= ФИЗИКОХИМИЯ РАСТВОРОВ =

УДК 541.8+537.226.2

ДИЭЛЕКТРИЧЕСКИЕ И РАДИОЯРКОСТНЫЕ СВОЙСТВА ВОДНЫХ РАСТВОРОВ ТЕТРАХЛОРОПАЛЛАДАТА АММОНИЯ ПО СВЧ- И КВЧ-ДАННЫМ

© 2020 г. А. К. Лященко^{а, *}, А. Ю. Ефимов^а, В. С. Дуняшев^а, И. А. Ефименко^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: aklyas@mail.ru Поступила в редакцию 21.05.2020 г. После доработки 18.06.2020 г. Принята к публикации 22.06.2020 г.

Рассмотрена связь диэлектрических и радиояркостных характеристик водных растворов $(NH_4)_2[PdCl_4]$ в начальной области концентраций при 298.15 К. По экспериментальным данным комплексной диэлектрической проницаемости в области максимума дисперсии воды и растворов рассчитаны параметры диэлектрической релаксации, отражающие нарушение сетки H-связей при переходе от воды к раствору. С использованием этих данных по формулам Френеля определены квазиоптические коэффициенты и радиояркостные характеристики водных растворов на частотах см- и мм-областей. С помощью высокочувствительного радиометра на частоте 61.2 ГГц найдены радиояркостные параметры модельных растворов. В них наблюдается уменьшение радиояркостной температуры при переходе от воды к раствору как по экспериментальным, так и по расчетным данным. Показано, что собственное излучение растворов отражает вклады как дипольных, так и ионных потерь, которые все еще остаются значимыми в мм-области. Они могут даже определять наличие разнознаковых эффектов радиояркости. Разработаны основы нового подхода к исследованию растворов с комплексными ионами на основе их собственного излучения в мм-области спектра.

Ключевые слова: вода, растворы, комплексообразование, диэлектрическая проницаемость, излучение, радиометрический сигнал

DOI: 10.31857/S0044457X20110112

введение

Процессы гидратации в растворах комплексных соединений остаются все еще недостаточно изученными [1]. Их изучение методом диэлектрической CBЧ-спектроскопии было начато в работе [2] на примере растворов $K_2[PdCl_4]$ и $K_2[PtCl_4]$. Было определено изменение статических диэлектрических констант и релаксационной динамики при переходе от воды к растворам солей. В то же время такие изменения связаны с действием как катиона, так и аниона. Выбор растворов тетрахлоропалладата аммония объясняется тем, что они позволяют увидеть изменения воды под действием комплексного аниона в наиболее чистом

виде, так как ион NH_4^+ практически не нарушает исходную сетку H-связей воды [3]. Ион аммония единственный из катионов, для которого характерно образование твердых растворов замещения во льду [4]. Всестороннее изучение водных растворов комплексных соединений (в данном случае (NH_4)₂[PdCl₄]) в см- (диэлектрическая спектроскопия) и мм- (радиометрия) областях спектра важно для понимания изменения структуры воды в растворах с комплексообразованием и гидролизом. Кроме того, водные растворы тетрахлоропалладата аммония представляют практический интерес. $(NH_4)_2[PdCl_4]$ является представителем класса биологически активных комплексов палладия $(AH)_n[PdCl_4]$, где AH – протонированный азотсодержащий катион, проявляющий высокую противоопухолевую, радиопротекторную и иммуномодулирующую активность [5], которая отсутствует, например, у K₂[PdCl₄] [5–7].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплексная диэлектрическая проницаемость на частоте v определяется как $\varepsilon^*(v) = \varepsilon'(v) - i\varepsilon''(v)$, где $\varepsilon' - диэлектрическая проницаемость, <math>\varepsilon'' - ди$ -электрические потери, i - мнимая единица. Для описания ее частотной зависимости в случае не-электролитов обычно используют модель Дебая или Коула–Коула с дополнительным параметром распределения времени релаксации:

Рис. 1. Частотные зависимости диэлектрической проницаемости (є') и диэлектрических потерь (є") при 298.15 К: 1 -вода, 2 -раствор 0.3 моль/кг (NH₄)₂[PdCl₄], 3 -раствор 0.5 моль/кг (NH₄)₂[PdCl₄], 4 -раствор 0.75 моль/кг (NH₄)₂[PdCl₄], 5 -раствор 0.86 моль/кг (NH₄)₂[PdCl₄].

