____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 546.865+547.47+547.53.024+548.312.5

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ПЕНТАФЕНИЛСУРЬМЫ С БИФУНКЦИОНАЛЬНЫМИ КИСЛОТАМИ. СТРОЕНИЕ ГЛУТАРАТА *БИС*(ТЕТРАФЕНИЛСУРЬМЫ), СОЛЬВАТА 1,4-ЦИКЛОГЕКСАНДИКАРБОКСИЛАТА *БИС*(ТЕТРАФЕНИЛСУРЬМЫ) С БЕНЗОЛОМ, СОЛЬВАТА 3-ГИДРОКСИБЕНЗОАТА ТЕТРАФЕНИЛСУРЬМЫ С ДИОКСАНОМ И АДДУКТА 3-ГИДРОКСИБЕНЗОАТА ТЕТРАФЕНИЛСУРЬМЫ С 3-ТЕТРАФЕНИЛСТИБОКСИБЕНЗОАТОМ ТЕТРАФЕНИЛСУРЬМЫ И ТОЛУОЛОМ

© 2019 г. В. В. Шарутин¹, О. К. Шарутина¹, Ю. О. Губанова^{1, *}, О. С. Ельцов²

¹Национальный исследовательский Южно-Уральский государственный университет, пр-т им. В.И. Ленина, 76, Челябинск, 454080 Россия ²Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620002 России *E-mail: ulchik_7757@mail.ru Поступила в редакцию 14.09.2018 г. После доработки 09.10.2018 г. Принята к публикации 15.03.2019 г.

Установлено, что пентафенилсурьма взаимодействует с глутаровой и 1,4-циклогександикарбоновой кислотами с образованием глутарата (I) и 1,4-циклогександикарбоксилата (II, сольват с бензолом) *бис*(тетрафенилсурьмы). По данным PCA, в молекулах I*a* и I*б* атомы сурьмы имеют различную координацию: искаженную тригонально-бипирамидальную (аксиальный угол CSbO 178.67(9)° (179.63(9)°), сумма экваториальных углов CSbC 358.02(11)° (357.13(11)°), расстояние Sb–O 2.204(2) Å (2.215(2) Å)) и искаженную октаэдрическую (углы CSbO 149.49(9)°, 163.48(9)° (145.15(9)°, 169.18(9)°), CSbC 157.58(11)° (157.70(11)°), расстояния Sb–O 2.289(2), 2.413(2) Å (2.272(2), 2.417(2) Å)). В центросимметричной молекуле II координация атомов сурьмы искаженная тригонально-бипирамидальная (аксиальный угол 174.25(17)°, сумма экваториальных углов 356.7(2)°, расстояние Sb–O 2.245(1) Å). Продуктом реакции пентафенилсурьмы с 3-гидроксибензойной кислотой (2 : 1 мольн.) является сольват аддукта 3-гидроксибензоата тетрафенилсурьмы и 3-тетрафенилстибоксибензоата тетрафенилсурьмы с толуолом (III) (толуол, 100°С) или сольват 3-гидроксибензоата тетрафенилсурьмы с диоксаном (IV) (диоксан, 20°С). Атомы сурьмы в молекулах III и IV имеют искаженную в разной степени тригонально-бипирамидальную координацию.

Ключевые слова: пентафенилсурьма, глутаровая кислота, 1,4-циклогександикарбоновая кислота, 3-гидроксибензойная кислота, реакции дефенилирования, молекулярная структура, рентгеноструктурный анализ

DOI: 10.1134/S0044457X19090198

введение

Карбоксилаты тетрафенилсурьмы достаточно хорошо изучены. Установлено, что они проявляют биологическую активность [1–3], могут выступать в качестве реагентов в органическом синтезе, применяются при получении сурьмасодержащих полимеров [4, 5]. Одним из распространенных способов получения карбоксилатов тетрафенилсурьмы, описанных в литературе, является реакция галогенидов тетрафенилсурьмы с солями карбоновых кислот [1–3, 6, 7]. Однако известно, что карбоксилаты тетрафенилсурьмы можно получать непосредственно из пентафенилсурьмы, которую карбоновые кислоты легко дефенилируют [8]. Продуктами взаимодействия пентафенилсурьмы с дикарбоновыми кислотами являются кислые карбоксилаты тетрафенилсурьмы или карбоксилаты бис(тетрафенилсурьмы), в которых остаток кислоты как лиганд может быть моно- [9, 10], би-[11–13] или тетрадентатным [14]. Отметим, что

сурьмаорганические производные с остатками дикарбоновых кислот в качестве мостиковых бидентатных лигандов получены также в реакциях замещения из дихлоридов трифенилсурьмы и соответствующей кислоты в присутствии алкоголята натрия [15, 16]. Установлено, что некоторые дикарбоновые кислоты в ходе реакции с пентафенилсурьмой декарбоксилируются, давая карбоксилаты тетрафенилсурьмы [11, 12].

