____ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ __ И НАНОМАТЕРИАЛЫ

УЛК 546.883+617-089.844

ТАНТАЛСОДЕРЖАЩАЯ БИОАКТИВНАЯ СТЕКЛОКЕРАМИКА: МЕХАНИЗМ ПОДАВЛЕНИЯ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ СТЕКЛА 45S5 ПРИ ЕГО ЛЕГИРОВАНИИ Та₂O₅

© 2020 г. Д. Н. Грищенко^{а, *}, А. Б. Слободюк^а, В. Г. Курявый^а, М. А. Медков^а

^аИнститут химии ДВО РАН, пр-т 100-летия Владивостока, 159, Владивосток, 690022 Россия *e-mail: grishchenko@ich.dvo.ru

Поступила в редакцию 25.03.2020 г. После доработки 24.04.2020 г. Принята к публикации 15.05.2020 г.

Представлены способы синтеза ренттеноконтрастного танталсодержащего стекла и стеклокерамики путем допирования биостекла 45S5 оксидом тантала. Биоактивное стекло получено пиролизом смеси органических прекурсоров: тетраэтоксисилана, трибутилфосфата, олеата натрия и олеата кальция. Допирование биостекла оксидом тантала выполнено тремя различными способами. Изучен механизм подавления биологической активности материалов с увеличением содержания Ta_2O_5 . Оценка биоактивности образцов, содержащих 1-40 мас. % Ta_2O_5 , проведена *in vitro* с помощью модельной среды — SBF-раствора. Полученные образцы исследованы методами ЯМР на ядрах 31 P, PФА, РЭМ и ЭДС. Снижение концентрации кальция в стеклофазе за счет образования нерастворимых кристаллов $CaTa_2O_6$ названо основной причиной подавления биоактивности стекол. Образцы, содержащие до 10 мас. % Ta_2O_5 , могут найти применение в современной медицине в качестве материалов, восстанавливающих костную ткань. Рентгеноконтрастное вещество в составе биоматериала позволяет контролировать процесс регенерации костной ткани. Образцы, содержащие более 20 мас. % Ta_2O_5 , не прошли тесты *in vitro*. Вследствие растворения одной из фаз стеклокерамики в модельном растворе прогноз для использования *in vivo* таких материалов неблагоприятен.

Ключевые слова: биостекло, стеклокерамика, рентгеноконтрастные материалы, оксид тантала, пиролиз органических растворов, биологическая активность

DOI: 10.31857/S0044457X20100086

ВВЕДЕНИЕ

Расширение списка материалов, отвечающих различным задачам современной медицины и максимально удовлетворяющих требованиям конкретного клинического случая, является одним из приоритетных направлений современного медицинского материаловедения. Исследования и разработка материалов для замены или регенерашии костной ткани считаются наиболее перспективными. Такие материалы могут быть представлены биостеклами, биокерамикой, стеклокерамикой и композитами. Помимо биоактивных кальций-фосфатных материалов широкое распространение приобрели биоинертные керамические материалы, а также композиты, включающие биоинертную подложку и биоактивное покрытие. Легирование кальций-фосфатной биокерамики оксидами металлов, кремния или бора позволяет дополнительно придавать ей такие свойства, как антимикробная активность [1-3] и рентгеноконтрастность [4].

Оксид тантала используется как биоинертный компонент в составе покрытий титановых имплантов, а также в составе биостекол и биоцементов. В комбинации с фосфатами кальция оксид тантала улучшает прикрепление клеток к биоактивным материалам. В частности, в [5] отмечено, что присутствие Та₂О₅ в составе композиционного покрытия на никелиде титана способствует большей адсорбции положительно заряженных белков из питательных сред, а более высокая плотность отрицательного заряда на поверхностях с покрытием гидроксиапатит-Та₂О₅ способствует большей адсорбции ионов Ca²⁺ из SBFраствора. Таким образом, комбинированное покрытие титановых имплантов благодаря слою из ${
m Ta}_{2}{
m O}_{5}$ обеспечивает хорошую устойчивость к коррозии, в то время как биологически активный наружный кальций-фосфатный слой дополнительно повышает биосовместимость in vitro [6]. Кроме того, оксид тантала в составе биоматериалов является рентгеноконтрастным агентом для высокоэффективной рентгеновской компьютерной

