ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2020, том 65, № 11, с. 1469–1496

_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 541.165

КРАУН-ПОРФИРИНАТЫ МЕТАЛЛОВ: ПОЛУЧЕНИЕ, ОПТИЧЕСКИЕ СВОЙСТВА И ПРИМЕНЕНИЕ (ОБЗОР)

© 2020 г. А. Ю. Цивадзе^{*a*, *}, А. Ю. Чернядьев^{*a*, **}

^аИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр-т, 31, корп. 4, Москва, 119071 Россия *e-mail: tsiv@phyche.ac.ru **e-mail: chernyadyev@mail.ru Поступила в редакцию 27.05.2020 г. После доработки 07.07.2020 г. Принята к публикации 10.07.2020 г.

Рассмотрены способы получения краун-замещенных порфиринатов металлов, особенности строения данных соединений и особенности влияния катионов металлов на люминесцентные и другие фотофизические свойства краун-замещенных порфиринатов металлов. Проведен анализ термохромных, флуоресцентных, фосфоресцентных свойств краун-порфиринатов металлов, рассмотрены возможности применения данных соединений в качестве люминесцентных сенсоров температуры, сенсоров на катионы щелочных металлов, термохромных материалов, активных компонентов фотовольтаических преобразователей световой энергии.

Ключевые слова: краун-эфиры, порфирины, катионы металлов, электронные спектры поглощения, люминесцентные свойства, флуоресценция, фосфоресценция, кинетика затухания, супрамолекулярные ассоциаты, термохромизм, люминесцентные сенсоры температуры, фотовольтаические преобразователи, объемный гетеропереход

DOI: 10.31857/S0044457X20110197

введение

РАЗДЕЛ І. Синтез и люминесцентные свойства краун-порфиринатов металлов

РАЗДЕЛ II. Надмолекулярные структуры на основе краун-порфирината алюминия и их оптические свойства

РАЗДЕЛ III. Люминесцентные сенсоры температуры на основе краун-порфиринатов переходных металлов

РАЗДЕЛ IV. Композиционные фотовольтаические преобразователи с применением краунпорфиринатов платиновых металлов в активном слое

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Краун-эфиры, как известно, являются одним из классов органических соединений, которые эффективно связывают катионы щелочных, щелочноземельных металлов [1–3] и лантанидов [4]. Краун-эфирные фрагменты также представляют интерес как структурные блоки сложных органических молекул, которые могут быть связаны в супрамолекулярные ансамбли различного строения при взаимодействии с катионами шелочных и щелочноземельных металлов [5–8]. К настоящему времени краун-эфиры (рис. 1) нашли шиноса нерастворимых в органических средах солей, например перманганата калия, который благодаря краун-эфирам можно использовать как окислитель и в органических неполярных растворителях [9]. Активно развиваются и такие области применения краун-эфиров, как селективная экстракция лантанидов из сложных по химическому составу водных растворов [4], а также разделение изотопов металлов, что достигается за счет варьирования заместителей при атомах углерода краун-эфирных колец, обеспечивающих устойчивость определенной конформации краун-эфира, которая способствует селективному связыванию определенного изотопа металла вопреки принципу Педерсена – простого размерного соответствия ионного радиуса катиона металла и размера полости краун-эфира [7, 10-12]. Определенный интерес представляет и замещение атомов кислорода в краун-эфирах на атомы азота и серы, что может обеспечивать связывание катионов переходных металлов молекулами краун-эфиров [13–16], благодаря этому такие краунэфиры нашли широкое применение, и наука о данных соединениях развивается и в настоящее время. Примечателен тот факт, что в металлоорганической химии получило развитие такое направление, как синтез антикрачнов – металлоорганических циклических соединений ртути, ко-

рокое применение как агенты межфазного пере-

Рис. 1. Структурные формулы некоторых краун- и аза-краун-эфиров.

торые, в отличие от классических краунов, связывают не катионы металлов, а галогенид-ионы и другие анионы [17–19].

В то же время в супрамолекулярной химии активно развивается направление, связанное с модификацией краун-эфирными фрагментами циклических тетрапиррольных молекул – порфиринов и фталоцианинов [7, 8, 20]. Такая модификация дает возможность конструирования сложных ансамблей краун-порфиринов (рис. 2-4) и краун-фталоцианинов (рис. 5), которые образуются при взаимодействии этих тетрапиррольных соединений с катионами щелочных и других металлов, на основе которых можно создавать катализаторы четырехэлектронного восстановления кислорода [21, 22], новые электронно-оптические устройства (фотовольтаические преобразователи. электролюминесцентные излучатели), а также материалы, обладающие фоторефрактивными [23] и нелинейно-оптическими свойствами [24].

Другое важное свойство краун-замещенных порфиринов и фталоцианинов заключается в возможности создания оптических сенсоров на определенные катионы металлов, что достигается, например, при связывании катионов калия с тетра(15-краун-5)фталоцианинами с образованием супрамолекулярных кофациальных димеров (рис. 5), в которых тетрапиррольные циклы при сближении друг с другом на расстояние ~4 Å изменяют свои оптические свойства – наблюдается смещение полос поголощения в ЭСП для краунфталоцианинатов металлов [7]. Краун-порфирины также обладают сенсорными свойствами на катионы щелочных металлов по изменению светопоглощающих и люминесцентных свойств молекул-рецепторов, однако синтез таких соединений более сложный и осуществляется в несколько стадий [25-32], за исключением тетра-бензокраун-порфиринов, которые можно получить сравнительно легко – в одну стадию органического синтеза с довольно простой очисткой искомого соединения в некоторых случаях [33].

Рис. 2. Краун-порфиринаты металлов с полиэфирными циклами при пиррольных циклах порфиринового кольца.

Оказалось, что краун-замещенные порфирины могут связывать не только катионы металлов, но и нейтральные молекулы, такие как фуллерены (рис. 6) [20]. Добавление катионов калия в раствор таких супрамолекулярных диад (рис. 7) может приводить к изменению сильного поляризующего влияния фуллерена на молекулу краун-порфирина (a) на слабое (б), что подтверждается кинетическими кривыми затухания флуоресценции [20]. Время жизни флуоресценции краун-порфирина 1 значительно уменьшается при сильном поляризующем влиянии фуллерена на порфириновый шикл (кривая ii), возрастает при связывании катиона калия краун-эфирным фрагментом (кривая ііі). При добавлении 18-краун-6 в раствор время жизни снова уменьшается, что свидетельствует об увеличении поляризующего влияния фуллерена на порфириновый цикл соединения 1 (рис. 8). Данный пример демонстрирует возможность управления работой выхода электрона молекулы-донора при управляемом поляризующем влиянии молекулы-акцептора методами супрамолекулярной химии. это может быть важно для настройки фотофизических характеристик супрамолекулярной диады и последующего использования в активных слоях современных солнечных батарей. Однако управлять оптическими и фотофизическими свойствами краун-порфиринов можно не только методами супрамолекулярной химии, но и варьированием металла-комплексообразователя, связанного с порфириновым шиклом. Связывание катиона металла с порфириновым циклом, как известно, приводит к повышению симметрии молекулы порфирина, а значит, и к изменению оптических свойств макроцикла [34].

Рис. 3. Краун-бипорфиринаты цинка и супрамолекулярные ассоциаты с катионами калия.

В данном обзоре мы сосредоточили внимание на том, как меняются оптические свойства (люминесцентные, светопоглощающие) наиболее синтетически доступных тетра-краун-замещенных порфиринов при связывании катионов металлов различной химической природы (s-, p- и d-элементов) с тетрапиррольным циклом, поскольку варьирование катионов металлов в полости краунпорфиринов приводит к появлению новых интересных свойств краун-порфиринатов металлов, на основе которых могут быть созданы новые термохромные материалы, люминесцентные сенсоры на катионы щелочных металлов, люминесцентные сенсоры температуры, а также фотопреобразователи послойной вольтаические структуры или более современные преобразователи, сконструированные по принципу объемного гетероперехода [35].

РАЗДЕЛ І. СИНТЕЗ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА КРАУН-ПОРФИРИНАТОВ МЕТАЛЛОВ

Как было отмечено выше, природа катиона металла, связанного с тетрапиррольным циклом молекулы краун-замещенных порфиринов, может оказывать значительное влияние на характер светопоглощающих и особенно люминесцентных свойств данных соединений, на которых основано широкое применение порфиринатов металлов. В связи с этим важное значение имеет разработка методов синтеза, позволяющих получать краун-порфиринаты различных по химической природе металлов с высоким выходом и при использовании относительно простых методов очистки продукта синтеза. Сравнительно легко доступны по сравнению с другими краун-порфиринаты ринами *мезо*-тетра(бензо-15-краун-5)порфири-

Рис. 4. Аза-краун-порфиринат цинка с кофациальным расположением краун-эфирного и порфиринового фрагментов.