Пентафенилсурьма вступает в аналогичные реакции и с другими Н-кислотами, образуя производные Ph_4SbX (X – остаток кислоты) [17–19]. Для органических соединений, содержащих различные функциональные группы, реакции с пентафенилсурьмой являются своеобразным показателем подвижности атомов водорода в этих группах. Так, взаимодействие пентафенилсурьмы с салициловой и 5-бромсалициловой кислотами протекает только по карбоксильной группе даже при избытке пентафенилсурьмы [20, 21]. В реакции пентафенилсурьмы с 2,4-дигидроксибензойной кислотой независимо от соотношения реагентов участвуют карбоксильная и парагидроксильная группы, в результате чего образу-2-гидрокси-4-тетрафенилстибоксибензоат ется тетрафенилсурьмы [22].

Настоящая работа посвящена изучению взаимодействия пентафенилсурьмы с глутаровой, 1,4циклогександикарбоновой, 3-гидроксибензойной кислотами и установлению строения продуктов реакций.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединения І. Смесь 0.3 г (0.6 ммоль) пентафенилсурьмы и 0.04 г (0.3 ммоль) глутаровой кислоты в 5 мл толуола помещали в стеклянную ампулу, запаивали и нагревали на водяной бане в течение 1 ч. Растворитель удаляли, осадок перекристаллизовывали из диметилформамида. Получили 0.154 г (78%) бесцветных кристаллов с $t_{nn} = 166^{\circ}$ С.

ИК-спектр (v, см⁻¹): 3050, 2924, 2851, 1628, 1520, 1479, 1430, 1339, 1307, 1061, 995, 727, 694, 469, 445.

Спектр ЯМР ¹H (δ, м. д.): 7.525 (с., 16H, H_{Ar}), 7.435 (с., 16H, H_{Ar}), 1.597 (с., 4H, CH₂), 1.234 (с., 2H, CH₂).

	С	Н
Найдено, %:	64.15;	4.72.
Для C ₅₃ H ₄₆ O ₄ Sb ₂		
вычислено, %:	64.27;	4.68.

Аналогично синтезировали соединения II и III.

Соединение II. После перекристаллизации из бензола выход составил 75%, получены бесцветные кристаллы с $t_{nn} = 201^{\circ}$ С.

ИК-спектр (v, см⁻¹): 3095, 3040, 2925, 2602, 1676, 1575, 1560, 1478, 1421, 1261, 1200, 1170, 1053, 998, 743, 698, 452.

Спектр ЯМР ¹Н (б, м. д.): 7.546 (с.,16H, H_{Ar}), 7.463(с., 16H, H_{Ar}), 7.269–7.212 (д., 8H, H_{Ar}) 2.545 (с., 2H, CH).

	С	Н
Найдено, %:	67.03;	5.15.
Для C ₆₂ H ₅₆ O ₄ Sb ₂		
вычислено, %:	67.17;	5.09.

Соединение III. Выход 70%, бесцветные кристаллы с $t_{пл} = 148^{\circ}$ С (с разложением).

ИК-спектр (v, см⁻¹): 3081, 3029, 1715, 1690, 1509, 1500, 1482, 1452, 1418, 1381, 1344, 1307, 1291,1257, 1225, 1220, 1170, 1159, 1098, 1071, 1027, 999, 952, 888, 852, 780, 729, 699, 632, 450.

Спектр ЯМР ¹Н (δ, м. д.): 7.761 (с., 24H, H_{Ar}), 7.6 (с., 24H, H_{Ar}), 7.47–7.46 (д., 12H, H_{Ar}).

	С	Н
Найдено, %:	67.29;	4.72.
Для C ₉₃ H ₇₇ O ₆ Sb ₃		
вычислено, %:	67.45;	4.69.

Синтез соединения IV. Смесь 0.25 г (0.5 ммоль) пентафенилсурьмы и 0.04 г (0.25 ммоль) 3-гидроксибензойной кислоты в 5 мл диоксана помещали в стеклянную ампулу, запаивали, выдерживали при комнатной температуре в течение суток. Растворитель удаляли. Получили 0.25 г (85%) бесцветных кристаллов с $t_{nn} = 187^{\circ}$ С.

ИК-спектр (v, см⁻¹) 3049, 1688, 1553, 1477, 1418, 1381, 1344, 1307, 1291,1257, 1225, 1177, 1168, 1100, 1070, 1022, 1000, 959, 879, 781, 726, 699, 638, 443.