Таблица 1. Состав образцов

№ п/п	Содержание компонентов, мас. %					
	Ta ₂ O ₅	SiO ₂	Na ₂ O	CaO	P_2O_5	
1	0	45	24.5	24.5	6	
2	3	43.65	23.77	23.77	5.8	
3	5	42.75	23. 28	23.28	5.7	
4	10	40.5	22.05	22.05	5.4	
5	20	36.00	19.6	19.6	4.8	
6	30	31.5	17.15	17.15	4.2	
7	40	27	14.7	14.7	3.6	

томографии, что необходимо для визуализации процессов взаимодействия тканей организма с имплантами [7]. Препараты на основе наночастиц оксида тантала перспективны для локальной радиомодификации [8]. Установлено, что они образуют оболочки вокруг ядер клеток и повышают эффективность при лучевой терапии за счет генерации вторичных электронов [9]. Цементы, содержащие оксид тантала, показывают хорошую рентгеноконтрастность и биоактивность [10]. Пористая биоинертная керамика из оксида тантала может быть химически активирована щелочной гидротермальной обработкой. При этом на поверхности такой керамики в среде SBF образуются фосфаты кальция, что подтверждает биоактивность полученных образцов [11]. Обнаружено также, что введение оксида тантала в силикатную стеклокерамику, с одной стороны, улучшает ее механические свойства, а с другой – подавляет биоактивность [12]. Цикл работ [13-15] посвящен получению биоактивных стекол в системе SiO₂— ZnO-CaO-SrO-Р₂О₅ путем замещения оксида цинка оксидом тантала. Авторы показали, что введение оксида тантала в сетку стекла делает его рентгеноконтрастным, а также приводит к изменению прочностных характеристик и растворимости. Полученные стекла обладают антибактериальной и противогрибковой активностью и не оказывают токсического действия по результатам теста на цитотоксичность.

Цель настоящей работы — разработка методов получения рентгеноконтрастной танталсодержащей стеклокерамики путем допирования стекла Bioglass 45S5, полученного из органических растворов, оценка биоактивности образцов *in vitro*, выяснение причин снижения биоактивности стекла с увеличением содержания оксида тантала.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали олеат натрия ($C_{18}H_{33}O_2Na$, 98%), олеат кальция ($C_{36}H_{66}O_4Ca$, 98%), скипидар (сульфатный очищенный для органического син-

теза), тетраэтоксисилан ($C_8H_{20}O_4Si$, 99.5%), трибутилфосфат ($C_{12}H_{27}O_4P$, 99%), бензол (C_6H_6 , 99.8%), окись тантала (Ta_2O_5 , 99%). Органический раствор для стекла Bioglass 45S5 получали следующим образом. В раствор, содержащий олеат натрия в скипидаре и тетраэтоксисилан, добавляли раствор олеата кальция в скипидаре с бензолом и трибутилфосфатом.

Для допирования биостекла танталом использовали три различных метода.

І. В приготовленный органический раствор, содержащий кальций, кремний, натрий и фосфор, добавляли рассчитанные количества экстракта тантала. Экстракцию тантала проводили следующим образом. Исходную водную фазу готовили сплавлением 0.13 г Ta_2O_5 и 6 г $K_2S_2O_7$ при 800°С с последующим выщелачиванием сплава 6%-ным раствором $H_2C_2O_4 \cdot 2H_2O$ при нагревании. Экстрагент – 20%-ный бензольный раствор три-н-октиламина, предварительно обработанный 10%-ным водным раствором Н₂SO₄. Полученный экстракт содержал 1.7 г/л тантала. После смешивания всех компонентов проводили отгонку растворителя при температуре 150-200°C. Полученную массу (прекурсор) переносили в тигель и подвергали пиролизу, нагревая в муфельной печи до 1300°C со скоростью 7 град/мин, затем выдерживали при этой температуре в течение 20 мин. После этого образец переносили в камеру отжига с температурой 520-550°C, выдерживали при этой температуре 2 ч, а затем охлаждали до комнатной температуры. Этим способом получены стекла, содержащие 1—4 мас. % Та₂О₅.

II. В приготовленный органический раствор, содержащий кальций, кремний, натрий и фосфор, после частичной отгонки растворителя добавляли оксид тантала в необходимых количествах. Принцип получения танталсодержащего стекла — отгонка растворителя, пиролиз, охлаждение — аналогичен способу І. Получены стекла, содержащие 5-40 мас. % Ta_2O_5 .