наты металлов, так как исходное свободное основание порфирина можно получить известными и хорошо себя зарекомендовавшими методами синтеза мезо-тетраарил-замещенных порфиринов из пиррола и ароматического альдегида того или иного строения в кипящих карбоновых кислотах [36] или более сложным методом в присутствии кислоты Льюиса с получением сначала порфириногена и последующим его окислением в порфирин [37]. Это позволяет увеличить выход порфирина в два и более раз по сравнению с первым методом. Для синтеза мезо-тетра(бензо-15краун-5)порфина нами была предложена методика, позволяющая выделить данное соединение из реакционной смеси без использования трудоемкой колоночной хроматографии, применявшейся ранее [21]. Вместо нее удалось применить метод селективного осаждения этанолом мезо-тетра(бензо-15-краун-5)порфина из многокомпонентной реакционной смеси [33]. Однако данным методом не удалось селективно осадить аналогичный *мезо*-тетра(бензо-12-краун-4)порфин из реакционной смеси, по-видимому, в силу сравнительно высокой растворимости данного соединения в этаноле и его гомологах — метаноле и пропаноле. *Мезо*-тетра(бензо-12-краун-4)порфин можно получить методом Адлера [36] или методом Линдсея [37] с "классическим" хроматографическим выделением краун-порфирина [38, 39].

Краун-порфиринаты металлов непереходного ряда можно получить при взаимодействии свободного основания порфирина с галогенидами соответствующих металлов [40-47] (схема 1). При этом краун-порфиринаты галлия(III) и индия(III) можно получить даже из хлоридных комплексов данных металлов, имеющих гидратную оболочку [40]. В данном случае гидратная оболочка не препятствует прохождению реакции комплексообразования с порфириновым циклом в силу относительно слабого связывания молекул воды катионом металла. Однако при применении хлоридов магния(II) и алюминия(III) гидратная оболочка препятствует прохождению реакции комплексообразования с порфириновым циклом ввиду прочного связывания молекул воды катионом металла [4], 42]. Для получения краун-порфиринатов алюминия(III) могут использоваться такие соединения, как триметилалюминий [43, 44] и безводный хлорид алюминия, однако последний реагирует с порфириновым циклом лишь в стеклующейся смеси с диметилформамидом (ДМФА) или пиридином при высокой температуре (схема 1), достаточной для разрыва связей алюминий-хлор [45-47]. Триметилалюминий легко реагирует со свободным основанием порфирина уже при комнатной температуре ввиду легкого разрыва связей алюминийуглерод при координации порфиринового цикла катионом алюминия(III) и быстрого удаления ме-

Рис. 5. Супрамолекулярный димер, образующийся при взаимодействии тетра(15-краун-5)фталоцианината меди(II) с катионами K⁺.

1473

Рис. 6. Супрамолекулярные диады краун-порфиринов с фуллереном С₆₀.

Рис. 7. Управление супрамолекулярной дриадой за счет связывания катионов калия или их удаления при добавлении в раствор 18-краун-6.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 11 2020

тана в виде газа из координационной сферы катиона Al³⁺ [43, 44]. Для получения краун-порфирината магния(II) из множества комплексов данного металла наиболее подходящим исходным соединением оказался бромид магния, который получают окислением металлического магния бромом в диэтиловом эфире [41, 42]. Такой комплекс легко реагирует со свободным основанием порфирина, поскольку содержит слабосвязанную молекулу диэтилового эфира с катионом металла, легко уходящую из координационной сферы катиона Mg^{2+} при взаимодействии с атомами азота порфиринового цикла (схема 1). Данный метод, разработанный Линдсеем и Вудфордом [42], позволяет получать порфиринаты магния с количественным выходом при комнатной температуре или незначительном нагревании (до 40°C).

Схема 1. Синтез краун-порфиринатов металлов непереходного ряда.

Соединение	ЭСП, λ_{max} , нм	Спектр флуоресценции, λ_{max} , нм	Квантовый выход флуоресценции, %
H2TCP	427, 519, 556, 595, 645	657, 724	14.8
Al(OH)TCP	431, 560, 603	608, 661	13.1
Ga(OH)TCP	430, 558, 601	611, 664	8.2
InCITCP	435, 565, 609	616, 670	3.4

Таблица 1. Фотофизические характеристики 15-краун-5-замещенных порфиринов в растворе ДМФА при температуре 298 К [40]

Таблица 2. Фотофизические характеристики 12-краун-4-замещенных порфиринов в растворе ДМФА при температуре 298 К [48]

Соединение	ЭСП, λ_{max} , нм	Спектр флуоресценции, λ_{max} , нм	Квантовый выход флуоресценции, %	
MgP	431, 566, 608	624, 672	15.8	
H2P	424, 517, 554, 593, 643	657, 723	12.2	
Al(OH)P	427, 561, 599	601, 656	10.2	
Ga(OH)P	428, 557, 597	608, 661	6.1	

100

2020

Свободный *мезо*-тетра(бензо-15-краун-5)порфин, *мезо*-тетра(бензо-12-краун-4)порфин и соответствующие порфиринаты магния(II) и алюминия(III) обладают довольно высоким квантовым выходом флуоресценции (табл. 1, 2) в растворе ДМФА, которая наблюдается в красной области спектра с основным максимумом эмиссии при ~652 нм для свободных оснований краунпорфиринов (рис. 9) и смещена в синюю область для порфиринатов магния(II) и алюминия(III) [48, 40]. Можно отметить, что квантовый выход флуоресценции *мезо*-тетра(бензо-15-краун-5)порфина и соответствующих порфиринатов алюминия(III) и галлия(III) в растворе ДМФА характеризуется более высоким значением (табл. 1) по сравнению с аналогичной серией соединений *мезо*-тетра(бензо-12-краун-4)порфина [40, 48] (табл. 2). Это, вероятно, связано с тем, что утяже-

H2TCP ·· MgTCP 80 ··· Al(OH)TCP 60 I, отн. ед. 40 20 0 580 600 620 640 660 680 700 λ, нм

Рис. 8. Кинетика затухания флуоресценции краунпорфирина (i) 1, (ii) 1 (0.1 мМ) + C60 (0.1 мМ), (iii) 1 (0.1 мМ) + C60 (0.1 мМ) + K+ (1.0 мМ), (iv) 1 (0.1 мМ) + C60 (0.1 мМ) + K+ (1.0 мМ) + 18-краун-6 (>10.0 мМ).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 11

Рис. 9. Спектры флуоресценции растворов свободного *мезо*-тетра(бензо-15-краун-5)порфина и соответствующих порфиринатов магния(II) и алюминия(III) в ДМФА при возбуждении светом с длиной волны 430 нм.

ление краун-эфирного фрагмента при фенильном цикле замедляет торсионные колебания бензо-краун-фрагментов при порфириновом цикле, способствуя тем самым излучательной релаксации возбужденного синглетного состояния порфириновой молекулы. Свободный мезо-тетра(бензо-15-краун-5)порфин и соответствующие порфиринаты алюминия(III), галлия(III) и индия(III) не проявляют при комнатной температуре (298 К) фосфоресцентных свойств даже в условиях защиты молекул порфиринов от контакта с триплетным молекулярным кислородом [40]. Спектры поглощения краун-порфиринатов металлов непереходного ряда включают характерную для порфиринов полосу Соре в синей области спектра и две Q-полосы поглощения в зеленой и красной областях [34] (рис. 10).

Эффект "тяжелого атома" для данного ряда соединений проявляется уменьшением квантового выхода флуоресценции с увеличением заряда ядра катиона-комплексообразователя, приводящим к деградации возбужденного синглетного состояния за счет интеркомбинационной конверсии, снижающей вероятность конкурирующего процесса флуоресцентного излучения (схема 2). Квантовый выход флуоресценции соответственно снижается в ряду соединений Al-TCP-Ga-TCP-In-TCP [40]. Краун-порфиринаты легких металлов непереходного ряда могут представлять интерес как люминесцентные сенсоры на катионы металлов, термохромные материалы (подробнее см. в разделе II) и в качестве люминесцирующих агентов межфазного переноса катионов металлов [48].

iii) PtCl₂, бензонитрил

Схема 2. Синтез краун-порфиринатов платиновых металлов.