	С	Н
Найдено, %:	64.07;	5.16.
Для C ₃₅ H ₃₃ O ₅ Sb		
вычислено, %:	64.14;	5.08.

ИК-спектры комплексов I–IV регистрировали на ИК-Фурье-спектрометре Shimadzu IR Affinity-1S в таблетке KBr.

Спектры ЯМР ¹Н (400 МГц) записывали на приборе Bruker DRX-400, внутренний стандарт – ТМС, растворитель – ДМСО- d_6 .

РСА кристаллов I–IV проводили на дифрактометре D8 Quest фирмы Bruker (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-*Plus* [23]. Все расчеты по определению и уточнению

Параметр	Ι	II	III	IV
Сингония	Триклинная	Триклинная	Триклинная	Триклинная
Т, К	293.15	293.15	293.15	293.15
Пр. гр.	$P\overline{1}$	$P\overline{1}$	<i>P</i> 1	<i>P</i> 1
<i>a</i> , Å	10.314(4)	8.403(9)	16.948(10)	9.58(2)
<i>b</i> , Å	18.830(8)	9.343(8)	18.737(10)	10.39(3)
<i>c</i> , Å	24.383(10)	18.569(14)	27.689(16)	14.86(3)
α, град	92.45(2)	86.73(4)	97.89(2)	99.18(15)
β, град	98.54(2)	85.18(5)	106.13(3)	92.93(6)
ү, град	105.851(18)	70.23(5)	107.75(2)	102.69(8)
$V, Å^3$	4487(3)	1366(2)	7805(8)	1419(6)
Ζ	2	2	2	2
$\rho_{\rm выч},$ г/см ³	0.995	1.347	1.4091	1.431
μ, мм ⁻¹	1.222	1.033	1.085	1.007
<i>F</i> (000)	1356.0	562.0	3338.0	620.0
Размер кристалла, мм	$0.73 \times 0.42 \times 0.18$	$0.31 \times 0.21 \times 0.11$	$0.3 \times 0.2 \times 0.12$	$0.59 \times 0.54 \times 0.48$
Область сбора данных по 20, град	5.76-63.36	6.3-54.28	4.68-46.64	6.1-53.82
Интервалы индексов	$-15 \le h \le 15,$	$-10 \le h \le 10,$	$-18 \le h \le 18,$	$-12 \le h \le 12,$
отражений	$-27 \le k \le 27,$	$-11 \le k \le 11,$	$-20 \le k \le 20,$	$-13 \le k \le 13,$
	$-35 \le l \le 35$	$-23 \le l \le 23$	$-30 \le l \le 30$	$-18 \le l \le 18$
Всего отражений	165828	12810	115890	17514
Независимых отра- жений	29854	5848	22400	5930
Число уточняемых	1063	307	1841	345
	1.036	1.042	1 1/0	1 277
	R = 0.0306	R = 0.0591	R = 0.0320	R = 0.0617
$\pi - \varphi a \kappa lopы$	$R_1 = 0.0390,$ $m P_1 = 0.0741$	$R_1 = 0.0391,$ m P = 0.1744	$R_1 = 0.0329,$ $m P_1 = 0.0710$	$R_1 = 0.0017,$ $m P_1 = 0.1401$
$\frac{10}{r} = \frac{1}{20} \left(\frac{r}{r}\right)$	$WR_2 = 0.0741$	$WR_2 = 0.1744$	$WR_2 = 0.0719$	$WR_2 = 0.1401$
к-факторы по всем	$K_1 = 0.0/39,$	$K_1 = 0.0080,$	$K_1 = 0.0907,$	$K_1 = 0.0694,$
огражениям	$wK_2 = 0.0856$	$w\kappa_2 = 0.181/$	$w\kappa_2 = 0.1124$	$w\kappa_2 = 0.1454$
Остаточная элек-	1.35/-1.2/	3.22/-1.02	0.99/-0.94	1.11/-1.42
тронная плотность (3^3)				
$(\min/\max), e/A^{\circ}$				

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I-IV

структур выполнены по программам SHELXL/PC [24] и OLEX2 [25]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Атомы водорода помещены в геометрически рассчитанные позиции и включены в уточнение в модели "наездника". Основные кристаллографические данные и результаты уточнения структур I–IV приведены в табл. 1, основные длины связей и валентные углы – в табл. 2.