III. Из органического раствора при 1300° С получено биостекло Bioglass 45S5. Далее готовили смеси, содержащие рассчитанные количества стекла и оксида тантала, тщательно измельчали их и нагревали до 1300° С со скоростью 7 град/мин с выдержкой при этой температуре в течение 20 мин. Получены стекла, содержащие 5-40 мас. % Ta_2O_5 . Содержание компонентов в образцах в пересчете на их оксиды представлено в табл. 1.

Рентгенофазовый анализ (**РФА**) образцов выполняли на дифрактометре D8 Advance (Bruker AXS, Германия) в CuK_{α} -излучении с графитовым монохроматором. Кристаллические фазы образующихся на разных стадиях синтеза стекол определяли с помощью программы поиска EVA по базе порошковых данных PDF-2. Для исследования

качественного и количественного элементарного состава, а также морфологии образцов использовали метод растровой электронной микроскопии (РЭМ). РЭМ-изображения образцов и энергодисперсионные спектры получали на электронном сканирующем микроскопе S5500 Hitachi (Япония). Спектры ЯМР и MAS ЯМР ³¹Р регистрировали на спектрометре Avance AV-300 фирмы Bruker (Германия) при температуре 305 К. Частота вращения образца в MAS-экспериментах составляла 7 кГц. Измерения химических сдвигов (ХС) резонансных линий проводили методом замещения с использованием в качестве стандарта 85%-ной H_3PO_4 (³¹P). Ошибка измерения XC составляла 1.0 м.д. Разложение спектра на компоненты гауссовой формы проводили в самостоятельно разработанной программе с использованием модифицированного метода минимизации Ньютона. Ошибка подгонки кривой не превышала 8% от ее площади.

Биоактивность полученных образцов оценивали *in vitro* с помощью модельной среды — SBF-раствора. Процедура приготовления SBF-раствора аналогична методу, предложенному в работе [16]. К модельному раствору, полученному растворением в дистиллированной воде соответствующих реагентов (табл. 2), при температуре 37°С приливали раствор HCl до рН 7.4. Раствор по минеральному составу идентичен плазме крови. Образцы выдерживали в растворе в течение 14 и 25 сут в термостате при температуре 37°С. Раствор обновляли каждые 48 ч.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Использование неводных сред позволяет избегать дробной кристаллизации при упаривании растворов и обеспечивает заданный состав продуктов, в частности биологически активных материалов [17, 18]. Для получения биостекол нами ранее разработан метод пиролиза органических растворов [17]. В качестве растворимых в органических растворителях компонентов стекла были использованы тетраэтоксисилан, трибутилфосфат и олеаты натрия и кальция. Отмечен ряд преимуществ получения биостекол этим методом. Он позволяет вводить в стекло допирующие компоненты, изменяющие свойства стекол. Для придания биостеклам рентгеноконтрастных свойств в состав стекла вводят оксиды тяжелых металлов. Их удобно вводить в виде экстрактов в органических растворителях. К сожалению, экстракция тантала из оксалатно-сульфатных растворов не позволяет получать высококонцентрированные экстракты. Это ограничивает возможность получения стекла с содержанием Ta_2O_5 более 4 мас. %. Для получения биостекол с высоким содержани-

Таблица 2. Состав модельного SBF-раствора

№ п/п	Реагент	Количество, г/л		
1	NaCl	6.547		
2	NaHCO ₃	2.268		
3	KCl	0.373		
4	$Na_2HPO_4 \cdot 2H_2O$	0.178		
5	$MgCl_2 \cdot 6H_2O$	0.305		
6	CaCl ₂ · 2H ₂ O	0.368		
7	Na ₂ SO ₄	0.071		
8	(CH ₂ OH) ₃ CNH ₂	6.057		

ем тантала мы вводили оксид тантала в прекурсор или готовое стекло.

Ранее [17] нами показано, что образцы с содержанием Ta_2O_5 до 4 мас. % биоактивны и рентгеноконтрастны. Согласно [12], механические и физические свойства стекла могут быть улучшены добавлением Ta_2O_5 , но при этом снижается биологическая активность материала. Сделан вывод, что Ta_2O_5 подавляет образование апатита — при добавлении его в образец в количестве 3 мол. % (или 18 мас. %) апатитовый слой не наблюдается при погружении образца в SBF-раствор даже в течение 30 сут. Для выяснения причины подавления биоактивности стекол получены образцы с содержанием оксида тантала до 40 мас. % и исследовано их поведение в SBF-растворе.