$$\varepsilon^*(\mathbf{v}) = \varepsilon_{\infty} + \frac{\Delta\varepsilon}{1 + (i2\pi v\tau)^{1-\alpha}},$$

где \mathcal{E}_{∞} — высокочастотный предел для рассматриваемой области дисперсии; $\Delta \mathcal{E}$ — разность между статической диэлектрической проницаемостью \mathcal{E}_s и высокочастотным пределом \mathcal{E}_{∞} ; τ — время релаксации; α — параметр распределения времени релаксации.

В растворах электролитов появляется дополнительная составляющая в ε "(v), связанная с перемещениями зарядов (ионов) под действием электромагнитного излучения. Эта составляющая задается формулой:

$$\varepsilon''(v) = \sigma/2\pi\varepsilon_0 v$$
,

где $\sigma-$ удельная электропроводность раствора, См/м.

В [8] такая модель была использована для описания частотных зависимостей диэлектрических свойств растворов калиевых солей с ионами $[PdCl_4]^{2-}$ и $[PtCl_4]^{2-}$ и растворов солей аммония с другими анионами в сантиметровой области.

На рис. 1 показана аппроксимация данных диэлектрического эксперимента, полученных на частотах 7–25 ГГц в рамках выбранной релаксационной модели. Там же показана частота (61.2 ГГц), на которой были проведены радиометрические измерения.

Зная комплексную диэлектрическую проницаемость водных растворов, можно найти их квазиоптические параметры, в частности, R(v) – коэффициент отражения на частоте v. Он рассчитывается из $\varepsilon^*(v)$ помощью формулы Френеля:

$$R(v) = \left| \frac{\sqrt{\varepsilon^*(v)} - 1}{\sqrt{\varepsilon^*(v)} + 1} \right|^2.$$

Таким образом, экстраполяцией диэлектрического эксперимента можно получить коэффициент отражения, который в условиях термодинамического равновесия связан с измеряемым в радиометрическом эксперименте коэффициентом излучения $\chi(v)$ простым соотношением: $\chi(v) = 1 - R(v)$. Далее основной радиометрический показатель – радиояркостная температура $T_{s}(v)$ на частоте v – находится из выражения $T_{s}(v) = \chi(v)^{*}T$, где T – термодинамическая температура. Так как радиояркостная температура воды $T_{s}(воды)$ в работе постоянна, то иногда, особенно на рисунках, более наглядным является представление данных в виде $\Delta T_{s} = T_{s}($ раствора) – $T_{s}(воды)$.

Ионный вклад в $\varepsilon''(v)$ быстро уменьшается с ростом частоты, поэтому им часто пренебрегают в миллиметровой области частот. В связи с этим представляет интерес сопоставить оба варианта расчета радиояркостных характеристик растворов: в одном случае учитываются как ионные, так и дипольные диэлектрические потери (χ , T_{s}), а в другом — только дипольный вклад в ε'' ($\chi(d)$, $T_{s}(d)$).

Ранее в работе [9] для растворов сульфатов щелочных металлов из диэлектрических характеристик в мм-области были рассчитаны R(v) и показано хорошее согласие с радиометрическим экспериментом. С использованием высокочувствительного радиометра на примере (NH₄)₂[PdCl₄] этот подход применен для получения радиояркостной температуры $T_{\rm s}$ водных растворов с комплексообразованием.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для всестороннего изучения процессов гидратации в растворах комплексных соединений (оно может быть осложнено из-за протекающего гидролиза) были использованы два экспериментальных метода – СВЧ-диэлектрическая спектроскопия в интервале частот 16-25 ГГц при 298.15 К и радиометрия на частоте 61.2 ГГц при 298.15 К. В качестве объекта исследования был выбран тетрахлоропалладат аммония. Синтезированный тетрахлоропалладат аммония представляет собой темно-зеленые кристаллы, растворимые в воде. Растворы для исследований готовили весовым способом на бидистиллированной воде. Максимальная концентрация раствора (NH₄)₂[PdCl₄], приготовленного для измерений, равна 0.86 моль/кг. Это довольно низкое значение объясняется пределом растворимости соли. Насыщенные и пересыщен-

Концентрация (NH ₄) ₂ [PdCl ₄], моль/кг H ₂ O	σ, См/м	ε _s	Δε	τ, пс	α					
0	0	78.4	73.4	8.25	0					
0.3	6.84	72.0	67.0	7.9	0.03					
0.5	10.3	69.1	64.1	7.8	0.06					
0.75	13.9	66.3	61.3	7.7	0.1					
0.86	17.4	62.3	57.3	7.4	0.09					

Таблица 1. Диэлектрические характеристики водных растворов $(NH_4)_2[PdCl_4]$ для релаксационной модели Коула–Коула при 298.15 К

ные растворы для данных исследований непри-годны.