Хлоридные комплексы платиновых металлов VIII группы (Ni²⁺, Pd²⁺, Pt²⁺) реагируют со свободными основаниями краун-порфиринов, однако при наличии легко уходящих лигандов в коорлинационной сфере катиона металла, таких как бензонитрил, диметилформамид [33, 49]. Краун-порфиринаты никеля(II) и палладия(II) можно получить в относительно мягких условиях - при нагревании в ДМФА [39], в то время как порфиринат платины(II) – лишь в высококипящем бензонитриле (188°С) исходя из хлорида платины(II) и свободного основания краун-порфирина (схема 2), что, по-видимому, связано с более высоким значением энергии активации реакции комплексообразования краун-порфирина с хлоридом двухвалентной платины по сравнению с энергией активации аналогичных реакций для хлоридов палладия(II) и никеля(II) [33, 39, 49].

Краун-порфиринат родия(III) можно получить исходя из хлорида соответствующего металла (RhCl₃) и свободного основания порфирина в бензонитриле или диметилформамиде (схема 3). Однако в ДМФА реакция осложняется образова-

Рис. 10. Спектры поглощения 15-краун-5-замещенных порфиринатов галлия(III) (а) и индия(III) (б) в ДМФА.

нием биядерного SAT (sitting at top) комплекса родия(I) с координированными молекулами порфирина [50] наряду с образованием основного продукта – краун-порфирината родия(III). В кипящем бензонитриле SAT-комплекс родия(I) с порфирином не образуется, так как бензонитрил не содержит в составе молекулы группы, обладающие сильными восстановительными свойствами, в отличие от ДМФА, содержащего альдегидную группу CH=O. В реакции RhCl₃ с краун-порфирином образуется только порфиринат родия(III), содержащий в качестве ацидолиганда хлорид-ион [51]. Краун-порфиринаты других металлов VII группы – кобальта и иридия, вероятно, можно получить методами, аналогичными тем, что ранее применялись для синтеза других тетраарил-замещенных порфиринатов данных металлов [52, 53]. Можно отметить, что порфиринаты кобальта(II) довольно легко можно получить из хлорида кобальта(II) и свободного основания порфирина в метаноле или смеси растворителей

пример, для синтеза краун-порфирината цинка(II) [39]. Методы синтеза порфиринатов иридия, позволяющие получать целевой продукт с высоким выходом, к настоящему времени не разработаны. Интересный подход для синтеза данных соединений был предложен в работе [52], где в качестве исходного комплекса иридия была выбрана гекахлориридиевая кислота, а в качестве растворителя - фенол, который в процессе восстановления иридия(IV) генерирует комплекс иридия(III), способный вступать в реакцию со свободным основанием порфирина. Однако происходит и более глубокое восстановление до иридия(I), что приводит к образованию SAT-комплекса с молекулами порфирина, аналогичного по строению уже упомянутому SAT-комплексу родия(I) с молекулами порфирина в качестве нейтральных лигандов [50].

хлороформ-метанол, которая применялась, на-

Краун-порфиринаты платиновых металлов VI группы (рутений, осмий) можно получать из оксидов данных металлов [54], гексахлоросматов и гексахлоррутенатов щелочных металов [55]. Однако получить с высоким выходом порфиринаты рутения(II) и осмия(II) удается только исходя из карбонильных комплексов данных металлов [56, 57]. Удобно применять карбонильные комплексы ноль-валентных рутения ($Ru_3(CO)_{12}$) и осмия ($Os_3(CO)_{12}$) в силу их широкой доступности по сравнению с другими карбонильными кластерами этих металлов. Реакции свободного основания порфирина с данными трехъядерными комплексами позволяют получить с высоким выходом порфиринаты двухвалентных рутения и осмия (схема 3). Краун-порфиринаты железа, вероятно, тоже могут быть получены с высоким выходом при использовании карбонильных соединений железа по аналогии с синтезом других тетра-арил-замещенных порфиринатов железа [50].

Краун-порфиринаты осмия(II), платины(II) и палладия(II) можно окислить в устойчивые пор-

фиринаты осмия(IV), осмия(VI), платины(IV) и палладия(IV) соответственно. Краун-порфиринат осмия(IV) образуется при окислении порфирината осмия(II) молекулярным иодом с количе-

ственным выходом [58], краун-порфиринат осмия(VI) можно получить с высоким выходом в реакции порфирината осмия(II) с пероксидом водорода (схема 4) в уксусной кислоте [57].

Окисление краун-порфиринатов палладия(II) и платины(II) по катиону металла происходит в более жестких условиях при взаимодействии с сильным окислителем — перекисью водорода в соляной кислоте [59]. Такие реакции (схема 5) позволяют получить порфиринаты палладия(IV) и платины(IV) с приемлемым, но далеким от количественного выходом по причине побочного образования катион-радикалов порфиринатов палладия и платины, осмоления части исходного продукта через реакции катион-радикалов порфиринового кольца, а также по причине возможного частичного разрушения краун-эфирных фрагментов [59]. Представленные выше краунпорфиринаты платиновых металлов, в отличие от порфиринатов легких металлов непереходного ряда (Mg^{2+} , Al^{3+} , Ga^{3+}), обладают слабым флуоресцентным свечением и довольно сильной фосфоресценцией (схема 6, рис. 11, 12) при комнатной температуре в дегазированных растворах и

Рис. 11. Скорректированный на чувствительность прибора спектр фосфоресценции Pt(II)TCP в полистироле при 77 К (штриховая линия) и при 298 К (сплошная линия), длина волны возбуждающего света – 530 нм.

даже в растворах, контактирующих с кислородом воздуха, однако интенсивность фосфоресценции

в последнем случае значительно снижается за счет тушения молекулами кислорода [60].

Схема 5. Реакции окисления краун-порфиринатов палладия(II) и платины(II).

Схема 6. Электронные переходы поглощения, интеркомбинационной конверсии, флуоресценции и фосфоресценции в молекулах краун-порфиринатов металлов.

Интенсивность и времена жизни фосфоресценции краун-порфиринатов платиновых металлов в пленке полистирола как при комнатной температуре (298 К), так и при температуре жидкого азота (77 К) зависят от величины эффекта "тяжелого атома" катиона металла, а также от наличия неспаренных электронов v катиона металла, связанного с порфириновым циклом, и, кроме того, от энергетического положения *d*-*d*-переходов поглощения катиона металла [39]. Эффект "тяжелого атома" [61] нивелирует флуоресценцию и обеспечивает фосфоресцентное свечение (рис. 11, 12) за счет активации каналов синглет-триплетной интеркомбинационной конверсии и триплет-синглетных излучательных переходов (схема 6) у краун-порфиринатов платины(II) и осмия(II), осмия(IV), осмия(VI). При этом кинетика затухания фосфоресценции данных соединений характеризуется довольно короткими временами жизни опять же в силу проявления значительного эффекта "тяжелого атома" (подробнее см. в разделе III).

Меньший по величине эффект "тяжелого атома" катионов Pd^{2+} , Pd^{4+} , Rh^{3+} у соответствующих краун-порфиринатов металлов проявляется в том, что интенсивность флуоресценции и фосфоресценции у данных соединений имеет сопоставимые значения и различается не более чем в 20 раз даже в условиях глубокой заморозки жидким азотом (77 К), что позволяет рассматривать краун-порфиринаты палладия(II), палладия(IV) и родия(III) как перспективные люминесцентные сенсоры температуры (раздел III). Времена жизни фосфоресценции у краун-порфиринатов палладия(II), палладия(IV) и родия(III) [39] характеризуются значительно более высокими значениями по сравнению с краун-порфиринатами платины и осмия (табл. 1 в разделе III), что также связано с более слабым эффектом "тяжелого атома" у катионов Pd^{2+} , Pd^{4+} , Rh^{3+} по сравнению с тяжелыми катионами Pt^{2+} , Pt^{4+} , Os^{2+} , Os^{4+} , Os^{6+} , которые характеризуются сильным электрическим полем ядра, которое значительно увеличивает вероятность запрещенных по спину электронных переходов порфиринового кольца [61, 62] (раздел III). Помимо эффекта "тяжелого атома", производимого катионом металла, на проявление люминесцентных свойств порфиринатами металлов могут влиять и другие свойства катионов металлов. Например, парамагнетизм катиона Os⁴⁺ способствует большему изменению времени жизфосфоресценции краун-порфирината ни $Os(I_2)TCP$ при изменении температуры, чем это наблюдается у диамагнитных краун-порфиринатов осмия(II) и осмия(VI) [58]. У краун-порфирината никеля(II) происходит наложение *d*-*d*-переходов поглощения на О-полосу поглощения порфиринового цикла, благодаря чему данный

Рис. 12. Скорректированный на чувствительность прибора спектр фосфоресценции Os(CO)TCP в полистироле при 77 К (штриховая линия) и 298 К (сплошная линия), длина волны возбуждающего света 584 нм.