Данные РФА показывают, что пиролиз прекурсора после отгонки растворителя для состава, соответствующего Bioglass 45S5, при 600-1000°C приводит к образованию смеси рентгеноаморфной фазы с кристаллическими фазами различных силикатов натрия и кальция (табл. 3). В отличие от данных, полученных в работах [2, 19], образование гидроксиапатита или оксиапатита в этом температурном интервале не наблюдается. При 1300°С образец становится рентгеноаморфным. На дифрактограммах образцов, содержащих оксид тантала, при температурах 600-1000°C помимо указанных фаз обнаруживается кристаллическая фаза $CaTa_2O_6$, но отсутствуют кристаллические фазы фосфатов натрия и кальция (табл. 3, рис. 1). При 1300°C образцы, содержащие <20% Та₂О₅, становятся рентгеноаморфными. В образцах с более высоким содержанием Та₂О₅ сохраняются кристаллы СаТа₂О₆, что, очевидно, связано с ограниченной растворимостью танталата кальция в стекле. Разницы в дифрактограммах образцов с одинаковым содержанием оксида тантала, полученных II и III способами, не отмечено.

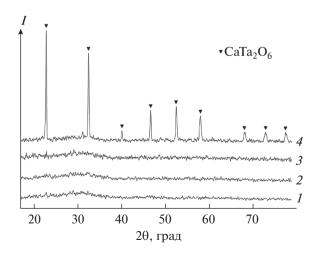
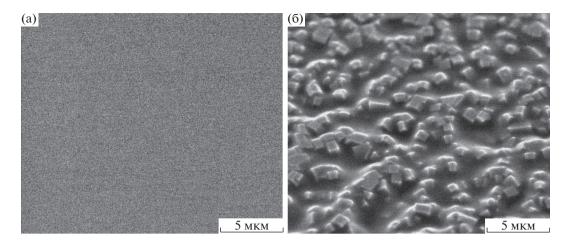
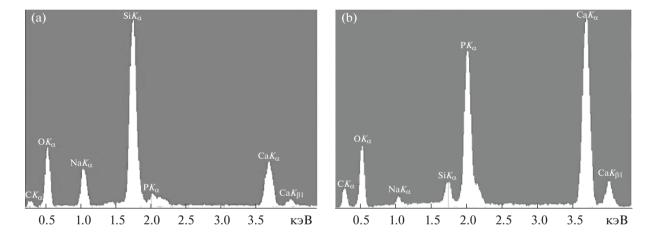

Образцы, содержащие до 10% Ta_2O_5 , прозрачны и однородны (рис. 2a). Образцы с 20%-ным содержанием оксида тантала прозрачны, но вы-

Таблица 3. Обжиг прекурсоров при различных температурах

Coord unaversage vac %	Фазы при обжиге				
Состав прекурсора, мас. %	700°C	1000°C	1300°C		
45 SiO ₂ ,	Рентгеноаморфная;	Рентгеноаморфная;	Рентгеноаморфная		
24.5 Na ₂ O, 24.5 CaO,	Na ₂ CaSi ₃ O ₈ ;	Na ₂ CaSi ₃ O ₈ ;			
6 P ₂ O ₅	Na ₃ PO ₄ ;	Na ₃ PO ₄ ;			
	$Ca_2SiO_4 \cdot Ca_3(PO_4)_2$	$Ca_2SiO_4 \cdot Ca_3(PO_4)_2$			
43.65 SiO ₂ , 23.77 Na ₂ O,	Рентгеноаморфная;	Рентгеноаморфная;	Рентгеноаморфная		
23.77 CaO,	$Na_4Ca(SO_4)_3$;	$Na_4Ca(SO_4)_3$;			
$5.8 P_2O_5$,	Ca ₂ SiO ₄ ;	Ca ₂ SiO ₄ ;			
$3 \text{ Ta}_2 \text{O}_5$	$Na_4Ca_4(Si_6O_{18})$	$Na_4Ca_4(Si_6O_{18});$			
42.75 SiO ₂ , 23.28 Na ₂ O,	Рентгеноаморфная;	Рентгеноаморфная;	Рентгеноаморфная		
23.28 CaO,	Ta ₂ O ₅ ;	CaTa ₂ O ₆ ;			
5.7 P ₂ O ₅ ,	CaTa ₂ O ₆ ;	Na ₂ CaSi ₃ O ₈			
$5 \text{ Ta}_2\text{O}_5$	Na _{15.78} Ca ₃ (Si ₆ O ₁₂)				
36 SiO ₂ ,	Рентгеноаморфная;	Рентгеноаморфная;	Рентгеноаморфная		
19.6 Na ₂ O, 19.6 CaO,	Ta ₂ O ₅ ;	CaTa ₂ O ₆ ;			
$4.8 P_2O_5$	CaTa ₂ O ₆ ;	Na ₆ Ca ₃ Si ₆ O ₁₈			
$20 \text{ Ta}_2\text{O}_5$	Na _{15.78} Ca ₃ (Si ₆ O ₁₂)				
31.5 SiO ₂ ,	Рентгеноаморфная;	Рентгеноаморфная;	Рентгеноаморфная;		
17.5 Na ₂ O, 17.5 CaO,	Ta ₂ O ₅ ;	CaTa ₂ O ₆ ;	CaTa ₂ O ₆		
$4.2 P_2 O_5$	CaTa ₂ O ₆ ;	Na ₆ Ca ₃ Si ₆ O ₁₈	2 0		
$30 \text{ Ta}_2\text{O}_5$	Na _{15.78} Ca ₃ (Si ₆ O ₁₂)				
27 SiO ₂ ,	Рентгеноаморфная;	Рентгеноаморфная;	Рентгеноаморфная;		
14.7 Na ₂ O, 14.7 CaO,	= - '		CaTa ₂ O ₆		
$3.6 P_2 O_5$	2 0	CaTa ₂ O ₆			
40 Ta ₂ O ₅					

