	атомов	14	n_{sd}, n	$D_{\rm A}, R$	03	диапазон	среднее	μ	
Tb ³⁺	6	7	10(3)	1.722(13)	0.014(19)	0.0834(7)	2.72 - 2.84	2.78(2)	42	
	7	11	12(2)	1.697(18)	0.060(20)	0.0825(12)	2.69-3.38	2.83(13)	77	
	8	19	13(1)	1.691(15)	0.040(31)	0.0813(3)	2.70-3.33	2.89(11)	152	
	9	2	13(0)	1.651(14)	0.027(9)	0.0800(1)	2.77 - 3.06	2.88(9)	18	
	Bce	39	12(2)	1.696(22)	0.040(30)	0.0819(12)	2.69-3.38	2.86(11)	289	
DyS	6	4	6(0)	1.700(3)	0	0.0833 (30)	2.736 - 2.745	2.741(4)	24	
Dy ³⁺	6	15	9(3)	1.705(14)	0.020(20)	0.0836(7)	2.62 - 2.90	2.75(4)	90	
-	7	16	13(1)	1.685(16)	0.054(18)	0.0823(11)	2.68 - 3.35	2.81(11)	112	
	8	16	13(1)	1.691(14)	0.037(27)	0.0814(2)	2.70 - 3.32	2.89(13)	128	
	Bce	47	12(3)	1.693(17)	0.037(26)	0.0824(12)	2.62 - 3.35	2.83(12)	330	
HoS	6	3	6(0)	1.692(5)	0	0.0833(3)	2.72 - 2.73	2.727(6)	18	
Ho ³⁺	6	21	9(2)	1.697(14)	0.036(41)	0.0836(6)	2.61 - 2.90	2.73(6)	126	
	7	12	11(1)	1.688(13)	0.75(29)	0.0834(14)	2.67-3.33	2.80(11)	84	
	8	10	13(1)	1.682(12)	0.029(24)	0.0814(6)	2.65-3.31	2.88(13)	80	
	Bce	43	11(2)	1.691(14)	0.045(39)	0.0830(13)	2.61-3.33	2.79(12)	290	
ErS	6	5	6(0)	1.684(5)	0	0.0833 (3)	2.70 - 2.72	2.714(7)	30	
Er ³⁺	6	47	10(2)	1.687(14)	0.050(45)	0.0838(4)	2.59 - 2.85	2.71(5)	282	
	7	24	12(2)	1.681(14)	0.066(18)	0.0832(13)	2.59-3.18	2.79(10)	168	
	8	19	13(1)	1.678(15)	0.033(30)	0.0813(6)	2.69 - 3.48	2.87(11)	152	
	9	1	13	1.642	0.020	0.0801	2.74 - 3.01	2.86(11)	9	
	Bce	91	11(2)	1.683(15)	0.050(38)	0.0831(13)	2.59 - 3.48	2.78(11)	611	
TmS	6	4	6(0)	1.679(1)	0	0.0833(3)	2.705 - 2.709	2.706(2)	24	
Tm ³⁺	6	41	10(2)	1.676(15)	0.041(44)	0.0840(7)	2.54 - 2.82	2.69(5)	246	
	7	16	12(1)	1.677(18)	0.069(18)	0.0836(8)	2.64-2.96	2.78(8)	112	
	8	11	14(1)	1.686(26)	0.074(26)	0.0814(4)	2.69-3.51	2.89(16)	88	
	9	2	13(0)	1.632(10)	0.022(8)	0.0799(2)	2.76 - 3.03	2.85(7)	18	
	Bce	70	11(2)	1.677(19)	0.052(39)	0.0834(13)	2.54-3.51	2.75(12)	464	
YbS	6	6	6(0)	1.764(2)	0	0.0833(3)	2.84 - 2.85	2.844(4)	36	
Yb^{2+}	7	1	14	1.735	0.080	0.0824	2.83 - 2.95	2.88(6)	7	
	8	11	13(3)	1.768(26)	0.001(1)	0.0831(10)	2.71-3.06	2.99(10)	88	
	Bce	18	11(4)	1.765(22)	0.005(19)	0.0832(8)	2.71 - 3.06	2.95(11)	131	
Yb ³⁺	6	52	10(3)	1.675(13)	0.041(44)	0.0840(7)	2.57 - 2.83	2.69(5)	312	
	7	6	12(1)	1.762(13)	0.059(7)	0.0829(11)	2.67 - 2.95	2.78(7)	42	
	8	6	13(1)	1.697(15)	0.023(38)	0.0814(3)	2.73 - 3.40	2.90(12)	48	
	Bce	64	10(3)	1.677(15)	0.041(42)	0.0836(11)	2.57 - 3.40	2.73(9)	402	
LuS	6	4	6(0)	1.655(5)	0	0.0833 (3)	2.66-2.68	2.67(1)	24	
Lu ³⁺	6	42	10(3)	1.671(11)	0.044(42)	0.0840(6)	2.58 - 2.82	2.69(4)	252	
	7	5	11(1)	1.671(18)	0.061(23)	0.0833(12)	2.65-2.97	2.77(8)	35	
	8	1	13	1.669	0.050	0.0814	2.72 - 3.28	2.87(19)	8	
	Bce	48	10(3)	1.671(12)	0.046(40)	0.0838(8)	2.58 - 3.28	2.70(7)	295	

*В строках "LnS" приведены данные для атомов Ln в моносульфидах, изоструктурных с NaCl. Для каждого типа атомов Ln указаны: КЧ – координационное число по отношению к атомам S; *N*_f – среднее число граней ПВД; *D*_A – смещение ядра атома Ln из геометрического центра тяжести его ПВД; *G*₃ – безразмерный второй момент инерции ПВД; *d*(Ln–S) – длина связей в координационных полиэдрах LnS_n, μ – общее число связей Ln–S. В скобках даны стандартные отклонения.