комплекс не проявляет люминесцентных свойств (отсутствует флуоресцентное и фосфоресцентное свечение [39]). Данное свойство, однако, имеет свои плюсы для практического применения. Краун-порфиринат никеля(II) обладает высокой активностью в процессах фотогенерированного разделения зарядов в активных слоях фотовольтаических преобразователей послойного строения, выполненных по принципу объемного гетероперехода (раздел IV), поскольку энергия фотои электровозбуждения в солнечных батареях не расходуется на побочные процессы фото- и электролюминесценции [62] порфирината металла.

РАЗДЕЛ II. НАДМОЛЕКУЛЯРНЫЕ СТРУКТУРЫ НА ОСНОВЕ КРАУН-ПОРФИРИНАТА АЛЮМИНИЯ И ИХ ОПТИЧЕСКИЕ СВОЙСТВА

Как было отмечено в предыдущем разделе, краун-порфиринаты алюминия(III) и магния(II) обладают довольно высоким квантовым выходом флуоресценции в силу того, что катионы таких легких металлов не проявляют выраженного эффекта "тяжелого атома" [61, 63], а также ограничивают колебания порфиринового цикла за счет комплексообразования с его атомами азота [64, 34]. 15-Краун-5-замещенные порфиринаты магния(II) и алюминия(III), которые удается растворить в воде в присутствии небольшой добавки ДМФА, проявляют сенсорные свойства на катионы калия в воде по изменению ЭСП и люминесцентных свойств молекулы-рецептора [41]. Особенно интересным для данного применения оказался 15-краун-5-замещенный порфиринат алюминия(III) (схема 7), обладающий высокой устойчивостью во

Рис. 13. Изменения ЭСП при взаимодействии Al(OH)TCP ($C = 1.4 \times 10^{-6}$ моль/л) с KClO₄ в растворе H₂O/ДМФА (100 : : 1 по объему). Вверху указано количество мольных эквивалентов K⁺ по отношению к Al(OH)TCP.

всем диапазоне pH (от сильно кислой среды до сильно щелочной), в то время как 15-краун-5-замещенный порфиринат магния(II) устойчив в щелочной среде и теряет катион магния при pH < 7[41]. Концентрация катионов калия в растворе может быть определена с помощью 15-краун-5порфиринатов алюминия(III) и магния(II) по соотношению интенсивностей полос поглощения молекулы-рецептора и супрамолекулярного ассоциата в ЭСП (рис. 13).

Схема 7. Реакция образования супрамолекулярного димера на основе Al(OH)TCP и катионов калия.

Возможно также определение концентрации катионов калия по тушению флуоресценции (рис. 14) 15-краун-5-порфирината алюминия(III) [41], которое состоит из вклада как динамического тушения флуоресценции катионами калия в растворе, так и статического тушения, обусловленного образованием супрамолекулярного димера с катионами калия согласно нелинейной зависимости I_0/I в координатах Штерна—Фольмера [60, 65] (рис. 15). Возможна оценка концентрации катионов калия и по росту полосы эмиссии супрамолекулярного ассоциата, однако его полоса эмиссии (рис. 14) накладывается на плечо в спектре люминесценции исходного краун-порфирината алюминия(III) [41].

Интересное свойство 15-краун-5-порфирината алюминия(III), содержащего хлорид-ион в качестве ацидолиганда (рис. 16), было обнаружено в растворе толуола. При температуре 20°С раствор был зеленым, а при нагревании до 70°С и выше становился фиолетовым [47]. После охлаждения до 20°С зеленая окраска раствора возращалась и менялась на фиолетовую при повторном нагревании и т.д. Анализ обнаруженного обратимого термохромного поведения 15-краун-5-порфирината алюминия(III) в толуоле методами ЭСП, люминесцентной спектроскопии и динамического рассеяния света показал, что молекулы данного соединения собираются в ассоциаты (схема 8) при комнатной температуре, а при нагревании ассоциаты распадаются на отдельные молекулы 15-

Рис. 14. Изменения спектров флуоресценции при добавлении KClO₄ к Al(OH)TCP ($C = 0.7 \times 10^{-7}$ моль/л) в растворе вода/ДМФА (100 : 1 по объему) при возбуждении светом с длиной волны 430 нм. Вверху указано количество мольных эквивалентов K⁺ по отношению к Al(OH)TCP.

краун-5-порфирината алюминия(III) [47]. Изменения цвета, согласно спектрам люминесценции (рис. 17) и ЭСП (рис. 6), обусловлены образованием координационного полимера при образовании координационной связи между хлоридионом и катионом Al^{3+} разных молекул краунпорфирината алюминия (схема 8, рис. 18). При этом в ЭСП наблюдается характерное для ассоциатов порфиринов расщепление полосы Соре и красный сдвиг Q-полос (рис. 18), спектр люминесценции также сильно изменяется — исчезает полоса эмиссии индивидуальных молекул порфирината алюминия и появляется смещенная в красную область полоса эмиссии ассоциатов низкой интенсивности [47] (рис. 5). Образование

Рис. 15. Зависимость тушения флуоресценции (переход эмиссии с максимумом при 612 нм) Al(OH)TCP ($C = 0.7 \times 10^{-7}$ моль/л) в растворе вода/ДМФА (100 : : 1 по объему) от концентрации катионов калия в координатах Штерна–Фольмера при длине волны возбуждающего света 430 нм.

крупных ассоциатов было подтверждено также и методом динамического рассеяния света. Данные измерений этим методом в приближении сферической формы движущихся частиц позволили оценить их диаметр, который составил ~1000 нм при 20°С, т.е. коллоидная частица в растворе включает в себя большое число молекул тетрабензо-15-краун-5-порфирината алюминия, для которых диаметр молекулы составляет ~2.5 нм в конформации плоского диска [47].

Схема 8. Механизм ассоциации молекул AICI-TCP в растворе толуола.

Рис. 16. Структурная формула тетра-бензо-15-краун-5-порфирината алюминия(III).

Аналогичный характер изменения цвета, спектров люминесценции и ЭСП наблюдался у фосфорилзамещенных порфиринатов алюминия [66] и у порфиринатов алюминия, содержащих анион никотиновой или изоникотиновой кислоты [67] в качестве ацидолиганда (рис. 19), однако изменение цвета авторы данных работ наблюдали не при изменении температуры раствора, а при варьировании природы растворителя [66, 67]. Данные работ [66, 67] дополнительно подтверждают предложенный нами механизм ассоциации 15-краун-5-порфирината алюминия(III) в толуоле (схема 8), которым объясняются термохромные свойства этого комплекса алюминия [47]. Интересно отметить, что 15-краун-5-порфиринаты галлия(III) и индия(III) [40] (схема 1, раздел I) не проявляют термохромных свойств в растворе толуола. что может быть связано с малой прочностью межмолекулярных координационных связей для этих соединений. 15-Краун-5порфиринат алюминия(III), содержащий гидроксид-анион в качестве ацидолиганда, проявляет лишь слабый термохромный эффект в растворе толуола из-за сравнительно малой растворимости в нем.

РАЗДЕЛ III. ЛЮМИНЕСЦЕНТНЫЕ СЕНСОРЫ ТЕМПЕРАТУРЫ НА ОСНОВЕ КРАУН-ПОРФИРИНАТОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Люминесцентные сенсоры температуры представляют интерес как датчики дистанционного бесконтактного анализа температуры [68]. Их принцип действия основан на возбуждении УФили видимым светом люминофора, в качестве которого могут применяться соли лантанидов, селениды кадмия и свинца, комплексы переходных металлов с органическими лигандами [68]. Данные люминесцирующие соединения могут изменять интенсивность фосфоресцентного свечения при изменении температуры за счет конкуренции

Рис. 17. Температурная зависимость изменения спектров флуоресценции раствора AlCITCP в толуоле ($C_{\text{AlCITCP}} \sim 1 \times 10^{-6} \text{ моль/л}$).

излучательных переходов фосфоресценции и безызлучательных переходов дезактивации возбужденных состояний молекулярных систем электронов [69], а также изменения заселенности электронных уровней катионов лантанидов [70]. Однако для измерения температуры с помощью известных фосфоресцирующих комплексов переходных металлов интенсивность их фосфоресцентного свечения необходимо непрерывно соотносить с интенсивностью возбуждающего све-

Рис. 18. Температурная зависимость ЭСП раствора AlCITCP в толуоле ($C_{\text{AlCITCP}} \sim 1 \times 10^{-6}$ моль/л).

Строение ассоциатов соединений 1-4:

X = H, Ph

Рис. 19. Строение порфиринатов алюминия(III), содержащих в качестве ацидолиганда фосфорильные анионы или анионы никотиновой и изоникотиновой кислоты. Полиассоциаты на основе данных соединений.