^{*} Кристаллическая фаза $CaTa_2O_6$ соответствует № 01-077-1228 (С) из базы порошковых данных Powder Diffraction File, Kabekkody, 2007.

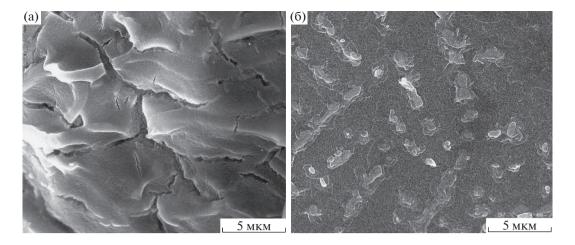

явлено присутствие отдельных кристалов $CaTa_2O_6$. Образцы с более высоким содержанием Ta_2O_5 непрозрачны, состоят из кристаллической


Рис. 1. Дифрактограммы продуктов обжига прекурсора при 1300° С, содержащих 5 (*I*), 10 (*2*), 20 (*3*) и 30 мас. % Ta_2O_5 (*4*).

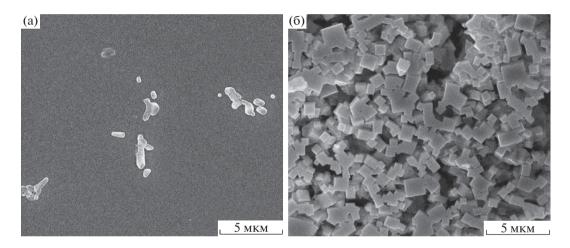
фазы, равномерно распределенной в стеклофазе (рис. 26). Тонкозернистая структура в полученных ситаллах характеризуется наличием кристаллов кубической формы с длиной ребра 0.5—1 мкм. Аналогичный процесс кристаллизации при допировании стекла Bioglass 45S5 оксидом вольфрама показан в работе [4]. Установлено, что образование вольфраматов кальция и натрия начинается при содержании в образце 9 мас. % W (или 11 мас. % WO₃).

С помощью модельной среды оценивали биоактивность образцов, содержащих от 1 до 40 мас. % оксида тантала. Образец сравнения — стекло, содержащее 0% Ta₂O₅, полученное из органических растворов (Bioglass 45S5). В энергодисперсионном спектре стекла Bioglass 45S5 содержатся все компоненты: кремний, кислород, натрий, кальций и фосфор (рис. 3а). Энергодисперсионный спектр этого образца после выдержки в модельной среде состоит преимущественно из кальция и фосфора (рис. 3б). Содержание этих элементов по сравнению с кремнием и натрием на поверхности стекла возросло, что свидетельствует об образовании кальций-фосфатного слоя.

Рис. 2. Микрофотографии стекла, содержащего 10 (a) и 40 мас. % Ta_2O_5 (б).


Рис. 3. Энергодисперсионный спектр биостекла 45S5 (а) и покрытия на нем (б).