ответственно $R_{sd} = 1.725$, 1.728 и 1.723 Å, тогда как для 94 атомов Nd(III) с KЧ от 6 до 9 среднее R_{sd} составляет 1.726(18) Å (табл. 2).

ПВД 1199 атомов Ln в сульфидах имеют 14132 грани, 8688 из которых соответствует связям Ln– S (табл. 2). На зависимости телесных углов (Ω), под которыми грани ПВД "видны" из ядра атома Ln или S, от межатомных расстояний Ln—S (рис. 2) связям Ln—S соответствуют крупные грани с Ω в области от 20 до 6% полного телесного угла, равного 4 π стерадиан, тогда как небольшие грани с $\Omega < 6\%$ отвечают невалентным взаимодействиям

Рис. 1. Зависимости R_{sd} атомов Ln от их атомного номера Z: атомы Ln с KЧ = 6 в кристаллах LnS при атмосферном давлении (*a*); атомы Ln(III) с KЧ = 6 в структурах сульфидов (*б*); данные для кривой *б* не учитывают параметры атомов Ln, использованных при построении кривой *a*; атомы Ln с KЧ = 6 в кристаллах LnSe при атмосферном давлении [15] (*в*); атомы Ln с KЧ = 6 в кристаллах LnTe при атмосферном давлении [16] (*г*).

Ln/Z. Чаще всего в роли атомов Z выступают Ln или S (соответственно 2010 и 1120 граней). В остальных менее многочисленных контактах роль Z играют атомы более 30 других элементов, которые присутствуют в составе сульфидов. Безразмерный второй момент инерции (G_3), который характеризует степень сферичности ПВД, для 1199 атомов Ln в среднем равен 0.0822(14). Смещение ядер атомов Ln из центра тяжести их ПВД (D_A) составляет 0.040(33) Å и в пределах 20 равно нулю.

ПВД атомов серы

В структурах сульфидов присутствуют атомы серы двух типов. Большинство из них (2869 из 2913) представляют собой ионы S^{2-} , и только 44 являются ионами S⁻. ПВД ионов S²⁻ и S⁻ в среднем имеют соответственно 16(3) и 15(1) граней. Радиусы соответствующих им сферических доменов R_{sd} равны 1.81(7) и 1.72(6) Å и совпадают в пределах 2 σ . Близкие значения R_{sd} атомов S²⁻ и S⁻ обусловлены тем, что они образуют однотипную устойчивую 8-электронную валентную оболочку. Однако ионы S²⁻ реализуют такую оболочку только за счет гетероатомных связей S–Ln и/или S–R

Рис. 2. Зависимость телесных углов Ω (выражены в % от 4 π ср.) 9808 граней ПВД 1199 атомов Ln от межатомных расстояний d(Ln–S), соответствующих этим граням.

(R — внешнесферные катионы), тогда как ионы S⁻ кроме связей S—Ln обязательно образуют гомоатомные ковалентные связи S—S. Такие связи, как правило, короче, чем S—Ln или S—R, и поэтому неудивительно, что R_{sd} (или V_{vdp}) ионов S⁻ понижен по сравнению с таковым для ионов S²⁻.

КЧ ионов S^{2–} и S[–] в сульфидах Ln в среднем равно 4(1) и 5(1), поэтому на один ион приходится соответственно 12 и 10 невалентных взаимодействий S/Z. Безразмерная степень сферичности ПВД ионов S^{2–} и S[–] практически не различается ($G_3 = 0.0852(35)$ и 0.0836(17)). Смещение ядер атомов серы из центра тяжести их ПВД (D_A) для S^{2–} и S[–] равно соответственно 0.20(14) и 0.20(7) Å и в пределах 3 σ равно 0. Ионы S[–] присутствуют в структурах 25 соединений, во всех случаях они сосуществуют с ионами S^{2–} (табл. 3). За счет связей S–S в сульфидах чаще всего образуются димеры S^{2–}, в единичных случаях реализуются V-образный тример S^{2–}₃, квадратный тетрамер (S^{2–}₂)₄ и 2Dквадратные сетки 4⁴ [29] (рис. 3).