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных: № 1576626 (I), 1856595 (II), 1822182 (III), 1853664 (IV) (deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Мы установили, что реакции пентафенилсурьмы с глутаровой и циклогександикарбоновой кислотами (мольное соотношение 2 : 1 или 1 : 1) в толуоле при нагревании приводят к образованию только биядерных сурьмаорганических продуктов:

$$\begin{split} & 2 Ph_5 Sb + HOC(O) RC(O) OH \rightarrow \\ & \rightarrow Ph_4 SbOC(O) RC(O) OSb Ph_4 + 2 PhH, \\ & R = -(CH_2)_3 - (I), cyclo-C_6 H_{10} (II). \end{split}$$

Глутарат (I) и циклогександикарбоксилат бис(тетрафенилсурьмы) (II) были выделены из реакционной смеси с выходом ~80%. Соединение II для получения монокристаллов, пригодных для PCA, перекристаллизовывали из бензола.

ШАРУТИН и др.

Таблица 2. Основные длины связей и валентные углы в структурах I-IV

Связь	<i>d</i> , Å	Угол	ω, град
		I	
Sb(1) - O(2)	2.289(2)	C(71)Sb(2)O(3)	178.67(9)
Sb(1) - O(1)	2.413(2)	C(41)Sb(2)C(61)	112.73(11)
Sb(1)-C(1)	2.125(3)	C(51)Sb(2)C(41)	112.08(11)
Sb(1)-C(11)	2.157(3)	C(51)Sb(2)C(61)	133.21(11)
Sb(1)-C(21)	2.161(3)	C(1)Sb(1)O(1)	149.49(9)
Sb(1)-C(31)	2.149(3)	C(11)Sb(1)O(2)	163.48(9)
Sb(2)-C(71)	2.180(3)	C(31)Sb(1)C(21)	157.58(11)
Sb(2)-O(3)	2.204(2)	C(1)Sb(1)C(31)	98.77(11)
Sb(2)-C(41)	2.124(3)	C(1)Sb(1)C(21)	98.13(11)
Sb(2)–C(61)	2.118(3)	C(11)Sb(1)C(21)	95.19(11)
Sb(2)–C(51)	2.117(3)	C(11)Sb(1)O(1)	108.19(10)
	1	Ц	'
Sb(1)-O(1)	2.245(4)	C(1)Sb(1)O(1)	81.98(19)
Sb(1)-C(1)	2.131(5)	C(1)Sb(1)C(31)	93.5(2)
Sb(1)-C(11)	2.093(6)	C(11)Sb(1)O(1)	87.6(2)
Sb(1)–C(31)	2.183(6)	C(11)Sb(1)C(31)	97.5(2)
Sb(1) –C(21)	2.137(6)	C(31)Sb(1)O(1)	174.25(17)
O(1)-C(10)	1.289(7)	C(21)Sb(1)O(1)	85.8(2)
O(2)–C(10)	1.234(7)	C(21)Sb(1)C(31)	95.4(2)
	I	III	1
Sb(1)-C(11)	2.136(10)	O(1)Sb(1)C(11)	84.2(3)
Sb(1)-C(21)	2.108(11)	C(31)Sb(1)C(11)	94.9(4)
Sb(1)-O(1)	2.208(7)	C(31)Sb(1)C(21)	98.0(4)
Sb(1) - C(1)	2.117(12)	C(31)Sb(1)O(1)	176.1(4)
Sb(1)-C(31)	2.177(12)	C(31)Sb(1)C(1)	94.1(4)
Sb(2)-O(4)	2.287(7)	C(61)Sb(2)O(4)	85.4(3)
Sb(2)-C(61)	2.083(11)	C(81)Sb(2)O(4)	177.5(4)
Sb(2)-C(81)	2.168(11)	C(81)Sb(2)C(61)	93.9(4)
Sb(2)-C(71)	2.145(10)	C(71)Sb(2)C(81)	96.0(4)
Sb(2)-C(51)	2.139(10)	C(51)Sb(2)C(81)	97.7(4)
		IV	1
Sb(1)-O(1)	2.276(6)	C(41)Sb(1)O(1)	175.26(19)
Sb(1)-C(41)	2.184(7)	C(11)Sb(1)C(1)	110.0(3)
Sb(1)-C(11)	2.126(7)	C(11)Sb(1)C(21)	136.8(2)
Sb(1) - C(1)	2.127(8)	C(1)Sb(1)C(41)	98.8(3)
Sb(1)-C(21)	2.128(7)	C(1)Sb(1)C(21)	108.2(3)
Sb(1)-C(61)	1.369(8)	C(21)Sb(1)C(41)	98.3(2)

В ИК-спектрах синтезированных соединений наиболее информативными являются полосы поглощения, характерные для карбонильных групп, при 1628 (I) и 1676 см⁻¹ (II), которые смещены в область низкочастотных колебаний по сравнению с ИК-спектрами соответствующих кислот и справочными значениями 1680—1725 см⁻¹ [26].