та, которая может колебаться в широких пределах как при возбуждении естественным солнечным светом, так и при возбуждении лампами и светодиодами [69].

Нами было установлено, что краун-порфиринаты платиновых металлов (палладия(IV) [71] и родия(III) [51]) обладают высокой чувствительностью интенсивности фосфоресцентного свечения к температуре в диапазоне температур 77–358 K, но одновременно обладают и флуоресцентными переходами эмиссии, интенсивность которых мало чувствительна к температуре и лишь незначительно уменьшается при нагревании от 77 до 358 К (схема 6, рис. 20а, 20б). При использовании данных соединений в качестве фосфоресцентных сенсоров температуры не нужно соотносить интенсивность фосфоресцентного свечения с интенсивностью возбуждающего света для правильного

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 11 2020

Рис. 20. Изменение спектров флуоресценции (550–650 нм) и фосфоресценции (650–850 нм) через определенные промежутки времени при нагревании образца PdCl₂TCP в полистироле от 77 до 297 К при возбуждении люминесценции светом с длиной волны 440 нм (а) и при температуре образца PdCl₂TCP в полистироле (298 К – график вверху, 323 К – в середине, 358 К – внизу) при возбуждении люминесценции светом с длиной волны 440 нм (б).

определения температуры, достаточно оценить соотношение интенсивности переходов флуоресценции и фосфоресценции, которое остается постоянным при изменяющейся интенсивности возбуждающего света (рис. 20а, 20б). Помимо широкого диапазона измеряемых температур с помощью краун-порфиринатов палладия(IV) и родия(III) можно отметить значительную полуширину линий эмиссии и пологий характер изменения спектров флуоресценции и фосфоресценции в области максимума [71], что может позволить использовать упрощенные конструкции детекторов для анализа интенсивности в максимумах эмиссии по сравнению с конструкциями детекторов для люминесцентных сенсоров на основе лантанидов, имеющих довольно острые пики переходов эмиссии и требующих более точной настройки детектора на определенную длину волны регистрируемого сигнала [70]. Также преимуществом перед соединениями лантанидов является и возможность возбуждения порфиринатов палладия(IV) и родия(III) светом УФ и почти всего видимого диапазона [71, 51]. При этом соотношение интенсивности переходов флуоресценции и фосфоресценции остается неизменным при возбуждении во всем УФ- и видимом диапазоне длин волн, о чем свидетельствует совпадение спектров возбуждения флуоресценции и фосфоресценции краун-порфиринатов палладия (IV) и родия(III) (рис. 21).

Указанными свойствами люминесцентных сенсоров по соотношению интенсивности флуоресцентных и фосфоресцентных переходов эмиссии, как оказалось, обладают не все порфиринаты металов, а лишь содержащие диамагнитный катион металла со средним эффектом "тяжелого атома" [61]. Например, у краун-порфиринатов платины(II) [33] и осмия(II) [57] ввиду выраженного эффекта "тяжелого атома" переходы флуоресценции становятся едва заметными на фоне переходов фосфоресценции, что исключает возможность использования переходов флуоресценции в качестве надежного рэпера, относительно которого изменяется интенсивность переходов фосфоресценции при изменении температуры. Краун-порфиринаты металлов первого переходного периода (медь, никель, кобальт) также не могут рассматриваться как люминесцентные сенсоры температуры данного типа ввиду наличия у этих комплексов только одного типа люминесценции – флуоресценции (порфиринаты кобальта), фосфоресценции (порфиринаты меди), а порфиринаты никеля, как известно, вовсе не обладают люминесцентными свойствами [39].

Любопытным фактом оказалось проявление как флуоресцентных, так и фосфоресцентных свойств краун-порфиринатами индия(III) [40] и олова(IV) [71] в полимерной основе (полистирол) при температуре 77 К, но при температуре выше

Рис. 21. Спектры возбуждения PdCl₂TCP: флуоресценции ($\lambda_{max} = 623$ нм) – график внизу, фосфоресценции ($\lambda_{max} = 714$ нм) – график вверху.

~203 К наблюдалось полное исчезновение фосфоресцентного свечения у данных соединений, в то время как флуоресценция сохраняется и при комнатной температуре [40]. Катионы In³⁺ и Sn⁴⁺ характеризуются эффектом "тяжелого атома", сравнимым с катионами Pd²⁺, Pd⁴⁺, Rh³⁺ [61], однако фосфоресценция у краун-порфиринатов индия(III) и олова(IV) тушится значительно быстрее с ростом температуры по сравнению с краун-порфиринатами палладия(II), палладия(IV) и родия(III) [71, 51]. Возможным объяснением такого различия может быть относительно слабое связывание катионов In³⁺ и Sn⁴⁺ с порфириновым циклом по сравнению с катионами переходных металлов, у которых связи с порфириновым циклом могут усиливаться за счет делокализации d-электронов катионов металлов с участием молекулярных орбиталей порфиринового цикла. Относительно слабое связывание катионов In³⁺ и Sn⁴⁺ с порфириновым циклом может приводить к усилению безызлучательной деградации возбужденных триплетных уровней при повышении температуры, чем и может объясняться полное исчезновение переходов фосфоресценции при температуре выше 203 К у краун-порфиринатов индия(III) и олова(IV). Данные соединения могут представлять интерес как люминесцентные сенсоры температуры лишь при очень низких температурах.

Другой метод измерения температуры – по изменению кинетических кривых затухания фосфоресценции краун-порфиринатов металлов, защищенных от контакта с кислородом воздуха, также может представлять интерес. Как оказалось, краун-порфиринаты платины(II) [33] и осмия(II) [57] в полистироле обладают малым ходом времени жизни фосфоресценции при изменении температуры от 77 до 298 К по причине значительного проявления эффекта "тяжелого атома", ускоряющего как при низких, так и при высоких температурах переходы между синглетными и триплетными электронными уровнями порфириновой молекулы, в том числе и переходы фосфоресценции (рис. 22а, 22б). Оказалось, что времена жизни фосфоресценции сильнее изменяются с температурой у краун-порфирината родия(III) [71] в полистироле, чем у краун-порфиринатов платины(II) [33] и осмия(II) [57]. Для порфирината родия RhClTCP время жизни изменяется в 13.8 раз при нагревании от 77 до 298 К (41 и 565 мкс при 77 и 298 К соответственно), а у краун-порфиринатов платины(II) и осмия(II) лишь в 5.7 и 4 раза также при нагревании от 77 до 298 К (табл. 3). Такое различие, возможно, связано с активацией колебаний связи родий-хлор при повышении температуры, которые могут возмущать электронно-возбужденное состояние молекулы RhClTCP и ускорять тем самым излучательные переходы фосфоресценции с переходом в основное синглетное состояние S_0 (схема 1).

Значительный ход времени жизни фосфоресценции (рис. 22в, рис. 23) с температурой был обнаружен у краун-порфирината меди(II) [72] – соединения, в котором катион металла не обладает значительным эффектом "тяжелого атома", однако катион меди(II) характеризуется наличием неспаренного электрона в своей электронной оболочке, магнитное поле которого может влиять на вероятность электронных синглет-триплетных

Рис 22. Кривые затухания фосфоресценции Pt(II)TCP в полистироле при 298 К (сплошная линия, 33 мкс) и при 77 К (штриховая линия, 188 мкс). Длина волны возбуждающего света 530 нм, длина волны в канале регистрации фосфоресценции 674 нм (а); кривые затухания фосфоресценции Os(CO)TCP в полистироле при 298 К (сплошная линия, 45 мкс) и при 77 К (штриховая линия, 182 мкс). Длина волны возбуждающего света 584 нм, длина волны в канале регистрации фосфоресценции 785 нм (б); кривые затухания фосфоресценции Cu(II) TCP в полистироле при 298 К (сплошная линия, 11 мкс) и при 77 К (штриховая линия, 453 мкс). Длина волны возбуждающего света 535 нм, длина волны в канале регистрации фосфоресценции 797 нм (в).

и триплет-синглетных переходов в молекуле порфирината меди(II) (схема 6). Время жизни фосфоресценции краун-порфирината меди(II) в полистироле увеличивается в 41 раз! (табл. 3) при изменении температуры от 298 до 77 К [72]. Обладая высоким квантовым выходом фосфоресценции [72, 39], краун-порфиринат меди(II) является весьма перспективным соединением для измерения температуры по изменению кинетики затухания фосфоресценции, для регистрации которой требуется сравнительно высокий квантовый выход фосфоресценции, поскольку измерение кривой затухания проводится в режиме включения-выключения лампы-вспышки, в отличие от метода сравнения интенсивности флуоресцентного и фосфоресцентного свечения, в котором сигнал люминесценции измеряется при непрерывном возбуждении образца тем или иным источником света.