Для количественной оценки склонности атомов халькогенов X (S, Se или Te) к образованию халькогеновых связей X–X примем параметр $X_{1/2} = 100X^{-}/(X^{-} + X^{2-})$, который характеризует парциальную долю ионов X⁻ в общем числе ионов X⁻ и X²⁻ в структурах изученных соединений. Для обсуждаемых сульфидов Ln параметр $X_{1/2}$ равен 1.5%. В то же время для селенидов [15] и теллуридов Ln [16] $X_{1/2} = 7.4$ и 22.2% соответственно. Данные Шелдрика [43] позволяют считать, что рост параметра $X_{1/2}$ при изменении природы халькогена в ряду S–Se–Te, так же как и одно-

Таблица 3. Некоторые характеристики сульфидов Ln со связями S-S

	Ln*	$R_{\rm sd}({\rm Ln}),$	Атомы	d(S-S),	1_	Detres	Литера-			
Соединение	СО/КЧ	Å	в связи S–S	Å ^k S-S		Рефкод	тура			
Димеры (S-S) ²⁻										
$BaBi_2LaS_5(S_2)_{0.5} = Ba_2Bi_4La_2(S^{2-})_{10}(S_2^{2-})$	3/9	1.743	S6-S6	2.125	0.94	85461	[5]			
$\beta - LaS_2 = La_2(S^{2-})_2(S_2^{2-})$	3/9	1.737	S1-S2	2.112	0.95	418405	[30]			
$LaS_2 = La_2(S^{2-})_2(S_2^{2-})$	3/9	1.735	S1-S2	2.105	0.96	1435	[31]			
$C_{2}L_{2}S_{2} = C_{2}L_{2}(S^{2})(S^{2})$	3/8	1.750	S4-S4	2.110	0.96	412900	[32]			
$CuLa_2S_4 = Cu_2La_4(S^2)_6(S_2)$	3/9	1.754								
$K_2Sb_2La_2S_9 = K_2Sb_2La_2(S^{2-})_5(S_2^{2-})_2$	3/8	1.750	S3-S4	2.119	0.95	88707	[33]			
	3/8	1.746	S5-S6	2.138	0.92	416288	[34]			
$LaS_{1.9} = La_{10}(S^{2-})_{11}(S_2^{2-})_4$	3/9	1.744								
	3/9	1.725								
	3/8	1.728	S5-S6	2.131	0.93	416289	[34]			
$\operatorname{CeS}_{1.9} = \operatorname{Ce}_{10}(\mathrm{S}^{2-})_{11}(\mathrm{S}^{2-}_{2})_{4}$	3/9	1.706								
	3/9	1.725								
$CeS_2 = Ce_2(S^{2-})_2(S_2^{2-})$	3/9	1.713	S3–S4	2.173	0.88	30539	[35]			
$(1, 2, 5,, 2,, (2^{2}))$	3/9	1.728	61 62	2.115	0.05	410.40.4	[20]			
$\beta - CeS_2 = Ce_2(S^2)_2(S_2)$	3/9	1./19	S1-S2	2.115	0.95	418404	[30]			
$\alpha - \operatorname{CeS}_2 = \operatorname{Ce}_2(\operatorname{S}^{2^-})_2(\operatorname{S}^2)$	3/9	1.716	S2-S2	2.153	0.90	419346	[30]			
$CeS_2 = Ce_2(S^{2-})_2(S_2^{2-})$	3/9	1.713	S3–S4	2.173	0.88	653996	[35]			
	3/9	1.728		2 120		44 6 9 9 9	50.43			
$P_{r}S_{r} = P_{r} (S^{2-}) (S^{2-})$	3/8	1.715	\$5-\$6	2.138	0.92	416290	[34]			
$\Pr S_{1.9} = \Pr_{10}(S^2)_{11}(S_2)_4$	3/9	1./13								
$\Pr S_{1} = \Pr_{1}(S^{2-})_{1}(S^{2-})$	3/9	1.091	\$1_\$1	2 135	0.92	92525	[36]			
$B_{1} = B_{2} = B_{2} (S^{2}) (S^{2})$	3/9	1.709	S1-S1 S1 S2	2.155	0.92	92323 419406	[30]			
$p-r_{13_2} - r_{1_2}(3_1)_2(3_2_1)$	2/9	1.712	51-52 55 56	2.109	0.90	416400	[30]			
$NdS = Nd (S^{2-}) (S^{2-})$	3/8	1.707	53-50	2.140	0.92	410291	[34]			
11051.9 11010(5)11(52)4	3/9	1.687								
α -NdS ₂ = Nd ₂ (S ²⁻) ₂ (S ²⁻)	3/9	1 697	\$2-\$2	2 134	0.93	419345	[30]			
	3/8	1 693	S4-S5	2.146	0.91	92529	[37]			
$SmS_{1,0} = Sm_{10}(S^{2-})_{11}(S_2^{2-})_4$	3/9	1.690	51 55	2.110	0.91	,2025	[2,]			
1.7 10(1)/11(12)/4	3/9	1.673								
	3/8	1.674	S5-S6	2.142	0.92	416804	[34]			
$GdS_{1,9} = Gd_{10}(S^{2-})_{11}(S_2^{2-})_4$	3/9	1.671								
	3/9	1.655								
$\alpha - GdS_2 = Gd_2(S^{2-})_2(S_2^{2-})$	3/9	1.668	S2-S2	2.140	0.92	421335	[38]			
	3/6	1.674	S10-S14	2.121	0.94	93812	[39]			
$Na_9Sb_8Gd_5(S_2)_2S_{22} = Na_9Sb_8Gd_5(S^{2-})_{22}(S_2^{2-})_2$	3/7	1.671	S11-S13	2.114	0.95					
	3/7	1.655								
$\alpha - \text{TbS}_2 = \text{Tb}_2(\text{S}^{2-})_2(\text{S}_2^{2-})$	3/9	1.660	S2-S2	2.141	0.92	422672	[40]			
$\alpha - \text{ErS}_2 = \text{Er}_2(S^{2-})_2(S_2^{2-})$	3/9	1.642	S2-S2	2.146	0.91	422673	[40]			