По данным PCA, кристаллы соединения I содержат два типа кристаллографически независимых молекул (а, б), геометрические параметры которых незначительно различаются между собой. На рис. 1 представлена структура молекулы Ia. Особенностью структуры I является то, что в молекулах атомы сурьмы имеют сильно различающуюся координацию. Так, один из атомов (Sb(2) в молекуле а) характеризуется искаженной тригонально-бипирамидальной координацией с тремя фенильными лигандами в экваториальных положениях, четвертым фенильным и карбоксилатным лигандом — в аксиальных. Аксиальный угол O(3)Sb(2)C(71) равен 178.67(9)° (в скобках приведены соответствующие параметры для молекулы б). Сумма углов CSb(2)C в экваториальной плоскости меньше 360° и составляет 358.02(11)° (357.13(11)°). Атом Sb(2) выходит из экваториальной плоскости на 0.170 Å (0.206 Å) в сторону аксиального атома углерода. Углы между экваториальными и аксиальными связями C_{акс}Sb(2)C_{экв} 92.72(11)°-96.65(10)° (94.73(10)°-96.57(11)°) больше 90°. Аксиальная связь Sb(2)-C(71) 2.179(3) Å (2.180(3) Å) длиннее экваториальных связей. значения которых лежат интервале в 2.117(3)-2.124(3) Å (2.109(3)-2.120(3) Å). Связь Sb(2)-O(3) составляет 2.204(2) Å (2.215(2) Å). Внутримолекулярное расстояние между атомом сурьмы и карбонильным атомом кислорода Sb(2)…O(4) равно 3.050(3) Å (3.141(2) Å). В карбоксильной группе одинарные и двойные связи С-О имеют разные значения: С(165)-О(3) 1.302(4) Å (1.302(3) Å), C(165)–O(4) 1.216(4) Å (1.206(3) Å). Угол O(3)C(165)O(4) составляет 123.7(2)° (123.8(2)°).

Координацию атома Sb(1) можно рассматривать как искаженную октаэдрическую. Транс-уг-O(1)Sb(1)C(1), O(2)Sb(1)C(11)лы C(21)Sb(1)C(31) равны 149.49(9)°, 163.48(9)° и 157.58(11)° (145.15(9)°, 169.18(9)° и 157.70(11)°). Расстояния Sb(1)-С изменяются в интервале 2.125(3)-2.161(3) Å (2.136(3)-2.165(3) Å). Связи Sb(1)-O(2) и Sb(1)-O(1) равны 2.289(2) и 2.413(2) Å (2.272(2) и 2.417(2) Å). Небольшая асимметрия координации карбоксилатного лиганда коррелирует с близкими значениями связей С(161)-О(1) и C(161)-O(2): 1.247(3) и 1.272(3) Å (1.262(3) и 1.252(3) Å), что свидетельствует о делокализации электронной плотности. Угол О(1)С(161)О(2) равен 120.3(3)° (120.3(3)°), т.е. совпадает с теоретическим значением угла в карбоксилат-анионе.

В работе [27] было предложено считать мерой асимметрии бидентатного лиганда в карбоксилатных комплексах металлов отношение расстояния $M \cdots O = C$ к длине связи M - O (отношение равно 1 для симметрично координированного бидентатного лиганда). Асимметрия координации лиганда на атом Sb(2) в I составляет 1.38 (1.42), на атом Sb(1) – 1.05 (1.06).

Практически симметричная координация карбоксилатного лиганда наблюдается в производных сурьмы не часто. Примером могут служить молекулы ферроценилкарбоксилата, где расстояния Sb–O равны в пределах погрешности эксперимента [28], ферроценилакрилата тетрафенилсурьмы (отношение расстояний Sb–O составляет 1.06) [29], сукцината *бис*(тетрафенилсурьмы) (1.09) [13].

Отметим, что в литературе имеются сведения о биядерных структурах, в которых атомы сурьмы имеют различную координацию, например μ_2 -карбонато-*бис*(тетрафенилсурьма) или (μ_2 -4-оксибензоато-O,O',O")-*бис*(тетрафенилсурьма) [30], в которых один из атомов сурьмы имеет КЧ 5, а другой – КЧ 6.

Структурная организация в кристалле I обусловлена сложной системой слабых межмолеку-

Рис. 1. Молекулярная структура соединения I (молекула а, атомы водорода не показаны).

Рис. 2. Молекулярная структура соединения II (молекула бензола, атомы водорода не показаны).