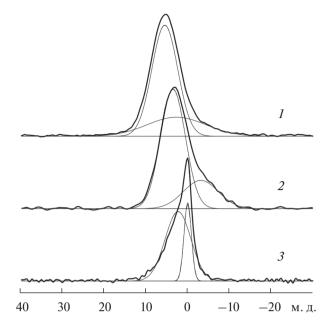
После пребывания образцов в модельном растворе в течение 14 сут обнаружено, что на поверхности образца стекла 45S5 образовалось плотное покрытие, имеющее вид растрескавшейся корки (рис. 4а). На поверхности образцов, содержащих 1-5% Ta_2O_5 , образовались неплотные покрытия, имеющие вид островков разного размера (рис. 4б). Энергодисперсионные спектры покрытий соответствуют фосфатам кальция. На остальных образцах кальций-фосфатного покрытия не обнаружено. Установлено, что чем больше содержание оксида тантала в образце, тем меньшую площадь поверхности образца занимает кальций-фосфатное покрытие при прочих равных условиях.


После пребывания в модельном растворе образцов с содержанием 10-40% Ta_2O_5 в течение 25 сут на поверхности образца, содержащего 10% Ta_2O_5 , наблюдаются отдельные кальций-фосфатные частицы размером ~ 1 мкм (рис. 5а). Образец, содержащий 20% Ta_2O_5 , не имеет кальций-фосфатного покрытия. Полученные результаты под-

тверждают, что биоактивность образцов снижается с увеличением количества Ta_2O_5 в составе стекла 45S5. Образцы, содержащие 30 и 40 мас. % Ta_2O_5 , после пребывания в SBF-растворе в течение 25 сут значительно изменились. Стеклянная фаза на поверхности образца растворилась, остались кристаллы $CaTa_2O_6$ (рис. 5б).

Принято считать [20], что биологическая активность стекла 45S5 обусловлена гидролизом силикатной сетки с появлением на поверхности стекла силанольных групп (Si–OH), которые сорбируют ионы кальция из SBF-раствора с последующим формированием слоя гидроксиапатита. Очевидно, что биоактивность не может быть обусловлена только сорбционными свойствами Si–OH-групп, иначе максимальной биоактивностью обладал бы силикагель с высокоразвитой поверхностью. В процессе образования слоя гидроксиапатита на поверхности стекла должны принимать участие катионы кальция и

Рис. 4. Микрофотографии стекла 45S5 (а) и стекла, содержащего 3 мас. % Ta₂O₅ (б), после пребывания в SBF-растворе в течение 14 сут.


Рис. 5. Микрофотография стекла после пребывания в SBF-растворе в течение 25 сут образцов, содержащих 10 (a) и 40 мас. % Ta_2O_5 (б).

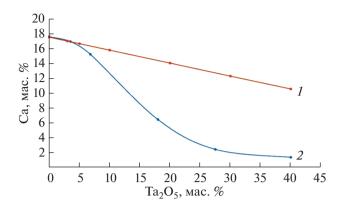
анионы PO_4^{3-} , которые выщелачиваются из стекла при растворении фосфатно-силикатной сетки и создают условия для перенасыщения раствора фосфатами кальция в приповерхностном слое. Одной из возможных причин подавления биоактивности стекол с ростом содержания Ta_2O_5 может быть замещение P_2O_5 и удаление в процессе варки из состава стекол фосфора в виде фосфорного ангидрида, способного возгоняться при достаточно низких температурах. Для проверки этого предположения нами были исследованы спектры ЯМР 31 Р.

Спектры ЯМР ВМУ ³¹Р исследованных стекол представляют собой асимметричные двухкомпонентные линии. Соотношение интегральных интенсивностей компонент, их химические сдвиги и общая интенсивность сигнала ЯМР различаются для разных образцов. Как известно, XC сигналов в

спектрах ЯМР ³¹Р фосфатных стекол зависят от степени деполимеризации фосфатных групп [21].

Как видно из рис. 6, как в спектре MAS ЯМР 31 Р исходного стекла, так и в спектре стекла с танталом наблюдается по два сигнала, соответствующих полностью деполимеризованным группировкам PO_4^{3-} ($P^{(0)}$, сигналы с большими значениями сдвига) и группировкам $P^{(1)}$, сохраняющим связь P-O-P и входящим в состав фосфатной стекольной сетки. Относительные интегральные интенсивности указанных сигналов в этих стеклах (рис. 6, табл. 4) практически совпадают. Смещение сигнала ЯМР в слабое магнитное поле для стекла, содержащего тантал, вероятно, обусловлено изменением степени полимеризации фосфатных групп. Таким образом, удаление фосфора из стекла с ростом концентрации тантала не под-

Рис. 6. Спектры ЯМР ВМУ 31 Р исследованных стекол: биостекло 45S5 + 40% Ta_2O_5 (*I*), биостекло 45S5 (*2*), прекурсор 45S5 + 40% Ta_2O_5 (*3*).