Соединение	Ln* CO/KЧ	R _{sd} (Ln), Å	Атомы в связи S–S	d(S−S), Å	k _{S-S}	Рефкод	Литера- тура
	Трим	ep S–S–S	**				
$Sb_6Eu_6S_{17} = Sb_6Eu_6(S^{2-})_{14}(S_3^{2-})$	2/7	1.831	S15-S16	2.091	0.98	170698	[41]
	2/7	1.821	S16-S17	2.092	0.98		
	2/8	1.782			1.96		
	2/9	1.774					
	2/9	1.763					
	2/9	1.767					
Квадр	атный тет	рамер (S_2^2	$_{4} = (S^{-})_{8}^{***}$				
$TmS_{1.9} = Tm_{10}(S^{2-})_{11}(S^{-})_8 = Tm_{10}(S^{2-})_{11}(S_2^{2-})_4$	3/8	1.642	S1-S6	2.143	0.91	424858	[4]
	3/9	1.625	S1-S6	2.798	0.06		
	3/9	1.638					
	Сетки 4 ⁴ и	із атомов	S ⁻ ****				1
$TbS_2 = Tb(S^{2-})(S^{-})$	3/9	1.641	S2–S2 (×2)	2.695	0.20 (×2)	20725	[42]
			S2-S2 (×2)	2.787	0.08 (×2)		

* CO – степень окисления, КЧ – координационное число. Номера атомов S в четвертой колонке соответствуют указанным в базе данных [12].

** Для тримера S–S–S (угол SSS = 113°) последовательно даны значения k_i соответственно для левого, правого и центрального атома. *** Общая кратность двух связей S–S, образованных любым из 8 атомов серы квадратного тетрамера $(S_2^{2-})_4$, равна 0.914 + + 0.063 ≈ 0.98

**** Суммарная кратность четырех связей S···S, образованных каждым ионом S⁻ в сетке 4⁴, равна $0.197 \times 2 + 0.077 \times 2 \approx 0.55$.

временное увеличение разнообразия структурных группировок из атомов X, вызван растущей склонностью Se и Te к участию в гипервалентных трехцентровых четырехэлектронных ($3c-4\bar{e}$) связях и слабых вторичных взаимодействиях $np^2 \rightarrow n\sigma^*$.

Как и для селенидов или теллуридов Ln [15, 16], данные для сульфидов согласуются с мнением, что связи Х-Х возникают при дефиците электронодонорных атомов металлов в составе халькогенидов. Наглядным свидетельством могут служить стехиометрически однотипные комплексы состава [LnS₂]^{*n*-}. Если в пересчете на один атом Ln абсолютная величина заряда комплекса <1, например при |n| = 0 ([LnS₂] = [Ln₂³⁺(S²⁻)₂(S₂²⁻)], где Ln = = La {418405} [30], Ce {30539} [35]) или 0.5 $([La_2S_4]^- = [Ln_4^{3+}(S^{2-})_6(S_2^{2-})]^{2-}$ {412900} [32]), то в структуре присутствуют гантели S_2^{2-} . Если же аб-солютная величина заряда ≥ 1 , то связи S-S в структурах отсутствуют. Примерами таких комплексов при |n| = 1, 1.5 или 2 являются соответственно $[Ln^{3+}(S^{2-})_2]^-$, где Ln — любой лантанид от La до Lu {73532-73545} [44], [Eu²⁺Eu³⁺(S²⁻)₄]³⁻ {32585} [45] и [Eu²⁺(S²⁻)₂]²⁻ {93688} [46].

Различие кристаллохимической роли ионов S^{2-} и S^- наглядно проявляется на распределениях

взаимодействиям между атомами серы (рис. 4). Согласно СМСК, в ПВД ионов S²⁻ все 26602 грани S/S (рис. 4a) отвечают только невалентным взаимодействиям. Для этих граней максимальное $\Omega(S/S) < 15\%$, расстояния d(S-S) лежат в диапазоне ~2.9-6.0 Å, а среднее расстояние 3.76(36) Å превышает удвоенный ван-дер-ваальсов радиус серы (3.6 Å [9]). В структурах сульфидов реализуется 26490 внутримолекулярных контактов S^{2-}/S^{2-} , для которых ранг граней (РГ) ПВД изменяется от 2 до 10. Отметим, что целочисленные значения РГ (0, 1, 2, N) указывают минимальное число химических связей, соединяющих атомы серы, ПВД которых имеют общую грань. Чаще всего встречаются грани с $P\Gamma = 2$ или 4 (соответственно 25444 и 983). Межмолекулярные контакты S²⁻/S²⁻, для которых $P\Gamma = 0$, а среднее d(S-S) = 4.5(7) Å, реализуются всего в 112 случаях.

 (Ω, d) для граней ПВД, которые соответствуют

У ПВД 44 ионов S⁻ имеется 439 граней S/S (рис. 46), ранг которых изменяется от 1 до 4, при этом число граней с $P\Gamma = 1, 2, 3$ и 4 равно соответственно 50, 365, 13 и 11. Как и для ионов S²⁻, наиболее многочисленными являются грани с $P\Gamma > 1$, которые характеризуют внутримолекулярные невалентные взаимодействия между ионами S⁻. Для 389 таких граней $\Omega(S-S) < 12\%$, d(S-S) лежат в

Рис. 3. Схематическое строение структурных группировок из атомов серы (черные кружки) в структурах сульфидов Ln: а – гантель S_2^{2-} ; б – уголковый тример S_3^{2-} ; в – квадратный тетрамер $(S_2^{2-})_4 = (S^{-})_8$; г – квадратная сетка 4⁴ [29]. Короткие (в области 2.0–2.2 Å) контакты S–S указаны сплошной линией, а более длинные (в интервале 2.6–2.8 Å) – пунктиром.