лярных водородных связей типа H_{Ph} ···O(2), H_{Ph} ···O(6), H_{Ph} ···O(4).

По данным PCA, соединение II кристаллизуется в форме сольвата с бензолом. Молекула II является центросимметричной с атомами сурьмы с искаженной тригонально-бипирамидальной координацией (рис. 2). Аксиальный угол O(1)SbC(31) равен 174.25(17)°, сумма углов CSbC в экваториальной плоскости - 356.7(2)°, при этом индивидуальные углы изменяются в интервале 105.9(2)°-138.9(2)°. Атом сурьмы выходит из экваториальной плоскости на 0.194 Å в сторону С(31), поэтому углы между аксиальной и экваториальными связями Sb-C больше 90° (93.5(2)°-97.5(2)°). Аксиальная связь Sb-C(31) (2.183(6) Å) длиннее экваториальных связей Sb-C (2.093(6)-2.137(6) Å). Длина связи Sb-O(1) составляет 2.245(1) Å, внутримолекулярное расстояние Sb…O(2) – 2.916(5) Å. Асимметрия координации карбоксилатного лиганда характеризуется значением 1.30. Расстояния O(1)-C(10) (1.289(7) Å) и O(2)-C(10) (1.234(7) Å) соответствуют одинарной и двойной связям [31]. Угол O(1)C(10)O(2) равен 123.4(5)°. Циклогексановый фрагмент имеет наиболее энергетически выгодную конформацию "кресла" [32].

В кристалле II молекулы карбоксилата *бис* (тетрафенилсурьмы) связаны между собой слабыми водородными связями типа H_{Ph} ...O(2) (2.45 Å), с молекулами бензола — посредством H_{Ph} ...C_π-взаимодействий (рис. 3). Реакция пентафенилсурьмы с 3-гидроксибензойной кислотой (2:1 мольн., толуол, 100°С, 1 ч) протекает с образованием двух продуктов: 3-гидроксибензоата тетрафенилсурьмы и 3-тетрафенилстибоксибензоата тетрафенилсурьмы:

По данным PCA, продукты кристаллизуются в виде аддукта с сольватным толуолом $Ph_4SbOC(O)C_6H_4(OH-3)$. · $Ph_4SbOC(O)C_6H_4(OSbPh_4-3)$ · $PhCH_3$ (III).

В случае проведения реакции при комнатной температуре в диоксане (2 : 1 мольн.) замещается атом водорода только в карбоксильной группе с образованием 3-гидроксибензоата тетрафенил-сурьмы $Ph_4SbOC(O)C_6H_4(OH-3)$ (IV). Получение аддукта III свидетельствует о ступенчатом характере замещения атомов водорода в 3-гидрокси-бензойной кислоте.

В кристаллической ячейке аддукта III присутствует по два типа кристаллографически независимых молекул каждого вида (Ph₄SbOC(O)C₆H₄(OH-3) – 1*a*, 16 и Ph₄SbOC(O) C₆H₄(OSbPh₄-3) – 2*a*, 26) и две молекулы сольватного толуола.

Рис. 3. Межмолекулярные связи в кристалле сольвата II с бензолом.

Геометрические параметры молекул III 1*a*, 1*б* и IV несколько отличаются между собой. Пентакоординированные атомы Sb(1) в III 1*a* и IV выходят из экваториальных плоскостей в сторону аксиально расположенных атомов углерода на 0.200 (0.191 — в скобках указаны геометрические параметры молекулы III 1*б*) и 0.271 Å (рис. 4, 5). Суммы углов в экваториальных плоскостях составляют 357.1(4)° (357.5(5)°) и 355.0(4)°, аксиальные углы OSbC_{акс} — 176.1(4)° (174.5(3)°) и

Рис. 4. Молекулярная структура аддукта III (приведено по одному типу кристаллографически независимых молекул 1*a* и 2*a*, молекула толуола и атомы водорода не показаны).

Рис. 5. Молекулярная структура соединения IV.

Рис. 6. Межмолекулярные водородные связи в аддукте III.

175.26(19)°, углы между аксиальными и экваториальными связями – 94.1(4)°–98.0(4)° (92.6(5)°–99.4(4)°) и 95.3(3)°–98.8(3)° в III и IV соответственно. Аксиальные связи 2.177(12) Å (2.205(11) Å) и 2.184(7) Å длиннее экваториальных связей 2.108(11)–2.136(10) Å (2.116(12)–2.131(11) Å) и 2.126(7)–2.128(7) Å. Связи Sb–О равны 2.208(7) Å (2.232(7) Å) и 2.276(6) Å. Внутримолекулярные расстояния Sb…О составляют 3.011 Å (3.085 Å) и 3.052 Å.

