ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.016.2(546.43'221.1+546.682'221.1)

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ BaS-In₂S₃

© 2020 г. А. В. Кертман^{а,} *, А. В. Русейкина^а

^а Тюменский государственный университет, ул. Семакова, 10, Тюмень, 625003 Россия *e-mail: akertman@utmn.ru Поступила в редакцию 04.04.2020 г. После доработки 15.06.2020 г.

Принята к публикации 20.06.2020 г.

Установлено, что система BaS–In₂S₃ эвтектического типа с инконгруэнтно плавящимися соединениями состава BaIn₂S₄ и Ba₂In₂S₅, на основе α -модификации In₂S₃ существует ограниченная область твердого раствора. Соединения BaIn₂S₄ и Ba₂In₂S₅ плавятся инконгруэнтно при температурах 1330 и 1497 K, кристаллизуются в ромбической сингонии с параметрами элементарной ячейки a = 2.181, b = 2.165, c = 1.311 нм (пр. гр. *Fddd*) и a = 1.317, b = 1.272, c = 1.178 нм (пр. гр. *Pbca*) соответственно. Микротвердость соединений H = 2470 МПа для BaIn₂S₄ и 2250 МПа для Ba₂In₂S₅. Координаты эвтектики между BaIn₂S₄ и In₂S₃ составляют 76 мол. % In₂S₃, $T_{пл} = 1190$ K. Растворимость BaS в α -In₂S₃ закономерно уменьшается и при 870 K составляет 1 мол. % BaS.

Ключевые слова: сульфиды $BaIn_2S_4$ и $Ba_2In_2S_5$, эвтектика, инконгруэнтное плавление, твердый раствор **DOI:** 10.31857/S0044457X20110082

ВВЕДЕНИЕ

В системах $AS-In_2S_3$ при эквимолярном соотношении исходных сульфидов образуются соединения состава AIn_2S_4 (A = Mg, Ca, Sr, Ba), которые обладают практически значимыми оптическими и электрофизическими свойствами и используются в качестве материалов инфракрасной и нелинейной оптики [1–5].

Известно [6], что в системе BaS–In₂S₃ существует соединение состава BaIn₂S₄, плавящееся конгруэнтно при температуре 1335 К. Между BaIn₂S₄ и исходными соединениями образуются эвтектические смеси с координатами 66 мол. % BaS–34 мол. % In₂S₃, $T_{пл} = 1278$ К и 27.5 мол. % BaS–72.5 мол. % In₂S₃, $T_{пл} = 1193$ К. Соединение BaIn₂S₄ кристаллизуется в ромбической сингонии типа EuGa₂S₄ [7] с параметрами элементарной ячейки (**э. я.**) a = 2.18, b = 2.15, c = 1.32 нм [6]; a = 2.1789(2), b = 2.1650(7), c = 1.3108(3) нм, Z = 32, пр. гр. *Fddd* [1]. Соединение состава Ba₂In₂S₅ авторами [6] не обнаружено.

Химико-препаративным методом при соотношении исходных компонентов 2BaS : In_2S_3 получено соединение состава $Ba_2In_2S_5$ ромбической сингонии типа Pb₂Ga₂S₅ с параметрами э. я. a == 1.3167(6), b = 1.2723(6), c = 1.1784(5) нм [8] и a == 1.2687(8), b = 1.1737(8), c = 1.3138(9) нм, Z = 8, пр. гр. *Pbca* [9]. Характер и температура плавления соединения $Ba_2In_2S_5$ неизвестны. Сульфид бария BaS плавится конгруэнтно при температуре 2430 K, кристаллизуется в кубической сингонии типа NaCl с параметром э. я. a = 0.6388 нм, пр. гр. $Fm\bar{3}m$ [10]. Соединение In₂S₃ плавится конгруэнтно при температуре 1360 [11] и 1370 K [3–5].

О кристаллической структуре и полиморфизме фазы In_2S_3 в литературе нет однозначного суждения. Авторы [12, 13] описывают существование двух модификаций: низкотемпературной α -In₂S₃, кристаллизующейся в кубической сингонии типа сфалерита с параметром э. я. a = 0.5360 нм и переходящей при 573 К в тетрагональную β-модификацию с параметрами э. я. a = 0.762 и c = 3.232 нм (пр. гр. $I4_1/amd$), которая существует до 1023 К. Данные о полиморфизме In₂S₃ от 1023 К до температуры плавления в указанных источниках отсутствуют.