Методом диэлектрической СВЧ-спектроскопии исследована высокочувствительная диэлектрическая проницаемость є' и полные потери є" водных растворов тетрахлоропалладата аммония (m = 0.3, 0.5, 0.75, 0.86 моль/кг) на частотах v = 16, 19, 22, 25 ГГц при температуре 298.15 К. Для измерения комплексной диэлектрической проницаемости водных растворов в сантиметровом диапазоне длин волн использован так называемый метод "цилиндрического стерженька" в волноводе [10]. Аппаратура и методика измерений подробно описаны в [11–14]. Относительные погрешности определения є' и є" находятся в пределах $\pm 1.5-2$ и $\pm 2-2.5\%$ соответственно.

Диэлектрические релаксационные параметры и статические диэлектрические константы, полученные данным методом, представлены в табл. 1. Эти данные были использованы для получения квазиоптических параметров растворов (экстраполяция на частоту 61.2 ГГц). Результаты представлены в табл. 2.

Для экспериментального изучения радиояркостных характеристик растворов был использован высокочувствительный модуляционный радиометр с фиксированной рабочей частотой 61.2 ГГц ($\lambda = 4.9$ мм) производства НПО "Исток" (ИРЭ РАН, Фрязино) [15]. Его устройство и методика измерений описаны ранее [16]. Однако градуировка сигнала для расчета радиояркостных параметров растворов в этих работах не проводилась. Показания прибора оцифровываются и сохраняются в виде зависимостей радиофизического отклика U (напряжение на выходе радиометра, **B**) от времени. Участок подобной зависимости приведен на рис. 2 для случая совместных измерений образцов чистой воды и 0.5 моль/кг раствора (NH₄)₂[PdCl₄]. Постоянный участок длительностью не менее 3-5 мин с дрейфом напряжения не более 0.1 мВ/мин использовали для определения статистически усредненного значения сигнала U. Проведя последовательные измерения для воды и раствора комплексного соединения, нашли величину $\Delta U = U_{\text{раствора}} - U_{\text{воды}}$. Для повышения точности и достоверности результатов, а также для сведения к минимуму влияния возможного изменения состояния прибора и раствора в течение эксперимента подобные парные измерения проводили несколько раз. Измерения относятся к определенному временному отрезку. Изменения. связанные с гидролизом в концентрированных растворах, не рассматривались. Далее из полученных наборов инкрементов $\Delta U_1, \Delta U_2, ..., U_n$ находили средние значения ΔU . Градуировка шкалы прибора описана в работе [17]. Для пересчета величин ΔU в коэффициенты излучения χ растворов использовали данные воды, раствора хлорида калия и медной пластины. Найденные из экспериментальных данных величин ΔU значения χ и $T_{\rm g}$ для данных растворов представлены в табл. 2.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Как видно из рис. 1 и табл. 1, изменения комплексной диэлектрической проницаемости воды в растворах тетрахлоропалладата аммония в начальной области концентраций описываются релаксационной моделью Коула–Коула с небольшим параметром распределения времен релаксации ($\alpha < 0.1$). При этом значения статической диэлектрической проницаемости ε_s и времена ди-

Таблица 2. Рассчитанные и измеренные коэффициенты излучения и радиояркостные температуры водных растворов (NH₄)₂[PdCl₄] на частоте 61.2 ГГц

Концентрация (NH ₄) ₂ [PdCl ₄], моль/кг H ₂ O	Расчет				Радиометрия	
	$\chi(d)^*$	χ	$T_{\mathfrak{g}}(d)^*, \mathbf{K}$	<i>Т</i> _я , К	χ	<i>Т_я</i> , К
0	0.506	0.506	150.9	150.9	0.506	150.9
0.3	0.515	0.498	153.5	148.5	0.499	148.8
0.5	0.521	0.496	155.3	147.9	0.493	146.9
0.75	0.528	0.495	157.4	147.6	0.485	144.6
0.86	0.535	0.492	159.5	146.7	0.485	144.6

* Расчет без учета ионной составляющей.