РАЗДЕЛ IV. КОМПОЗИЦИОННЫЕ ФОТОВОЛЬТАИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ С ПРИМЕНЕНИЕМ КРАУН-ПОРФИРИНАТОВ ПЛАТИНОВЫХ МЕТАЛЛОВ В АКТИВНОМ СЛОЕ

Как известно, электроды с нанесенной на них пленкой порфирина, проявляют эффект Беккереля – увеличение ЭДС при освещении видимым светом [73]. Являясь органическими полупроводниками с очень интенсивным поглощением света в синей области спектра, порфирины могут генерировать фотозаряды при нанесении на электрод в индивидуальном виде [73, 74], однако могут быть использованы и в составе композиций с улучшенными характеристиками транспорта зарядов во внешнюю цепь, чему обычно препятствуют процессы рекомбинации фоторазделенных зарядов [73]. Все сказанное относится и к мезо-тетра-бензо-15-краун-5)порфиринатам металлов, которые являются представителями синтетических, относительно легко доступных порфиринов [7, 8]. Краун-порфиринаты металлов могут быть применены в качестве активных компонентов твердотельных композиционных фотовольтаических (ФВ) преобразователей с показанной на схеме 9 последовательностью слоев. Добавка краунпорфиринатов платины(II), палладия(II) и никеля(II) (рис. 24) в слой ароматического полиимида (АПИ, схема 9) [74] в количестве 10, 20 и 30 мас. % дает следующий максимальный КПД устройств: ФВ-преобразователи, содержащие краун-порфиринат платины(II) -0.01%, краун-порфиринат палладия(II) - 0.15%, краун-порфиринат никеля(II) – на уровне 1%. Такая разница в эффективности однотипных устройств может объясняться как сильно различающейся энергией *d*-*d*-переходов катионов металлов, связанных с порфириновым циклом, так и релаксацией энергии возбуждения в полосе Сорэ через *d*-*d*-переходы ка-

Рис. 23. Скорректированный на чувствительность прибора спектр фосфоресценции Cu(II)TCP в полистироле при 77 К (штриховая линия, шумность связана с образованием пузырьков азота в сосуде Дьюра при 77 К) и при 298 К (сплошная линия), длина волны возбуждающего света 535 нм.

Рис. 24. Краун-порфиринаты платиновых металлов – допирующие добавки ФВ-преобразователей с послойной структурой и объемным гетеропереходом.

тионов палладия(II) и платины(II) [75]. У краунпорфирината никеля(II) *d*-*d*-переходы лежат в красной области и перекрываются лишь с дальней Q-полосой поглощения системы электронов порфиринового кольца, за счет чего поглощенная энергия в области полосы Соре может передаваться через электронные уровни катиона никеля(II) на экситонные уровни АПИ, которые могут

Таблина 3.	Сравнение хара	актеристик d	bocdbon	еспеннии к	раун-по	эрфиг	оинатов металло	ов в пленке	полистирола
I wormiga or	opublicinite hapt	and opinoring q	ροσφορ	сеценции и	payn n	spφn	Siniarob menanin	D D materine	momermpoma

Соединение	Максимум поглощения в ЭСП (раствор в хлороформе), нм	Максимум в спектре	Время жизни фосфоресценции, мкс		
		фосфоресценции при 298 К, нм	298 K	77 K	
Os(CO)TCP	417, 525	785, 838	45 мкс	182 мкс	
Pt(II)TCP	408, 512, 539	674, 742	33 мкс	188 мкс	
Cu(II)TCP	421, 541	797	11 мкс	453 мкс	
RhClTCP	434, 540, 578	731	41 мкс	565 мкс	
Os(O ₂)TCP	403, 592	787, 842	44 мкс	179 мкс	
Os(I ₂)TCP	410, 518	780, 819	25 мкс	142 мкс	

в процессе миграции экситонов распадаться на дефектах структуры полимера на разделенные заряды, обеспечивающие фототок устройства. Кроме того, при использовании краун-порфиринатов платины(II) и палладия(II) в активном слое ФВпреобразователя поглощенная энергия может расходоваться на фосфоресцентное излучение, характерное для порфиринатов данных металов, как это уже было отмечено в разделах I и III. Краун-порфиринат никеля(II), как и другие порфиринаты никеля(II) [39], фактически не проявляет флуоресцентных и фосфоресцентных свойств, что способствует повышению эффективности процессов образования экситонов АПИ.

Структура ароматического полиимида (АПИ, он же polymer)

Схема 9. Структура послойного ФВ-преобразователя с активным слоем на основе АПИ с добавкой краун-порфирината платины(II), палладия(II) или никеля(II).

На основе другого полимера в активном слое – МЕН PPV с добавкой краун-порфирината палладия(II) были сконструированы твердотельные ФВ-преобразователи, содержащие два активных слоя: первый слой (донорный) – это упомянутый выше полимер с добавкой краун-порфирината палладия(II), в качестве второго слоя (акцепторного) был использован фталоцианинат меди(II), нанесенный испарением из раствора (схема 10). Такая конструкция представляет интерес как с

Рис. 25. Спектры поглощения слоев: селена (1), МЕН PPV + Pd(II)TCP (2), CuPc (3).

точки усиления поглощения света во всем видимом диапазоне за счет взаимодополнения спектров (рис. 25) краун-порфирината палладия(II) и фталоцианината меди(II), так и с точки зрения возможности получить более близкую к выпрямляющей вольт-амперную характеристику (**BAX**) преобразователя [35] (схема 11) за счет создания контакта акцепторного и донорного слоев, что отражается в более высоком значении фактора заполнения и, соответственно, КПД устройства по сравнению с устройствами с сильно отклоняющейся от выпрямляющей ВАХ [35, 74] (рис. 26). Близкую к выпрямляющей характеристику действительно удалось получить на устройствах предложенного типа (схема 10, 12), максимальный КПД устройства составил 0.02 электрона на фотон [74]. Также для двуслойных ФВ-преобразователей данного типа были установлены закономерности влияния адсорбированных газов на границе раздела слоев и возможности улучшения работы устройств при варьировании металлического электрода [74].

Схема 10. Многослойная структура ФВ-преобразователя, содержащего полимерный слой, допированный краун-порфиринатом палладия(II) Pd(II)TCP.

Схема 11. Определение фактора заполнения (*ff*) и КПД преобразования (η) по вольт-амперной характеристике фотовольтаического преобразователя при облучении его солнечным светом. J_{sc} – ток короткого замыкания, отнесенный к площади ФВ-преобразователя, V_{oc} – напряжение открытой цепи. J_{mp} – ток, отнесенный к единице площади ФВ-преобразователя при заданном напряжении V_{mp} , приложенном к ФВ-перобразователю. P_{in} – мощность падающего света, отнесенная к площади поверхности ФВ-преобразователя.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 11 2020

Схема 12. Упрощенная энергетическая схема Φ B-преобразователя с двумя слоями органических полупроводников: D(1) – электроноакцепторный слой (MEH PPV + Pd(II)TCP), A(1) – электроноакцепторный слой (CuPc); $E_{\rm fL}$, $E_{\rm fR}$ – уровни Ферми, $E_{\rm e}$, $E_{\rm h}$ – транспортные уровни электронов и дырок соответственно. Vac – энергия свободного электрона в вакууме.

В представленных выше одно- и двуслойных ВФ-преобразователях добавка значительного количества краун-порфирината металла обеспечивала приемлемые характеристики работы устройств послойного строения [74] по току короткого замыкания, фото-ЭДС и КПД. Однако оказалось, что краун-порфиринаты металлов могут существенно увеличивать фактор заполнения и КПД ФВ-устройств, изготовленных не послойно, а на основе принципа объемного гетероперехода с такими активными компонентами, как светопоглощающие полимеры-полупроводники в качестве донорного компонента и различных производных фуллерена в качестве электроноакцептора [35, 76].