В молекуле III 2*а* тригонально-бипирамидальная координация атомов сурьмы Sb(2) и Sb(3) искажена в различной степени. Атом Sb(2), связанный с карбоксильной группой, выходит из экваториальной плоскости на 0.222 Å (0.218 Å – в скобках указаны геометрические параметры молекулы 2*6*), Sb(3), образующий связь с гидроксильным атомом кислорода, – на 0.179 Å (0.184 Å), при этом суммы углов в экваториальной плоскости равны 356.8(4)° (356.8(4)°) и 357.9(4)° (357.8(4)°) соответственно. Расстояние Sb(2)–O(4) 2.287(7) Å (2.267(7) Å) значительно больше расстояния

Рис. 7. Упаковка молекул в кристалле IV.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 9 2019

Sb(3)-O(6) 2.144(8) Å (2.143(7) Å). Внутримолекулярное расстояние Sb(2)···O(5) равно 3.083 (3.131) Å. В карбоксильных группах практически не наблюдается выравнивания одинарной и двойной связей.

В аддукте III присутствуют внутримолекулярные водородные связи (рис. 6) между карбонильным атомом кислорода молекулы 2 и свободной гидроксильной группой молекулы 1 с параметрами: О-H 0.82 Å, О···H-O 1.89 Å (1.99 Å), O···O 2.68(1) Å (2.68(1) Å); угол OHO 161° (141°).

Молекулы IV образуют димеры (рис. 7) посредством водородных связей O(3)-H(3)···O(2) с параметрами: расстояния O(3)-H(3) 0.82 Å, H(3)···O(2) 1.91 Å, O(3)···O(2) 2.73(1) Å, угол O(3)H(3)O(2) 172°. Сольватная молекула диоксана не принимает участия в образовании межмолекулярных связей.

ЗАКЛЮЧЕНИЕ

Установлено, что реакции пентафенилсурьмы с глутаровой и 1,4-циклогександикарбоновой кислотами (2:1, толуол, нагревание) протекают с замещением атомов водорода на фрагмент Ph₄Sb в двух карбоксильных группах. В отличие от центросимметричной молекулы 1,4-циклогександикарбоксилата бис(тетрафенилсурьмы), в молекуле глутарата бис(тетрафенилсурьмы) атомы сурьмы имеют различную координацию. При взаимодействии пентафенилсурьмы с 3-гидроксибензойной кислотой возможно последовательное замешение атомов водорода в карбоксильной и гидроксильной группах в зависимости от условий проведения реакции. Установлено, что моноядерное (3-гидроксибензоат тетрафенилсурьмы) и биядерное (3-тетрафенилстибоксибензоат тетрафенилсурьмы) производные сурьмы кристаллизуются из бензола в виде аддукта. В молекуле 3-тетрафенилстибоксибензоата тетрафенилсурьмы атомы сурьмы структурно неэквивалентны.

БЛАГОДАРНОСТЬ

Южно-Уральский государственный университет благодарен за финансовую поддержку Министерству образования и науки Российской Федерации (грант № 4.6151.2017/8.9).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Li J.-S., Ma Y.-Q., Cui J.-R. et al.* // Appl. Organomet. Chem. 2001. V. 15. № 7. P. 639. https://doi.org/10.1002/aoc.491
- Ma Y., Li J., Xuan Z. et al. // J. Organomet. Chem. 2001. V. 620. № 2. P. 235. https://doi.org/10.1016/S0022-328X(00)00799-3
- Liu R.-C., Ma Y.-Q., Yu L. et al. // Appl. Organomet. Chem. 2003. V. 17. № 9. P. 662. https://doi.org/10.1002/aoc.491
- Moiseev D.V., Morugova V.A., Gushchin A.V. et al. // J. Organomet. Chem. 2004. V. 689. № 4. P. 731. https://doi.org/10.1016/j.jorganchem.2003.11.025
- 5. Гущин А.В., Шашкин Д.В., Щербакова Т.С. и др. // Вестн. Нижегородск. ун-та им. Н.И. Лобачевского. 2010. № 6. С. 68.
- Wen L., Yin H., Li W. et al. // Inorg. Chim. Acta. 2010.
 V. 363. № 4. P. 676. https://doi.org/10.1016/j.ica.2009.11.022
- Yin H.-D., Wen L.-Y., Cui J.-C. et al. // Polyhedron. 2009. V. 28. № 14. P. 2919. https://doi.org/10.1016/j.poly.2009.06.065
- Schmidbaur H., Mitschke K.H. // Angew. Chem. 1971. V. 83. № 4. P. 149. https://doi.org/10.1002/ange.19710830414
- 9. Шарутин В.В., Шарутина О.К., Губанова Ю.О. // Бутлеровские сообщения. 2014. Т. 39. № 7. С. 139.
- 10. Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Inorg. Chem. 2014. V. 59. № 2. Р. 115. [Шарутин В.В., Сенчурин В.С., Шарутина О.К. // Журн. неорган. химии. 2014. Т. 59. № 2. С. 247.] https://doi.org/10.1134/S1070328417040054
- Sharutin V.V., Sharutina O.K., Gubanova Yu.O. // Bull. South Ural State Univer. Ser. Chem. 2015. V. 7. № 4. P. 17. https://doi.org/10.14529/chem150403
- 12. Sharutin V.V., Sharutina O.K., Gubanova Yu.O. et al. //
- J. Organomet. Chem. 2015. V. 798. P. 41. https://doi.org/10.1016/j.jorganchem.2015.09.002
- 13. *Sharutin V.V., Sharutina O.K.* // Russ. J. Coord. Chem. 2014. V. 40. № 9. Р. 643. [*Шарутин В.В., Шарутина О.К.* // Коорд. химия. 2014. Т. 40. № 9. С. 559.] https://doi.org/10.1134/S1070328414090073
- Millington P.L., Sowerby D.B. // J. Chem. Soc., Dalton Trans. 1992. № 7. P. 1199. https://doi.org/10.1039/DT9920001199