Согласно [14–18], In_2S_3 образует низкотемпературную узкогомогенную модификацию тетрагональной сингонии, которая около 691 К распадается по перитектической реакции β -In₂S₃ \leftrightarrow In_{3 - x}S₄ + + L(S). Высокотемпературная модификация γ -In₂S₃ ромбической сингонии существует от 1023 К до температуры дистектического плавления при 1371 К. Между этими модификациями существует соединение In_{3 - x}S₄ с широкой областью гомогенности со структурой обращенной шпинели (пр. гр. $Fd\bar{3}m$), плавящееся по перитектической реакции.

В работах [19–21] авторы предложили свое обозначение трех полиморфных модификаций In_2S_3 , существующих в системе In–S. Низкотемпературная β-модификация тетрагональной сингонии (a = 0.76231(4), c = 3.2358(3) нм, пр. гр. $I4_1/amd$) при 717 ± 5 К переходит в кубическую среднетемпературную модификацию α -In₂S₃ (a = 1.08315(2) нм, пр. гр. $Fd\overline{3}m$), которая, в свою очередь, при температуре 1084 К переходит в высокотемпературную модификацию γ -In₂S₃ тригональной (гексагональной по данным [20, 21]) сингонии (a = 0.38656(2), c = 0.91569(5) нм, пр. гр. $P\overline{3}m1$ [19]).

Несмотря на неоднозначность литературных данных, следует отметить, что, вероятнее всего, авторы [14–21] ведут речь об одной и той же структурно одинаковой кубической фазе – α -In₂S₃, или In_{3 – x}S₄, которые представлены на диаграммах In–S разной областью гомогенности, а низкотемпературная тетрагональная фаза β -In₂S₃ является "сверхструктурой" вышеуказанной кубической фазы. В настоящей работе использованы обозначения полиморфных модификаций In₂S₃, принятые в [19–21].

Целью работы является изучение фазовых равновесий и построение T-x-диаграммы системы $BaS-In_2S_3$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для построения фазовой диаграммы системы BaS-In₂S₃ использовали бинарные сульфиды BaS и In₂S₃, синтезированные по стандартным методикам [10–13]. Идентификацию синтезированных сульфидов проводили с помощью химического и рентгенофазового анализа. В пределах погрешности химического анализа (± 0.2 мас. %) синтезированные сульфиды имеют стехиометрический состав. Методом рентгенофазового анализа (**РФА**) подтверждена их однофазность. Полученный In₂S₃ кристаллизуется в среднетемпературной α -модификации кубической сингонии с параметром э. я. a = 1.0729 нм [5].

Для построения фазовой диаграммы системы $BaS-In_2S_3$ синтезировано 16 образцов различного химического состава. Литые образцы получены плавлением смесей порошков бинарных сульфидов, помещенных в графитовые тигли, в парах серы. После плавления полученные образцы подвергали гомогенизирующему отжигу в вакуумированных до остаточного давления 0.13–0.013 Па и запаянных кварцевых ампулах. Отжиг проводили в муфельной печи по двум изотермическим сечениям при температурах 1070 и 870 K, которые задавали с точностью ± 5 K терморегулятором

"Термолюкс". Время отжига образцов, определенное экспериментально путем контроля параметров э. я. образцов и их микротвердости, составляло 700 и 1000 ч соответственно.

Лифференциальный термический анализ (ДТА) проводили на установке с термопарой ВР 5/20 при скорости нагрева образца 15 град/мин и нахождении пробы образца в вакуумированной и запаянной кварцевой ампуле с погрешностью 0.4% от измеряемой величины. Объем ампулы составлял $< 2 \times 10^{-7}$ м³. Проба занимала 3/4 объема ампулы. Визуальный термический анализ (ВТА) выполняли на термопаре ПП-1 при нахождении пробы в молибденовом тигле. Погрешность определения температуры составляла 0.7% от измеряемой величины. Порошковые рентгенографические данные получены на рентгеновских дифрактометрах ДРОН-3М и ДРОН-6 в СиК_а-излучении (Ni-фильтр), шаг сканирования составлял 0.03° (20), время экспозиции – 2 с. Параметры э. я. в отожженных образцах для веществ с кубической сингонией определены с точностью ± 0.0001 нм, а с более низкой сингонией — с точностью ±0.001 нм с помощью программного комплекса PDWin 4.0 и рентгенометрической картотеки PDF-4 с использованием профилирования рефлексов. Микроструктурный анализ (МСА) проводили на полированных и протравленных шлифах на металлографическом микроскопе METAM ЛВ 31. дюрометрический анализ (ДМА) - на микротвердомере ПМТ-3М методом Виккерса с погрешностью определения величины микротвердости 5-7%, нагрузка на индентор составляла 0.02 кг.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В системе BaS–In₂S₃, построенной от 870 K, протекает сложное химическое взаимодействие, которое приводит к образованию двух инконгруэнтно плавящихся соединений стехиометрического состава BaIn₂S₄ и Ba₂In₂S₅, эвтектики между соединениями BaIn₂S₄ и α -In₂S₃ и ограниченного твердого раствора на основе α -In₂S₃ (рис. 1).