диапазоне 2.87–5.16 Å (в среднем 3.6(4) Å). Ранг остальных 50 граней равен 1, и, согласно СМСК, все они соответствуют химическим связям S⁻–S⁻. Для таких граней ПВД d(S–S) лежат в диапазоне 2.09–2.80 Å (среднее 2.20(21) Å), а телесные углы соответствующих граней лежат в области от 23 до 11% от 4 π ср. Межмолекулярные контакты S/S (для них РГ = 0) у ионов S⁻ в сульфидах Ln не встречаются.

Для 259 граней с $d(S^--S^-) \le 3.6$ Å, 50 из которых соответствуют химическим связям, а остальные — специфическим или ван-дер-ваальсовым взаимодействиям, с достоверностью аппроксимации $R^2 = 0.95$ выполняется линейная зависимость:

$$\Omega(S^{-}-S^{-}) = 44.5(5) - 11.3(2)d(S^{-}-S^{-}), \qquad (1)$$

где Ω — телесный угол (выражен в % от 4 π стерадиан), под которым общая грань ПВД двух атомов серы "видна" из ядра любого из них. Отметим, что в пределах стандартных отклонений коэффициенты (1) совпадают с аналогичными параметрами зависимости:

$$\Omega(S^{-}-S^{-}) = 45(1) - 11.4(4) d(S^{-}-S^{-}), \qquad (2)$$

Рис. 4. Зависимость телесных углов Ω (% от 4 π ср.) граней ПВД атомов S от межатомных расстояний d(S-S), соответствующих этим граням: а – 26602 грани S–S в 2757 ПВД ионов S^{2–}; 6 – 439 граней S–S в 44 ПВД ионов S[–].

которая с $R^2 = 0.89$ установлена для 99 граней с $d(S^--S^-) \le 3.6$ Å в структурах сульфидов актинидов (An) [23]. Не исключено, что такая же зависимость $\Omega(S^--S^-)$ от $d(S^--S^-)$ будет выполняться и для сульфидов *d*- и *p*-элементов. Однако для проверки этого предположения необходимо с позиций СМСК провести систематический анализ всей имеющейся кристаллоструктурной информации для соединений, содержащих КП AS_n, где A – *d*- или *p*-элементы.

Кратность связей S-S в сульфидах Ln

Согласно СМСК, однотипные зависимости (1) и (2) указывают на возможность количественной оценки кратности (*k*) связей между атомами серы на основании межатомных расстояний d(S-S). На примере сульфидов An [23] было показано, что для линейной зависимости $k_i = f[d_i(S-S)]$ в диапазоне $1 \ge k_i \ge 0$ необходимо знать длину связи с $k_i = 1$ (далее $d_1(S-S)$), а также определить предельную длину контакта S–S, который можно считать связью с $k_i = 0$ (далее $d_0(S-S)$). Как и ранее [23], в качестве $d_1(S-S)$ примем среднее d(S-S) = 2.05 Å в пяти разных молекулах S₈ в структуре ромбической серы ({200453–200455} [47] и {63082, 63083} [48]). Согласно СМСК, $d_0(S-S) = r_s(S) + R_{sd}(S)$, где $r_s(S)$ – слейтеровский радиус атома S, а $R_{sd}(S)$ – радиус сферического домена атома S [24]. В качестве $R_{sd}(S)$ примем среднюю величину R_{sd} (1.8 Å) для 2913 ионов S^{2–} и S[–] в обсуждаемых сульфидах. Поскольку $r_s(S) = 1$ Å [49], связи с $k_i = 0$ отвечает $d_0(S-S) = 2.8$ Å. Существенно, что в сульфидах Ап для 933 ионов S^{2–} и S[–] среднее R_{sd} также равно 1.8 Å [23]. Именно поэтому для сульфидов Ln зависимость $k_i = f[d_i(S-S)]$ описывается тем же уравнением (3), что и в случае сульфидов An [23]:

 k_i (S–S) $\approx 3.7 - 1.3d_i$ (S–S). (3)

Связи S–S встречаются в структурах кристаллов 25 сульфидов Ln (табл. 3). Согласно зависимости (3), для 23 кристаллографически неэквивалентных дианионов S₂^{2–}, присутствующих в этих соединениях, среднее значение $k_i = 0.93(2)$. На примере селенидов Ln было показано [15], что формальный заряд (χ) халькогенид-иона зависит от общей кратности халькогеновых связей, рассчитанных по соотношению, аналогичному (3). Согласно [15], $\chi = k - 2$, поэтому формальный заряд на атоме серы иона S₂^{2–} в сульфидах Ln равен –1.07, что, на наш взгляд, приемлемо согласуется с классической оценкой $\chi = -1$.