- Quan L., Yin H., Fu W. // Acta Crystallogr., Sect. E. 2011. V. 67. P. 713. https://doi.org/10.1107/S1600536811016114
- Hong M., Yin H.-D., Li W.-K. et al. // Inorg. Chem. Commun. 2011. V. 14. № 10. P. 1616. https://doi.org/10.1016/j.inoche.2011.06.023
- 17. *McEwen W.E., Briles G.H., Giddings B.E.* // J. Am. Chem. Soc. 1969. V. 91. № 25. P. 7079. https://doi.org/10.1021/ja01053a031
- 18. *Sharutin V.V., Sharutina O.K.* // Russ. J. Coord. Chem. 2017. V. 43. № 4. Р. 232. [*Шарутин В.В., Шарутина О.К.* // Коорд. химия. 2017. Т. 43. № 11. C. 244.] https://doi.org/10.1134/S1070328417040054
- Sharutin V.V., Sharutina O.K., Efremov A.N. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 10. Р. 1319. [Шарутин В.В., Шарутина О.К., Ефремов А.Н. и др. // Журн. неорган. химии. 2017. Т. 62. № 10. С. 1330.] https://doi.org/10.1134/S0036023617100163
- 20. Шарутин В.В., Шарутина О.К., Пакусина А.П. и др. // Журн. общ. химии. 1997. Т. 67. № 9. С. 1536.
- 21. *Quan L., Yin J.C., Hong M. et al.* // J. Organomet. Chem. 2009. V. 694. № 23. P. 3708. https://doi.org/10.1016/j.jorganchem.2009.07.040
- Шарутин В.В., Шарутина О.К., Губанова Ю.О. // Вестн. ЮУрГУ. Сер. хим. 2017. Т. 9. № 4. С. 56. https://doi.org/10.14529/chem170409
- 23. Bruker. SMART and SAINT-Plus. Vers. 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA. 1998
- 24. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA. 1998
- 25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Тарасевич Б.Н. ИК спектры основных классов органических соединений. Справочные материалы. М.: МГУ им. М.В. Ломоносова, 2012.
- 27. *Ferguson G., Kaitner B., Glidewell C. et al.* // J. Organomet. Chem. 1991. V. 419. № 3. P. 283. https://doi.org/10.1016/0022-328X(91)80241-B
- 28. *Liu R.-C., Ma Y.-Q., Yu L. et al.* // Appl. Organomet. Chem. 2003. V. 17. № 9. P. 662. https://doi.org/10.1002/aoc.491
- 29. Li J.-S., Liu R.-C., Chi X.-B. et al. // Inorg. Chim. Acta. 2004. V. 357. № 7. P. 2176. https://doi.org/10.1016/j.ica.2003.12.012
- Quan L., Yin H., Cui J. et al. // J. Organomet. Chem. 2009. V. 694. № 23. P. 3683. https://doi.org/10.1016/j.jorganchem.2009.07.041
- 31. *Реутов О.А., Курц А.Л., Бутин К.П.* Органическая химия. Ч. 2. М.: Лаборатория знаний, 2012.
- 32. *Травень В.Ф.* Органическая химия: учебник для вузов. М.: ИКЦ Академкнига, 2004. Т. 2.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 9 2019