тверждается данными ЯМР и не может являться причиной подавления биоактивности.

Еще одной причиной снижения биологической активности стекол с ростом концентрации тантала может быть выведение из стекла кальция. Как показывают результаты РФА, в процессе замещения SiO_2 на Ta_2O_5 в стекле происходит образование кристаллов $CaTa_2O_6$. Процесс образования кристаллической фазы можно представить схемой:

$$\begin{split} &\{(\text{SiO}_2)_{1-x},\,\text{Na}_2\text{O},\,\text{CaO},\,\text{P}_2\text{O}_5\} + x\text{Ta}_2\text{O}_5 \to \\ &\to \{(\text{SiO}_2)_{1-x},\,\text{Na}_2\text{O},\,\text{P}_2\text{O}_5\} + x\text{CaTa}_2\text{O}_6. \end{split}$$

В предельном случае при $x \to 1$ может получиться образец, содержащий фазы танталата кальция и растворимые в воде фосфаты и силикаты натрия.

Как следует из данных, приведенных в табл. 1, с ростом содержания оксида тантала в образцах снижается содержание кальция. Необходимо отметить, что в данном случае это общее содержа-

Рис. 7. Содержание кальция в образцах в зависимости от содержания оксида тантала: общее содержание кальция (I), содержание кальция на поверхности стекла по данным РЭМ (2).

ние кальция, присутствующего как в сетке стекла, так и в составе кристаллов СаТа₂О₆. Содержание кальция только в стекле можно определить с помощью анализа энергодисперсионных спектров образцов. Как видно из рис. 7, при увеличении содержания тантала происходит постепенное снижение концентрации кальция на поверхности стекла за счет выведения катионов кальция из сетки стекла в кристаллическую фазу. В результате этого у образцов с содержанием более 30% Та₂О₅ стеклофаза становится растворимой в SBF-растворе (рис. 5б). Таким образом, одной из основных причин подавления биоактивности стекол с увеличением содержания Та₂О₅ является постепенное снижение концентрации кальция в стекле за счет образования нерастворимых кристаллов СаТа₂О₆, в результате чего в поверхностном слое не происходит пересыщения раствора SBF катионами кальция и кальций-фосфатный слой перестает осаждаться на поверхности образца. Образцы, содержащие в составе до 10 мас. % Ta_2O_5 , являются одновременно и рентгеноконтрастными, и биоактивными, а значит, могут применяться в качестве материалов для восстановительной хирургии.

Таблица 4. Сравнительные удельные интегральные интенсивности (Ио) центрального сигнала, интенсивности (Ик) и химические сдвиги (ХС) компонент спектров ЯМР ВМУ ³¹Р исследованных стекол

Образец	Ио, %	ХС, м.д.	Ик	ХС, м.д.	Ик
Биостекло 45S5	100	3.6	74	-3	26
Прекурсор $45S5 + 40$ мас. % Ta_2O_5 , полученный при $500^{\circ}C$	69.02385	2.4	76	0	24
Биостекло $45S5 + 40$ мас. % Ta_2O_5 , полученное при $1300^{\circ}C$	98.15484	5.6	71	2.8	29

ЗАКЛЮЧЕНИЕ

На основе биостекла 45S5 получены и охарактеризованы методами ЯМР на ядрах 31 Р, РФА и РЭМ рентгеноконтрастные стекла и стеклокерамика, содержащие 1-40 мас. % Ta_2O_5 . Проведена *in vitro* оценка биоактивности полученных образцов с помощью модельной среды (SBF-раствора). Установлен механизм подавления биологической активности стекла с увеличением содержания оксида тантала. Основной причиной подавления биоактивности стекол названо снижение концентрации кальция в стекле за счет образования нерастворимых кристаллов $CaTa_2O_6$.