V-образный тример S_3^{2-} с углом 113° (рис. 3б) обнаружен только в структуре $Sb_6Eu_6(S^{2-})_{14}(S_3^{2-})$ {170 698} [41]. Каждый из двух кристаллографически разных концевых атомов серы тримера образует с центральным атомом связь с $k_i \sim 0.98$ и поэтому имеет формальный заряд -1.02 (табл. 3). Центральному атому серы в тримере соответствует $k_i \sim 2 \times 0.98 \sim 1.96$, и, как следствие, он имеет заряд -0.04. Распределение зарядов, установленное с помощью (3) исключительно на основе данных по межатомным расстояниям, согласуется с классическим представлением о строении аниона S_3^{2-} .

В структуре $\text{TmS}_{1.9} = \text{Tm}_{10}(\text{S}^{2-})_{11}(\text{S}^{-})_8$ {424858} [4] присутствуют квадратные анионы $(\text{S}^{-})_8$, которые можно альтернативно рассматривать как циклические тетрамеры $(\text{S}_2^{2-})_4$, возникшие за счет халькогеновых связей между гантелями S_2^{2-} (рис. 3в). Каждый из 8 атомов серы в составе цикла образует одну короткую (2.143 Å) и одну длинную (2.798 Å) связь с соседними атомами. Согласно (3), этим связям отвечает $k_i = 0.914$ и 0.063 соответственно. Поэтому суммарная кратность двух связей, образованных любым атомом серы тетрамера $(S_2^{2-})_4$, равна 0.914 + 0.063 \approx 0.98, а формальный заряд на атоме серы равен \sim -1.02.

Максимальное КЧ 4, которое атомы S⁻ проявляют по отношению к другим атомам S⁻, реализуется в квадратных сетках 4⁴ [29] в структуре $TbS_2 = Tb(S^{2-})(S^{-})$ {20725} [42] (рис. 3г, табл. 3). Суммарная кратность четырех связей S···S (d == 2.695 или 2.787 Å), образованных каждым ионом S⁻, равна 0.197 × 2 + 0.077 × 2 ≈ 0.55, поэтому формальный заряд на атоме серы равен ~-1.45. Примечательно, что авторы [40], недавно повторно охарактеризовавшие TbS₂, синтезированный при повышенном давлении (8 ГПа), отметили, что получить стехиометрические дисульфиды "тяжелых" лантанидов от Gd до Lu (включая Tb) при обычном давлении не удается. Согласно [40], в структуре $\text{TbS}_2 = \text{Tb}_2(\text{S}^{2-})_2(\text{S}^{2-}_2)$ {422672} имеются слои, образованные исключительно ионами S_2^{2-} с $k_i = 0.92$, однако кратчайшие расстояния между атомами серы соседних дисульфид-ионов в таких слоях превышают 2.94 Å. Поэтому аномальный (-1.45 вместо -1.0) заряд для атомов серы в TbS₂ {20725}, по-видимому, вызван нестехиометричностью этого сульфида, который даже не был упомянут авторами [40].

Лантанидное сжатие в халькогенидах Ln

Атомы Ln в кристаллах сульфидов чаще всего занимают позиции с симметрией $C_1 = 1$ или $C_s = m$ (соответственно ~36 и 32% случаев). Поэтому КП LnS_n, как правило, искажены, о чем свидетельствует значительная вариация длины связей Ln-S. В охарактеризованных КП Ln^{III}S, различие между наиболее длинной и самой короткой связью Ln– S составляет ~0.8 Å (табл. 2). В то же время значения R_{sd} атомов Ln почти не зависят от KЧ и формы КП LnS_n. Например, в сульфидах для атомов Nd(III) c K \dot{H} = 6, 7, 8 и 9 R_{sd} = 1.747(23), 1.733(13), 1.725(15) и 1.707(21) Å соответственно, а среднее $R_{\rm sd}$ для 94 кристаллографически разных атомов Nd(III) составляет 1.726(18) Å (табл. 2). На фоне значительной вариации длины связей Ln-S (например, для Nd(III) она в 46 раз превышает $\sigma(R_{\rm sd})$) среднее значение $R_{\rm sd}$, которое в рамках СМСК характеризует объем ПВД атома Ln(III), по нашему мнению, может рассматриваться как параметр, практически не зависящий от КЧ.

С учетом данных для оксидов [14], селенидов [15] и теллуридов Ln [16] можно было ожидать, что для сульфидов тоже будет выполняться линейная зависимость R_{sd} (Ln(III)) от атомного номера, обусловленная эффектом лантанидного сжатия. Рис. 5 наглядно показывает, что действительно для сульфидов, как и для других комплек-

Рис. 5. Зависимость среднего значения R_{sd} атомов Ln(III), образующих КП LnO_n (*a*), LnS_n (*b*), LnSe_n (*b*) или LnTe_n (*c*) от атомного номера (*Z*) лантанида (для La Z = 57, а для Lu Z = 71).

сов Ln^{III}X_n, где X – халькоген, с ростом Z наблюдается закономерное уменьшение R_{sd} , которое в общем случае описывается уравнением:

$$R_{\rm sd}\left({\rm Ln}^{\rm III}{\rm X}_n\right) = A - BZ. \tag{4}$$

В зависимости от природы халькогена (O, S, Se и Te) параметры уравнения (4) соответственно равны: A = 1.903, 2.077, 2.139 и 2.249, B = 0.0075, 0.0058, 0.0056 и 0.0055, достоверность аппроксимации R^2 составляет 0.97, 0.98, 0.96 и 0.97 при том, что значения R_{sd} учитывают данные для 3714 [14], 1009 (данная работа), 547 [15] и 306 [16] кристаллографически разных ПВД атомов Ln(III).