Рис. 2. Сигналы излучения чистой воды и 0.5 моль/кг раствора (NH₄)₂[PdCl₄]: 1 – раствор, 2 – вода.

электрической проницаемости τ уменьшаются при переходе от воды к раствору. Это соответствует типичной гидрофильной гидратации. Как и в случае растворов КСІ и других солей аммония, изменение параметров говорит о слабой гидратации иона тетрахлоропалладата.

Рис. 3. Концентрационные зависимости разностей радиояркостных температур $\Delta T_{g} = T_{g}$ (раствора) — T_{g} (воды) для растворов: $I - \text{LiCl}, 2 - (\text{NH}_{4})_{2}$ [PdCl₄] и 3 - KCl.

На рис. 3 показано сравнение расчетных значений ΔT_{g} для растворов KCl [18], LiCl [12, 19] и $(NH_4)_2$ [PdCl₄]. При переходе от воды к раствору показано уменьшение ΔT_{g} для растворов хлорида калия и тетрахлоропалладата аммония, в отличие от растворов хлорида лития. Это следует не только из расчетных данных, но и из результатов измерений. В то же время согласие рассчитанных и измеренных параметров радиояркости для растворов тетрахлоропалладата аммония реализуется только в самом первом приближении. Возможно, отклонения связаны с гидролизом, наблюдарастворах тетрахлоропалладата ющимся в аммония [20, 21]. Расчет для случая суммарных и дипольных диэлектрических потерь показывает, что ионные вклады все еще остаются значимыми в мм-области. Это видно на рис. 4, где приведены как суммарные, так и дипольные составляющие радиояркостной температуры по сравнению с водой. Сравнение полученных характеристик с данными для других растворов солей показывает, что рассмотренный случай соответствует слабой гилратации иона, как в случае растворов хлорида калия или сульфата цезия и в отличие от растворов хлорида лития.

ЗАКЛЮЧЕНИЕ

Как следует из проведенного анализа, в этой и других работах наблюдается отличие изменений радиояркостных характеристик растворов разного состава и концентраций. Присутствует значимое и дифференцированное изменение сигнала по сравнению с водой. Здесь это следует для растворов с комплексными анионами. Соответственно, может быть рассмотрен вопрос о разработке дополнительного метода экспериментального исследования комплексных соединений в растворах. Во многих

Рис. 4. Концентрационные зависимости разностей радиояркостных температур $\Delta T_{\rm s} = T_{\rm s}$ (раствора) — $T_{\rm s}$ (воды) для раствора (NH₄)₂[PdCl₄]: *1* – с учетом ионных потерь, *2* – без учета ионных потерь.

случаях дистанционный метод измерений имеет несомненные преимущества, например, агрессивные среды, радиоактивные воды и т.д. Становится реальным также непрерывный мониторинг во времени. Наличие радиояркостных контрастов растворов в сложных многокомпонентных системах и микрогетерогенных средах, по-видимому, может иметь значение в биологических жидкостях и использоваться в химико-технологических процессах. Эти вопросы требуют дальнейших исследований.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований и при поддержке РФФИ (грант № 19-03-00033).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Barthel J.M.G., Krienke H., Kunz W.* Physical chemistry of electrolyte solutions: modern aspects. N.Y.: Springer, 1998. 395 p.
- Лященко А.К., Логинова Д.В., Лилеев А.С. и др. // Журн. коорд. химии. 2009. Т. 35. № 9. С. 643. [Lyashchenko A.K., Loginova D.V., Lileev A.S. et al. // Russ. J. Coord. Chem. 2009. V. 35. № 9. Р. 633. https://doi.org/10.1134/S1070328409090012]
- Lileev A., Lyashchenko A. // J. Mol. Liq. 2009. V. 150. P. 4.
 https://doi.org/10.1016/j.mollig.2000.08.008

https://doi.org/10.1016/j.molliq.2009.08.008

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 11 2020

4. *Labowitz L., Westrum E.* // J. Phys. Chem. 1961. V. 65. № 3. P. 403.