Оказалось, что добавка очень небольшого количества (0.1 мас. %) краун-порфирината никеля(II) в активный слой известного и широко применяемого преобразователя с объемным гетеропереходом (рис. 27) на основе поли-3гексилтиофена и производного фуллерена С60 – МЭ-С61-МК [76, 77] (**РСВМ** – на английском) приводит к увеличению максимального КПД устройства от 3.6 до 4% согласно сравнению максимальных факторов заполнения по BAX устройств с допирующей добавкой и без нее [78]. Механизм действия допирующей добавки – краун-порфирината никеля(II) – основан на том, что НСМО (низшая свободная молекулярная орбиталь) и ВЗМО (высшая занятая молекулярная орбиталь) краун-порфирината никеля(II) хорошо соответствуют каскаду уровней энергии компонентов устройства, которые обеспечивают электронную и дырочную проводимость при фотовозбуждении (схема 13). Важную роль может играть сильное поглощение порфирината никеля(II) в красной и особенно синей областях спектра, а также формирование при внедрении молекул краун-порфирината никеля(II) с объемными краун-эфирными фрагментами "дефектов структуры" полимера, на которых может происходить распад экситонов полимера на разделенные заряды, что, в свою очередь, должно способствовать улучшению тока фотогенерированных зарядов во внешнюю цепь, обеспечивая увеличение КПД устройства [35, 76]. Можно отметить и возможность образования супрамолекулярных диад краун-порфирината никеля(II) с С60 – МЭ-С61-МК (РСВМ) при приготовлении объемной смеси фотоактивных компонентов преобразователя объемного гетероперехода. В таких супрамолекулярных

Рис. 26. Вольт-амперная характеристика образца ITO-CuPc-MEH PPV + Pd(II)TCP-Ca-Al (a) FTO-CuPc-MEH PPV + + Pd(II)TCP-Se-In-Al (б) и при облучении светом с плотностью мощности 10 мВт/см², имеющим спектр, близкий к солнечному; площадь образцов 0.1 см².

Солнечный свет (hv)

Рис. 27. Структура ФВ-преобразователя с активным слоем, выполненным по принципу объемного гетероперехода (с многократным увеличением площади контакта донорного и акцепторного слоев по сравнению с послойными ФВ-преобразователями).

диадах, аналогичных рассмотренным в работе [20] (раздел введение), может происходить прямой перенос электрона с молекулы порфирината металла на молекулу замещенного фуллерена при фотовозбуждении, что, очевидно, может обеспечивать дополнительный вклад в общий ток от разных процессов, происходящих одновременно в ФВ-преобразователе с объемным гетеропереходом.

Схема 13. Расположение уровней молекулярных орбиталей компонент фотоактивного слоя и работа выхода электрона для ITO и Al-электродов. Полимерный электрод ПЭДОТ-ПСК – комплекс поли(этилендиокситиофена) и поли(сульфокислоты).

Аналогичный эффект увеличения КПД ФВпреобразователя с объемным был достигнут при введении небольшой допирующей добавки краун-порфирината осмия(II) в активный слой другого известного устройства с объемным гетеропереходом на основе поли-2-метокси-5-(2-этилгексилокси)-1,4-фениленвинилена (МЕН-РРV) и РСВМ [79]. Добавление в этот активный слой 0.1 мас. % и более *мезо*-тетра(бензо-15-краун-5)порфината осмия(II) приводило к увеличению КПД устройства от 0.9 до 1.0% [78]. Механизмы увеличения эффективности устройства, вероятно, имеют ту же природу, что и рассмотренные выше для краун-порфирината никеля(II).

В заключение можно отметить, что характеристики ФВ-преобразователя на основе поли-3гексилтиофена (**ПЗГТ**) и производного фуллерена C60 — МЭ-C61-МК с допирующей добавкой краун-порфирината никеля(II) приближаются к максимально возможным для данного типа ФВустройств (КПД ~ 4%) с объемным гетеропереходом (рис. 27) при использовании полимера-полупроводника и производных фуллерена C₆₀ [76]. Можно также отметить и эффективный способ повышения КПД ФВ-устройств с объемным гете-

ропереходом на основе политиофена и фуллерена, который заключается в создании буферного слоя ТіОх на границе алюминий-объемная композиция из политиофена и фуллерена. При оптимальной толщине 10 нм введение такого слоя обеспечивает увеличение КПД устройства от 3.39 до 4.36% [80]. Кроме того, слой ТіОх замедляет деградацию устройства при эксплуатации в возлушной атмосфере, тем самым обеспечивая увеличение срока службы ФВ-преобразователя такого типа [80]. Вероятно, применение одновременно допирующих добавок на основе краунпорфиринатов никеля(II) и осмия(II) [78] и буферного слоя TiOx оптимальной толщины [80] в устройствах с объемным гетеропереходом позволит еще более значительно увеличить фактор заполнения (схема 11) и КПД устройств такого типа [76, 78, 80].

ЗАКЛЮЧЕНИЕ

Варьирование катионов металлов, связанных с тетрапиррольным циклом краун-порфиринов, позволяет управлять оптическими свойствами данного класса соединений, особенно это относится к люминесцентным свойствам, поскольку именно от природы катиона металла зависит интенсивность флуоресценции и фосфоресценции краун-порфирината металла, кинетические характеристики люминесценции обоих этих типов. Зная закономерности влияния катионов металлов на люминесцентные свойства порфиринового цикла у краун-порфиринов, продемонстрированные в данном обзоре, можно направленно применять краун-порфиринаты металлов в качестве люминесцентных сенсоров на катионы щелочных металлов в растворе, люминесцентных сенсоров температуры по изменению интенсивности переходов фосфоресценции относительно переходов флуоресценции, а также по изменению кинетических характеристик фосфоресценции при изменении температуры. Актуальной задачей остается создание водорастворимых краун-порфиринатов металлов, которые могут представлять интерес как люминесцентные сенсоры на катионы щелочных металлов. Эта задача может быть решена путем введения гидрофильных заместителей при краун-эфирном или тетрапиррольном фрагменте молекул краун-замещенных порфиринов. Интерес представляет и дальнейшее развитие направления создания новых люминесцентных сенсоров на основе краун-порфиринатов металлов, особенно с парамагнитными катионами металлов. Краун-порфиринаты металлов и супрамолекулярные диады на их основе также могут представлять интерес как активные компоненты ФВ-преобразователей на основе соединений со структурой перовскита [81–85], в которых они могут найти применение как для улучшения

светопоглощающих характеристик активного слоя, так и для улучшения транспорта электронов на границах раздела активный слой—электрод, где могут возникать потенциальные ямы для электронов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Обзор написан при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-13-50112 "Экспансия"). The reported study was funded by RFBR, project number 19-13-50112.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pedersen C.J. // J. Am. Chem. Soc. 1967. V. 89. P. 7017.
- 2. Pedersen C.J. // J. Am. Chem. 1970. V. 92. P. 391.
- 3. *Хираока М.* Краун-соединения. М.: Мир, 1974. 363 с.
- 4. Babailov S.P. // Macroheterocycles. 2012. V. 5. P. 249.
- 5. *Стид Д.В., Этвуд Д.* Супрамолекулярная химия. М.: Академкнига, 2007. 480 с.
- 6. *Лен Ж.М.* Супрамолекулярная химия. Новосибирск: Наука СО РАН, 1998. 333 с.
- 7. Цивадзе А.Ю. // Успехи химии. 2004. Т. 71. № 1. С. 6.
- *Tsivadze A.Yu.* // Russ. J. Inorg. Chem. 2003. V. 48. № 13–14. Suppl. P. 1.
- 9. *Яновская Л.А.* Органический синтез в двухфазных системах. М.: Химия, 1982. 184 с.
- Demina L.I., Kostikova G.V. // Russ. J. Inorg. Chem. 2019. V. 64. P. 323. https://doi.org/10.1134/S0036023619030082
- Kostikova G.V., Krasnova O.G.// Russ. J. Inorg. Chem. 2018. V. 63. P. 1663. https://doi.org/10.1134/S0036023618120124
- Demin S.V., Shokurova N.A. // Russ. J. Inorg. Chem. 2018. V. 63. P. 121. https://doi.org/10.1134/S0036023618010059
- 13. Громов С.П., Дмитриева С.Н. // Успехи химии. 2005. Т. 74. С. 503.
- 14. *Topal G., Demirel N.* // J. Heterocyclic Chem. 2001. V. 38. P. 281.
- Ziyadanogullari B., Topal G. // Talanta. 2001. V. 53. P. 1083.
- 16. Pedersen C.J. // J. Org. Chem. 1971. V. 36. P. 254.
- Tugashov K.I., Gribaniov D.A.// Organometallics. 2016.
 V. 35. № 13. P. 2197. https://doi.org/10.1021/acs.organomet.6b00231
- Tugashov K.I., Gribaniov D.A. // Organometallics. 2017. V. 36. № 13. P. 2437. https://doi.org/10.1021/acs.organomet.7b00315
- Tugashov K.I., Yunusov S.M. // Russ. Chem. Bull. 2018.
 V. 67. № 1. P. 45. https://doi.org/10.1007/s11172-018-2035-5
- 20. *D'Souza F., Chitta R., Gadde S. //* J. Phys. Chem. A. 2006. V. 110. № 13. P. 4338.