На основании средних значений R_{sd} атомов Ln(III) интегральный эффект лантанидного сжатия в халькогенидах можно охарактеризовать разностью $\Delta_{Ln} = R_{sd}(La) - R_{sd}(Lu)$. Для комплексов Ln^{III}X_n, где X = O [14], S (данная работа), Se [15] или Te [16], параметр Δ_{Ln} равен соответственно 0.12, 0.09, 0.09 и 0.07 Å.

ЗАКЛЮЧЕНИЕ

Недавно было высказано предположение [50], что при олинаковых ионных ралиусах трехвалентных *f*-металлов (Ln или An) связи An-X (X = S, Se и Те) обладают более высокой ковалентностью по сравнению с аналогичными связями Ln-X. Для оценки различия ковалентности связей авторы [50] предложили использовать разность длины связей An^{III}-Х и Ln^{III}-Х в изоструктурных соединениях. На наш взгляд, при практическом проведении такой оценки предпочтительнее использовать значения R_{sd} атомов *f*-металлов в соответствующих халькогенидах, что позволит избавиться от ограничения (иногда труднопреодолимого), вызванного требованием изоструктурности обсуждаемых соединений. Однако для экспериментальной проверки указанного прелположения необхолимо иметь характеристики ПВД атомов всех f-металлов в комплексах АХ_n в кристаллах любых халькогенидов. С учетом результатов настоящей работы единственным препятствием осталось отсутствие данных о параметрах ПВД атомов Ап в структурах теллуридов. Поэтому в ближайшее время мы планируем провести исследование особенностей стереохимии An в теллуридах с позиций СМСК.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-03-00048а.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kussainova A.M., Akselrud L.G., Suen N.T. et al. // J. Solid State Chem. 2016. V. 233. № 1. P. 269. https://doi.org/10.1016/j.jssc.2015.10.039
- Daszkiewicz M., Pashynska Yu.O., Marchuk L.D. et al. // J. Alloys Compd. 2015. V. 647. № 32. P. 445. https://doi.org/10.1016/j.jallcom.2015.06.059
- 3. *Daszkiewicz M., Marchuk O.V., Kaczorowski D. et al.* // J. Alloys Compd. 2014. V. 610. № 30. P. 258. https://doi.org/10.1016/j.jallcom.2014.04.222
- Müller C.J., Schwarz U., Doert T. // Z. Anorg. Allg. Chem. 2012. V. 638. № 15. P. 2477. https://doi.org/10.1002/zaac.201200304
- Choi K.-S., Iordanidis L., Chondroudis K. et al. // Inorg. Chem. 1997. V. 36. № 18. P. 3804. https://doi.org/S0020-1669(97)00224-3
- 6. *Kuz'micheva G.M., Matveenko I.A.* // Russ. J. Coord. Chem. 2001. V. 27. № 2. P. 73. https://doi.org/1070-3284/01/2702
- Schoop L.M., Eger R., Kremer R.K. et al. // Inorg. Chem. 2017. V. 56. № 3. P. 1121. https://doi.org/10.1021/acs.inorgchem.6b02052

- Уэллс А. Структурная неорганическая химия. В 3-х т. М.: Мир, 1987–1988.
- 9. *Bondi A*. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- 10. *Aakeroy C.B., Bryce D.L., Desiraju G.R. et al.* // Pure Appl. Chem. 2019. V. 91. № 11. P. 1889. https://doi.org/10.1515/pac-2018-0713
- 11. Sutorik A.C., Albritton-Thomas J., Hogan T. et al. // Chem. Mater. 1996. V. 8. № 3. P. 751. https://doi.org/0897-4756/96/2808-0751
- 12. Inorganic crystal structure database. Gmelin-institut fur Anorganische Chemie & FIC Karlsruhe, 2019.
- 13. Cambridge structural database system. Cambridge Crystallographic Data Centre, 2019.
- 14. Vologzhanina A.V., Pushkin D.V., Serezhkin V.N. // Acta Crystallogr., Sect. B. 2006. V. 62. № 5. P. 754. https://doi.org/10.1107/S0108768106018726
- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 984. https://doi.org/10.1134/S0036023619080126
- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Russ. J. Phys. Chem. 2019. V. 93. № 2. P. 288. https://doi.org/0.1134/S003602441902050
- 17. Serezhkina L.B., Savchenkov A.V., Serezhkin V.N. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 633. https://doi.org/10.1134/S0036023617050217
- Serezhkin V.N., Verevkin A.G., Pushkin D.V., Serezhkina L.B. // Russ. J. Coord. Chem. 2008. V. 34. № 3. P. 225. https://doi.org/10.1134/S1070328408030135
- Serezhkin V.N., Serezhkina L.B. // Radiochem. 2018. V. 60. № 1. P. 1.
- https://doi.org/10.1134/S1066362218010010
- 20. Serezhkin V.N., Pushkin D.V., Serezhkina L.B. // Crystallogr. Rep. 2010. V. 55. № 4. P. 554. https://doi.org/10.1134/S1063774510040048
- Serezhkin V.N., Rogaleva E.F., Savchenkov A.V. et al. // Acta Crystallogr. 2019. V. A75. № 2. P. 370. https://doi.org/10.1107/S2053273318018326
- Serezhkin V.N., Savchenkov A.V. // Crystal Growth & Design. 2020. V. 20. № 3. P. 1997. https://doi.org/10.1021/acs.cgd.9b01645
- 23. Сережкин В.Н., Албакаджажи М., Сережкина Л.Б. // Радиохимия. 2020. Т. 63. № 6. (в печати)
- Serezhkin V.N., Mikhailov Yu.N., Buslaev Yu.A. // Russ. J. Inorg. Chem. 1997. V. 42. № 12. P. 2036.
- Serezhkin V.N., Medvedkov Ya.A., Serezhkina L.B., Pushkin D.V. // Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 1018. https://doi.org/10.1134/S0036024415060254
- Rogers E., Dorenbos P., Van der Kolk E. // New J. Phys. 2011. V. 13. № 9. P. 093038. https://doi.org/10.1088/1367-2630/13/9/093038
- Antonov V.N., Harmon B.N., Yaresko A.N. // Physica B. 2002. V. 312–313. № 3. P. 373. https://doi.org/10.1016/S0921-4526(01)01308-4
- Hitchcock P.B., Hulkes A.G., Lappert M.F., Zhengning Li // Dalton Trans. 2004. № 1. P. 129. https://doi.org/10.1039/B311397C
- 29. *Pearson W.B.* The crystal chemistry and physics of metals and alloys. Wiley – Interscience, 1972.