Образцы, содержащие до 10 мас. % Ta_2O_5 , представляют перспективу для современной медицины в качестве материалов для восстановления костной ткани. Рентгеноконтрастное вещество в составе биоматериала дает возможность контролировать процесс регенерации костной ткани.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при частичной поддержке ПФИ Дальневосточного отделения РАН "Дальний Восток" (проект № 18-3-042) и в рамках государственного задания ФГБУН Института химии ДВО РАН (проект № 0265-2018-0002).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tankut A., Dorozhkin S.V., Omer K. et al.* // Ceram. Int. 2019. V. 45. № 17. P. 22752. https://doi.org/10.1016/j.ceramint.2019.07.314
- 2. Grishchenko D.N., Medkov M.A., Papynov E.K. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 431. [Гри-шенко Д.Н., Медков М.А., Папынов Е.К. и др. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 403.] https://doi.org/10.1134/S0036023620030055
- 3. *Sakthi Prasad S., Itishree Ratha, Tarun Adarsh et al.* // J. Mater. Res. 2018. V. 33. № 2. P. 178. https://doi.org/10.1557/jmr.2017.442
- Medkov M.A., Grishchenko D.N., Kuryavyi V.G., Slobodyuk A.B. // Glass Ceram. 2018. V. 75. № 7–8.
 P. 322. [Медков М.А., Грищенко Д.Н., Курявый В.Г., Слободюк А.Б. // Стекло и керамика. 2018. № 8. С. 40.] https://doi.org/10.1007/s10717-018-0079-5

- Horandghadim N., Khalil-Allafi J., Urgen M. // Mater. Sci. Eng. C. 2019. V. 102. P. 683. https://doi.org/10.1016/j.msec.2019.05.005
- Ying-Sui Sun, Her-Hsiung Huang // J. Alloys Compd. 2018. V. 743. P. 99. https://doi.org/10.1016/j.jallcom.2018.01.340
- 7. *Oh M.H.*, *Lee N.*, *Kim H. et al.* // J. Am. Chem. Soc. 2011. V. 133. № 14. P. 5508. https://doi.org/10.1021/ja200120k
- 8. *Лукьяненко К.С., Апанасевич В.И., Лагурева А.В. и др.* // Тихоокеанский медицинский журн. 2016. № 4. С. 38. https://doi.org/10.17238/PmJ1609-1175.2016.4.38-40
- 9. *Engels E., Corde S., McKinnon S. et al.* // Physica Medica. 2016. V. 32. № 12. P. 1852. https://doi.org/10.1016/j.ejmp.2016.10.024
- Zamparini F., Siboni F., Prati C. et al. // Clinical Oral Investigations. 2019. V. 23. P. 445. https://doi.org/10.1007/s00784-018-2453-7
- Marques C., Louro L.H.L., Prado da Silva M.H. // Key Eng. Mater. V. 396–398. P. 641. https://doi.org/10.4028/www.scientific.net/KEM.396-398.641
- 12. *Riaz M., Zia R., Saleemi F. et al.* // Mater. Sci. Poland. 2016. V. 34. № 1. P. 13. https://doi.org/10.1515/msp-2016-0013
- Alhalawani A., Towler M.R. // Mater. Charact. 2016.
 V. 114. P. 218. https://doi.org/10.1016/j.matchar.2016.03.004
- Alhalawani A.M., Towler M.R. // Mater. Sci. Eng. C. 2017. V. 72. P. 202. https://doi.org/10.1016/j.msec.2016.11.066
- Alhalawani A.M., Mehrvara C., Stonec W. et al. // Mater Sci Eng. C. 2017. V. 71. P. 401. https://doi.org/10.1016/j.msec.2016.10.024
- 16. *Kokubo T., Takadama H.* // Biomaterials. 2006. V. 27. № 15. P. 2907. https://doi.org/10.1016/j.biomaterials.2006.01.017
- 17. *Медков М.А., Грищенко Д.Н., Дмитриева Е.Э., Курявый В.Г.* // Химическая технология. 2019. Т. 20. № 7. С. 299. https://doi.org/10.31044/1684-5811-2019-20-7-299-304
- 18. *Larionov D.S., Kuzina M.A., Evdokimov P.V. et al.* // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 312.
- Solonenko A.P., Blesman A.I., Polonyankin D.A., Gorbunov V.A. // Russ. J. Inorg. Chem. 2018. V. 63. № 8. P. 993.
- 20. *Путляев В.И.* // Соровский образовательный журн. 2004. Т. 8. № 1. С. 44. https://study-lib.ru/doc/2355605/himiya-himiya-sovremennye-biokeramicheskie-materialy
- 21. *Eckert H.* // J. Sol-Gel Sci. Technol. 2018. V. 88. P. 263. https://doi.org/10.1007/s10971-018-4795-7