https://doi.org/10.1021/j100821a004

- 5. Буслаева Т.М., Умрейко Д.С., Новицкий Г.Г. и др. Химия и спектроскопия платиновых металлов. Минск: Университетское, 1990. С. 279.
- 6. Ефименко И.А., Чураков А.В., Иванова Н.А. и др. // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1476. [*Efimenko I.A., Churakov A.V., Ivanova N.A. et al.* // Russ. J. Inorg. Chem. 2017. V. 62. № 11. Р. 1469. https://doi.org/10.1134/S003602361711]
- 7. Барчуков В.Г., Ефименко И.А., Ерофеева О.С. и др. Пат. № 269809 от 11.09.2019 г.
- 8. Логинова Д.В. Гидрофобная и гидрофильная гидратация в водных растворах электролитов по данным СВЧ-диэлектрической спектроскопии. Дис. ... канд. хим. наук. М.: ИОНХ РАН, 2007. 161 с.
- Лященко А.К., Дуняшев В.С. // Журн. неорган. химин. 2018. Т. 63. № 12. С. 1635. [Lyashchenko А.К., Dunyashev V.S. // Russ. J. Inorg. Chem. 2018. V. 63. № 12. P. 1656. https://doi.org/10.1134/S0036023618120136]
- 10. Lyashenko A.K., Lileev A.S. // J. Chem. Eng. Data. 2010. V. 55. № 5. P. 2008. https://doi.org/10.1021/je900961m
- 11. Broadband Dielectric Spectroscopy / Eds. Kremer F., Schönhals A., Berlin: Springer-Verlag, 2003. 729 p.
- Засецкий А.Ю., Лященко А.К. Квазиоптический метод измерения комплексной диэлектрической проницаемости водных растворов электролитов в миллиметровом диапазоне длин волн и релаксационные характеристики растворов. Деп. ВИНИТИ 06.07.99. № 2181-В99. 62 с.
- Le Bot J. // Compt. Rend. Acad. Sci. 1953. V. 236. № 5. P. 469.
- Лященко А.К., Лилеев А.С., Каратаева И.М. Современные проблемы общей и неорганической химии // Сб. тр. II Междунар. конф. М., 19–21 мая 2009. С. 316.
- 15. *Криворучко В.И.* // Изв. вузов. Радиофизика. 2003. Т. 46. № 8-9. С. 782.
- Лященко А.К., Каратаева И.М., Козьмин А.С., Бецкий О.В. // Докл. АН. 2015. Т. 462. № 5. С. 561. [Lyashchenko A.K., Karataeva I.M., Kozmin A.S., Betskii O.V. // Dokl. Phys. Chem. 2015. V. 462. № 2. P. 127. https://doi.org/10.1134/S0012501615060032]
- 17. Лященко А.К., Каратаева И.М., Дуняшев В.С. // Журн. физ. химии. 2019. Т. 93. № 4. С. 552. [Lyashchenko A.K., Karataeva I.M., Dunyashev V.S. // Russ. J. Phys. Chem. A. 2019. V. 93. № 4. Р. 682. https://doi.org/10.1134/S0036024419040204]
- Лященко А.К, Ефимов А.Ю., Дуняшев В.С., Каратаева И.М. // Журн. неорган. химии. 2020. Т. 65. № 2. С. 237. [Lyashchenko A.K., Efimov A.Yu., Dunyashev V.S., Karataeva I.M. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. Р. 241. https://doi.org/10.1134/S0036023620020096]
- Wachter W., Fernandez S., Buchner R., Hefter G. // J. Phys. Chem. B. 2007. V. 111. № 30. P. 9010.
- https://doi.org/10.1021/jp072425e
 20. Бельская О.Б., Гуляева Т.И., Арбузов А.Б. и др. // Кинетика и катализ. 2010 Т. 51. № 1. С.114. [Bel'skaya O.B., Gulyaeva T.I., Arbuzov A.B. et al. // Kinet. Catal. 2010. V. 51. № 1. Р. 105.

https://doi.org/10.1134/S0023158410010179]

 Золотов Ю.А., Варшал Г.М., Иванов В.М. // Аналитическая химия металлов платиновой группы: Сб. обзорных статей. М.: КомКнига, 2005. 592 с.