- 30. Schleid T., Lauxmann P., Graf C. et al. // Z. Naturforsch. 2009. V. 64. № 2. P. 189. https://doi.org/10.1515/znb-2009-0208
- Dugue J., Carré D., Guittard M. // Acta Crystallogr., Sect. B. 1978. V. 34. № 2. P. 403. https://doi.org/10.1107/S0567740878003222
- Strobel S., Schleid T. // Angew. Chem. Int. Ed. 2003. V. 42. № 40. P. 4911. https://doi.org/10.1002/anie.200351641
- 33. *Choi K.-S., Hanko J.A., Kanatzidis M.G.* // J. Solid State Chem. 1999. V. 147. № 1. P. 309. https://doi.org/10.1006/jssc.1999.8287
- 34. Doert T., Graf C., Lauxmann P., Schleid T. // Z. Anorg. Allg. Chem. 2007. V. 633. № 15. P. 2719. https://doi.org/10.1002/zaac.200700300
- Yanagisawa Y., Kanamaru F., Kume S. // Acta Crystallogr., Sect. B. 1979. V. 35. № 1. P. 137. https://doi.org/10.1107/S0567740879002739
- Tamazyan R., Arnold H., Molchanov V.N. // Z. Kristallogr. 2000. V. 215. № 5. P. 272. https://doi.org/10.1524/zkri.2000.215.5.272
- Tamazyan R., Arnold H., Molchanov V.N. // Z. Kristallogr. 2000. V. 215. № 6. P. 346. https://doi.org/10.1524/zkri.2000.215.6.346
- Muller C.J., Schwarz U., Schmidt P. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. № 6. P. 947. https://doi.org/10.1002/zaac.201000015
- 39. Park S., Kim S.-J. // J. Solid State Chem. 2001. V. 161. № 1. P. 129. https://doi.org/10.1006/jssc.2001.9299
- 40. *Muller C.J., Doert T., Schwarz U. // Z.* Kristallogr. 2011.
 V. 226. № 8. P. 646. https://doi.org/10.1524/zkri.2011.1386
- 41. Jin G., Wells D.M., Crerar S.J. et al. // Acta Crystallogr., Sect. E. 2005. V. 61. № 6. P. i116. https://doi.org/10.1107/S1600536805016211
- 42. Kuz'micheva G.M., Eliseeva A.A., Orlova I.G. et al. // Russ. J. Inorg. Chem. 1983. V. 28. P. 1337.
- 43. Sheldrick W.S. // Z. Anorg. Allg. Chem. 2012. V. 638.
 № 15. P. 2401. https://doi.org/10.1002/zaac.201200241
- 44. Bronger W., Brueggemann W., Von der Ahe M., Schmitz D. // J. Alloys Compd. 1993. V. 200. № 1–2. P. 205. https://doi.org/10.1016/0925-8388(93)90495-9
- 45. *Lemoine P., Carré D., Guittard M.* // Acta Crystallogr., Sect. B. 1982. V. 38. № 3. P. 727. https://doi.org/10.1107/S0567740882003963
- 46. *Tampier M., Johrendt D.* // J. Solid State Chem. 2001. V. 158. № 2. P. 343. https://doi.org/10.1006/jssc.2001.9123
- 47. Coppens P., Yang Y.W., Blessing R.H. et al. // J. Am. Chem. Soc. 1977. V. 99. № 3. P. 760. https://doi.org/10.1021/ja00445a017
- 48. Rettig S.J., Trotter J. // Acta Crystallogr., Sect. C. 1987. V. 43. № 12. P. 2260. https://doi.org/10.1107/S0108270187088152
- 49. Вайнштейн Б.К., Фридкин В.М., Инденбом В.Л. Современная кристаллография. Т. 2. Структура кристаллов. М.: Наука, 1979. 359 с.
- 50. Gaunt A.J., Reilly S.D, Enriques A.E. et al. // Inorg. Chem. 2008. V. 47. № 1. P. 29. https://doi.org/10.1021/ic701618a