- Thanabal V., Krishnan V. // J. Am. Chem. Soc. 1982.
 V. 104. P. 3643.
- 22. *Thanabal V., Krishnan V. //* Inorg. Chem. 1982. V. 21. P. 3606.
- Vannikov A.V., Grishina A.D. // Dokl. Phys. Chem. 2005. V. 403. P. 137. https://doi.org/10.1007/s10634-005-0044-1
- 24. Vannikov A.V., Grishina A.D. // Russ. J. Phys. Chem. 2006. V. 80. P. 453. https://doi.org/10.1134/S0036024406030253
- 25. *Murashima T., Uchihara Y. //* Tetrahedron Lett. 1996. V. 37. P. 3133.
- Hamilton A., Lehn J.-M. // J. Am. Chem. Soc. 1986.
 V. 108. P. 5158.
- 27. *Ruzie C., Michaudet L. //* Tetrahedron Lett. 2002. V. 43. P.7423.
- Sessler J.L., Brucker E.A. // Tetrahedron Lett. 1995. V. 36. P. 1175.
- 29. Comte C., Gros C.P. // New J. Chem. 1998. P. 621.
- Shinmori H., Furuta H. // Tetrahedron Lett. 2002. V. 43. P. 4881.
- Shinmori H., Yasuda Y., Osuka A. // Eur. J. Org. Chem. 2002. P. 1197.
- 32. *Shinmori H., Osuka A. //* Tetrahedron Lett. 2000. V. 41. P. 8527.
- Chernyadyev A.Y., Logacheva N.M., Tsivadze A.Y. // Russ. J. Inorg. Chem. 2005. V. 50. P. 552.
- 34. *Аскаров К.А., Березин Б.Д.* Порфирины: структура, свойства, синтез. М.: Мир, 1985. 333 с.
- Walter M.G. // J. Porphyrins Phthalocyanines. 2010. V. 14. P. 759. https://doi.org/10.1142/S1088424610002689
- 36. Adler A.D., Longo F.R. // J. Org. Chem. 1967. V. 32. P. 476.
- Lindsey J.S., Seher L.C. // J. Org. Chem. 1987. V. 52. P. 827.
- 38. Jahan M., Safari N. // Polyhedron. 2005. V. 24. P. 1682.
- Chernyadyev A.Y., Tsivadze A.Y. // Prot. Met. 2015.
 V. 51. № 4. P. 533.
- https://doi.org/10.1134/S2070205115040073
- Chernyadyev A.Y., Tsivadze A.Y. // Prot. Met. 2020.
 V. 56. № 5. in press.
- Tsivadze A.Y., Chernyadyev A.Y. // Russ. Chem. Bull. 2011. V. 60. P. 2251.
- 42. *Lindsey J.S., Woodford J.N.* // Inorg. Chem. V. 34. P. 1063.
- 43. *Richeter S., Thion J. //* Inorg. Chem. 2006. V. 45. P. 10049.
- 44. Davidson G., Lane L. // Inorg. Chem. 2008. V. 46. P. 8721.
- 45. *Стужина О.В., Ломова Т.Н.* // Журн. физ. химии. 2008. Т. 82. № 2. С. 216.
- 46. *Ломова Т.Н., Зайцева С.В.* // Коорд. химия. 1999. Т. 25. № 6. С. 424.
- 47. Chernyadyev A.Y., Tsivadze A.Y. // Prot. Met. 2011.
 V. 47. № 4. P. 435. https://doi.org/10.1134/S207020511104006X
- Chernyadyev A.Y., Tsivadze A.Y. // Prot. Met. 2018.
 V. 54. № 6. P. 1086. https://doi.org/10.1134/S2070205118060084

- 49. Chernyadyev A.Y., Logacheva N.M., Tsivadze A.Y. // Russ. J. Inorg. Chem. 2006. V. 51. № 5. P. 720.
- 50. *Ломова Т.Н.* Аксиально координированные металлопорфирины в науке и практике. М.: КРАСАНД, 2019. 704 с.
- Chernyadyev A.Y., Kotenev V. A., Tsivadze A.Y. // Prot. Met. 2019. V. 55. № 6. P. 635. https://doi.org/10.1134/S2070205119060066
- Adler A.D., Longo F.R. // J. Inorg. Nucl. Chem. 1970. V. 32. P. 2443.
- 53. *Тюляева Е.Ю., Можжухина Е.Г. //* Журн. неорган. химии. 2015. Т. 60. С. 194.
- 54. *Buchler J.W., Rohbock K. //* J. Organomet. Chem. 1974. V. 65. P. 223.
- 55. Buchler J.W., Herget G. // Liebigs Ann. Chem. 1983. P. 2164.
- 56. Che C.M., Poon C.K. // Inorg. Chem. 1985. V. 24. P. 1277.
- 57. Plachev Yu.A., Chernyadyev A.Y., Tsivadze A.Y. // Russ. J. Inorg. Chem. 2009. V. 54. № 5. P. 558. https://doi.org/10.1134/S0036023609040111
- 58. *Chernyadyev A.Y., Kotenev V.A., Tsivadze A.Y.* // Prot. Met. 2020. V. 56. № 3. P. 505. https://doi.org/10.1134/S2070205120030090
- 59. Chernyadyev A.Y., Logacheva N.M., Tsivadze A.Y. // Russ. J. Inorg. Chem. 2005. V. 50. № 12. P. 1921.
- 60. *Паркер С.* Фотолюминесценция растворов. М.: Мир, 1972. 510 с.
- 61. *Соловьев К.Н., Борисевич Е.А. //* Успехи физ. наук. 2005. Т. 175. С. 247.
- 62. *Мальцев Е.И., Брусенцева М.А.* // Высокомолекулярные соединения. Сер. А. 2006. Т. 48. С. 254.
- 63. Ermolaev V.L., Sveshnikova E.B. // Acta Phys. Pol. 1968. V. 34. P. 771.
- 64. Градюшко Т., Цвирко М.П. // Оптика и спектроскопия. 1971. Т. 21. С. 548.
- Лакович Д. Основы флуоресцентной спектроскопии. М.: Мир, 1986. 496 с.
- 66. *Richeter S., Thion J.* // Inorg. Chem. 2006. V. 45. P. 10049.
- 67. Davidson G., Lane L. // Inorg. Chem. 2008. V. 46. P. 8721.
- 68. *Сидоров А.И.* Сенсорная фотоника. СПб.: Ун-т ИТМО, 2019. 99 с.
- 69. *Tsvirko M., Tkaczyk S.* // Functional Materials. 2013. V. 20. P. 127.
- 70. *Клинков В.А.* // Научно-технические ведомости СПбГПУ. 2018. Т. 11. С. 44.
- Chernyadyev A.Y., Kotenev V.A., Tsivadze A.Y. // Prot. Met. 2015. V. 51. № 6. P. 964. https://doi.org/10.1134/S2070205115060040
- Chernyadyev A.Y., Kotenev V.A., Tsivadze A.Y. // Prot. Met. 2017. V. 53. № 4. P. 670. https://doi.org/10.1134/S2070205117040037
- 73. *Комиссаров Г.Г.* Фотосинтез: физико-химический подход. М.: Едиториал УРСС, 2006. 224 с.
- 74. *Kolesnikov V.A., Tedoradze M.G., Chernyad'ev A.Yu.* // High Energy Chemistry. 2007. V. 41. № 2. P. 103. https://doi.org/10.1134/S0018143907020099

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 11 2020

- 75. *Ливер Э*. Электронная спектроскопия неорганических соединений. М.: Мир, 1987. 493 с.
- 76. *Трошин П.А.* // Российские нанотехнологии. 2008. Т. 3. С. 56.
- 77. Ma W., Yang C., Gong X. // Adv. Funct. Mater. 2005.
 V. 15. P. 1617.
- 78. *Цивадзе А.Ю., Чернядьев А.Ю*. Пат. РФ № RU 2469440 C2. Дата публикации 10.12.2012.
- 79. Reyes-Reyes M., Kim K. // Org. Lett. 2005. V. 7. P. 5749.
- 80. *Stepanenko S.N.* // Prot. Met. 2016. V. 52. № 2. P. 232. https://doi.org/10.1134/S2070205116010226

- 81. *Kojima A.* // J. Am. Chem. Soc. 2009. V. 131. P. 6050. https://doi.org/10.1021/ja809598r
- 82. *Park N.-G.* // J. Phys. Chem. Lett. 2013. V. 4. P. 2423. https://doi.org/10.1021/jz400892a
- 83. *Snaith H.* // J. Phys. Chem. Lett. 2013. V. 4. P. 3623. https://doi.org/10.1021/jz4020162
- 84. *Kamat P.* // J. Am. Chem. Soc. 2014. V. 136. P. 3713. https://doi.org/10.1021/ja501108n
- 85. *Lindblad R.* // J. Phys. Chem. Lett. 2014. V. 5. P. 648. https://doi.org/10.1021/jz402749f