Соединение $BaIn_2S_4$ образуется при эквимолярном соотношении исходных сульфидов и кристаллизуется в ромбической сингонии с параметрами элементарной ячейки a = 2.181, b = 2.165, c == 1.311 нм (пр. гр. *Fddd*). Химическое взаимодействие между сульфидами бария и индия в соотношении 2BaS : In_2S_3 приводит к образованию соединения формульного состава $Ba_2In_2S_5$. На рентгенограмме образца состава 66.66 мол. % BaS и 33.33 мол. % In_2S_3 присутствуют рефлексы, относящиеся к структуре фазы $Ba_2In_2S_5$, которая кристаллизуется в ромбической сингонии с параметрами э. я. a = 1.317, b = 1.272, c = 1.178 нм. Рефлексов посторонних фаз на рентгенограммах (рис. 2) отожженных образцов вышеуказанных составов

Рис. 1. Фазовая диаграмма системы BaS–In₂S₃: *1* – результаты ДТА, *2* – ВТА. Состояние образцов по результатам РФА и МСА: *3* – однофазный, *4* – двухфазный, *5* – данные [19].

не обнаружено, а сами рентгенограммы идентичны рентгенограммам $BaIn_2S_4$ и $Ba_2In_2S_5$, представленным в [1, 6, 22] и [9] соответственно.

Фазы $BaIn_2S_4$ и $Ba_2In_2S_5$ устойчивы во всем температурном интервале от 870 K до температур инконгруэнтного плавления, которые составляют 1330 K по данным ДТА (рис. 3) и ВТА и 1497 K по данным ВТА соответственно. Соединение $Ba_2In_2S_5$ термически более устойчиво, чем $BaIn_2S_4$, это можно объяснить большей степенью ионности химической связи в соединении $Ba_2In_2S_5$ за счет увеличения мольной доли наиболее основного компонента BaS.

На инконгруэнтное плавление фаз указывает микроструктура плавленых образцов и характер взаимного расположения линий ликвидуса и солидуса. На линии ликвидуса в области составов 33.33 и 50 мол. % In_2S_3 отсутствует дистектическая точка. Термограммы образцов данных составов имеют характерные эндотермические пики, вызванные началом плавления большей части пробы. При проведении ВТА данных образцов визуально фиксируется быстрое и одновременное плавление основной части пробы, а оставшиеся кристаллы постепенно плавятся в интервале температур.

Микроструктура плавленых и отожженных двухфазных образцов составов 10, 20 и 30 мол. % In_2S_3 представляет собой сочетание первично выпавших из расплава овальных кристаллов BaS серо-коричневого цвета (H = 1200 МПа), расположенных в светло-коричневом однородном поле фазы $Ba_2In_2S_5$ (H = 2250 МПа). На микроструктуре плавленого образца состава 66.66 мол. % BaS и

Рис. 2. Рентгенограммы образцов состава $BaIn_2S_4$ (ромбическая сингония) и $Ba_2In_2S_5$ (ромбическая сингония), закаленных от 1070 К (дифрактометр ДРОН-6, CuK_{α} -излучение, Ni-фильтр).

33.33 мол. % In_2S_3 наблюдается небольшое количество фазы BaS, находящейся между зернами фазы Ba₂In₂S₅. После гомогенизирующего отжига данного образца следы фазы BaS исчезают. В образцах состава 40 и 45 мол. % In_2S_3 в равновесии находятся фазы BaIn₂S₄ и Ba₂In₂S₅. Фазы различаются по цвету и значениям микротвердости. В отличие от фазы Ba₂In₂S₅, фаза BaIn₂S₄ светло-серого цвета, H = 2470 МПа. Неотожженный образец эквимолярного состава BaS : In_2S_3 содержит небольшое количество примесной фазы Ba₂In₂S₅, исчезающей после гомогенизирующего отжига.

Заметного изменения положения рефлексов структур, параметров э. я. (рис. 4) и значений микротвердости (рис. 5) сопряженных фаз BaS, $Ba_2In_2S_5$ и $BaIn_2S_4$ в двухфазных образцах составов 0–33.33 мол. % In_2S_3 и 33.33–50 мол. % In_2S_3 не обнаружено, что свидетельствует об отсутствии взаимной растворимости фаз.

В области составов от 50 до 98 мол. % In_2S_3 при температурах отжига 1070 и 870 К в равновесии находятся фазы $BaIn_2S_4$ и α - In_2S_3 . Эвтектический характер этой области составов определен из анализа микроструктуры образцов и взаимного по-

ложения ветвей ликвидуса, пересекающихся в эвтектической точке. На микроструктуре образцов данной двухфазной области наблюдается светлосерое поле фазы BaIn₂S₄ (H = 2470 МПа) и мелкие зерна эвтектики, а после эвтектического состава морфология эвтектики меняется: наблюдается светло-желтое поле крайнего состава твердого раствора на основе α -In₂S₃ (H = 2710 МПа) и эвтектика. Координаты эвтектической точки приняты равными 76 мол. % In₂S₃ и 1190 К.

На основе α -In₂S₃ образуется узкая область твердого раствора, ограниченность которого подчиняется правилу Юм—Розери. Величина растворимости определена при изучении фазового состава образцов, содержащих 95, 97, 98 и 99 мол. % In₂S₃, отожженных и закаленных от 1070 и 870 К. При 1070 К в α -In₂S₃ растворимость достигает 2 мол. % BaS. На микроструктуре образцов состава 99 и 98 мол. % In₂S₃ наблюдается однородное светло-желтое поле твердого раствора на основе фазы α -In₂S₃, а в образце состава 97 мол. % In₂S₃ появляется небольшое количество зерен второй светло-серой фазы. Внедрение больших по размеру ионов Ba²⁺ в катионные позиции в α -фазе

Рис 3. Дифференциальные термические зависимости образцов системы $BaS-In_2S_3$. Состав образцов выражен в мол. % In_2S_3 .

 $(r(\text{Ba}^{2+})/r(\text{In}^{3+}) = 1.5 [23])$ вызывает увеличение параметров кубической э. я. α -In₂S₃ от a = 1.0729до 1.0742 нм ($\Delta V = +0.0045$ нм³) (рис. 4). Увеличение объема кубической элементарной ячейки α фазы приводит к закономерному уменьшению микротвердости образцов от 2800 до 2710 МПа ($\Delta H = -90$ МПа) (рис. 5), что согласуется с законом Вегарда. С уменьшением температуры растворимость BaS в α -In₂S₃ закономерно уменьшается и при 870 К составляет 1 мол. % BaS.

В связи с полиморфизмом соединения In_2S_3 вполне возможно образование узких областей гомогенности на основе β - и γ - In_2S_3 , которые нанесены на фазовую диаграмму штриховыми линиями. В настоящей работе при выбранных температурах отжига образцов твердые растворы на основе β и γ - In_2S_3 не зафиксированы. Для построения более точной картины фазовых равновесий вблизи координаты In_2S_3 и определения областей гомогенности на основе β - и γ - In_2S_3 требуются дополнительные исследования.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

Рис. 4. Зависимость параметров э. я. фаз от состава в системе $BaS-In_2S_3$. $BaS - кубическая структура типа NaCl; <math>BaIn_2S_4 - ромбическая структура типа EuGa_2S_4; Ba_2In_2S_5 - ромбическая структура типа <math>Pb_2Ga_2S_5; \alpha - In_2S_3 - кубическая структура типа шпинели.$

Рис. 5. Зависимость состав-микротвердость образцов системы BaS-In₂S₃, закаленных от 1070 К. Нагрузка 0.02 кг.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hong K.J., Jeong T.S., Youn C.J.* // J. Cryst. Growth. 2016. V. 433. P. 13.
 - https://doi.org/10.1016/j.jcrysgro.2015.09.027
- Moldovyan N.A. // Inorg. Mater. 1992. V. 23. № 3. P. 670.
- Кертман А.В. // Журн. неорган. химии. 2017. Т. 62. № 9. С. 1249. [Kertman A.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 9. P. 1240. https://doi.org/10.1134/S003602361709008X] https://doi.org/10.7868/S0044457X17090161
- 4. *Кертман А.В., Носов И.И., Андреев О.В. //* Журн. неорган. химии. 2002. Т. 47. № 1. С. 132. [*Kertman A.V., Nosov I.I., Andreev O.V. //* Russ. J. Inorg. Chem. 2002. V. 47. № 1. Р. 126.]
- Кертман А.В. // Журн. неорган. химии. 2019. Т. 64. № 1. С. 93. [Kertman A.V. // Russ. J. Inorg. Chem. 2019. V. 64. № 1. P. 130. https://doi.org/10.1134/S0036023619010133] https://doi.org/10.1134/S0044457X19010136
- Hidaka C., Goto M., Kubo M., Takizawa T. // J. Cryst. Growth. 2005. V. 275. P. e439. https://doi.org/10.1016/j.jcrysgro.2004.11.016
- Chi Y., Guo Sh.-P., Xue H.-G. // RSC Adv. 2017. V. 7. P. 5039.
- https://doi.org/10.1039/c6ra25283d
- Eisenmann B., Hofmann A. // Z. Anorg. Allg. Chem. 1990. V. 580. № 1. P. 151.
- Gao W., Wu K., Lai K. et al. // Z. Anorg. Allg. Chem. 2015. V. 641. № 7. P. 1329. https://doi.org/10.1002/zaac.201500113
- 10. Кертман А.В., Шальнева Н.В. // Журн. неорган. химии. 2016. Т. 61. № 1. С. 115. [Kertman A.V., Shal'neva N.V. // Russ. J. Inorg. Chem. 2016. V. 61. № 1. P. 109. https://doi.org/10.1134/S0036023616010101] https://doi.org/10.7868/S0044457X16010104
- 11. Stubbs M.X., Schule Y.A., Tornpson A.Y. et al. // J. Am. Chem. Soc. 1952. V. 74. P. 1441.
- Медведева З.С. Халькогениды элементов III Б подгруппы Периодической системы. М.: Наука, 1968. 216 с.

- Steigmann G.A., Sutherland H.H., Goodyear J. // Acta Crystallogr. 1965. V. 19. P. 967.
- 14. Наумов А.В., Сергеева А.В., Семенов В.Н. // Неорган. материалы. 2017. Т. 53. № 6. С. 570. [Naumov A.V., Sergeeva A.V., Semenov V.N. // Inorg. Mater. 2017. V. 53. № 6. Р. 560. https://doi.org/10.1134/S0020168517060127] https://doi.org/10.7868/S0002337X17060124
- Косяков А.В., Завражнов А.Ю., Наумов А.В. // Неорган. материалы. 2010. Т. 46. № 4. С. 398. [Kosyakov A.V., Zavrazhnov A.Yu., Naumov A.V. // Inorg. Mater. 2010. V. 46. № 4. Р. 343.]
- Наумов А.В., Сергеева А.В., Семенов В.Н. // Неорган. материалы. 2015. Т. 51. № 12. С. 1299. [Naumov A.V., Sergeeva A.V., Semenov V.N. // Inorg. Mater. 2015. V. 51. № 12. Р. 1205. https://doi.org/10.1134/S0020168515110060] https://doi.org/10.7868/S0002337X15110068
- 17. Завражнов А.Ю., Наумов А.В., Аноров П.В. и др. // Неорган. материалы. 2006. Т. 42. № 12. С. 1420. [Zavrazhnov A.Yu., Naumov A.V., Anorov P.V. et al. // Inorg. Mater. 2006. V. 42. № 12. Р. 1294.]
- Косяков А.В., Завражнов А.Ю., Наумов А.В., Сергеева А.В. // Вестник ВГУ. Серия: Химия, Биология, Фармация. 2009. № 2. С. 28.
- Pistor P., Merino Alvarez J.M., Leon M. et al. // Acta Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2016. V. 72. Pt. 3. P. 410. https://doi.org/10.1107/S2052520616007058
- 20. Li T., Zhang S., Meng S. et al. // Royal Soc. Chem. 2017. V. 7. P. 6457. https://doi.org/10.1039/c6ra28560k
- Rodrigues-Hernandez P.E., Nieto-Zepeda K.E., Guillen-Cervantes A. et al. // Chalcogenide Letters. 2017. V. 14. № 8. P. 331.
- 22. *Jeong K., Hong K.* // J. Korean Cryst. Growth Cryst. Technol. 2015. V. 25. № 5. P. 183. https://doi.org/10.6111/JKCGCT.2015.25.5.173
- 23. Shannon R.D. // Acta Crystallogr. 1976. V. A32. P. 751.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 11 2020