СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.1,546.05

СИНТЕЗ МОНЕТИТА ИЗ ГИДРОКСИАПАТИТА КАЛЬЦИЯ И МОНОКАЛЬЦИЙФОСФАТА МОНОГИДРАТА В УСЛОВИЯХ МЕХАНИЧЕСКОЙ АКТИВАЦИИ

© 2019 г. Т. В. Сафронова^{1, *}, И. С. Садилов¹, К. В. Чайкун¹, Т. Б. Шаталова¹, Я. Ю. Филиппов¹

¹Московский государственный университет имени М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

**E-mail: t3470641@yandex.ru* Поступила в редакцию 11.01.2019 г. После доработки 17.02.2019 г. Принята к публикации 15.03.2019 г.

Порошок монетита CaHPO₄ с размером частиц 100–300 нм синтезирован из монокальцийфосфата моногидрата Ca(H₂PO₄)₂ · H₂O и гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ в среде ацетона при использовании механической активации в планетарной мельнице. По данным РФА, после термообработки в интервале 900–1100°C фазовый состав образцов представлен β-пирофосфатом кальция β -Ca₂P₂O₇. Синтезированный порошок может быть использован для получения кальцийфосфатных резорбируемых керамических материалов.

Ключевые слова: порошок, фазовые превращения, пирофосфат кальция, керамика **DOI:** 10.1134/S0044457X19090174

ВВЕДЕНИЕ

Фосфаты кальция используют как пищевые добавки [1], в качестве катализаторов при проведении некоторых химических реакций [2, 3], в сельском хозяйстве в качестве удобрений [4], а также для создания материалов с уникальными свойствами. Известны материалы с люминесцентными свойствами на основе пирофосфата кальция Са₂Р₂О₇ [5, 6]. Ведутся исследования по созданию и применению для лечения дефектов костной ткани биосовместимых материалов на основе различных фосфатов кальция, к которым относятся гидроксиапатит кальция Ca₁₀(PO₄)₆(OH)₂, трикальцийфосфат Ca₃(PO₄)₂, пирофосфат кальция Ca₂P₂O₇, октакальциевый фосфат $Ca_8(HPO_4)_2(PO_4)_4 \cdot 5H_2O$, брушит $CaHPO_4 \cdot$ ·2H₂O, монетит CaHPO₄, гидратированный пирофосфат кальция $Ca_2P_2O_7 \cdot xH_2O[7-9]$.

Для синтеза порошков фосфатов кальция высокого качества используют химическое осаждение, термическую конверсию, твердофазный синтез [10]. При синтезе применяют дополнительные воздействия, такие как ультразвуковое, гидротермальное воздействие [11] или механическую активацию [12]. Для синтеза фосфатов кальция используют различные среды, в том числе моделирующие ионный состав плазмы крови [13]. Для получения биосовместимых композитов используют порошки фосфатов кальция, синтезированные из смешанно-анионных растворов [14–17].

Для реализации регенеративных методов лечения требуются резорбируемые материалы. Растворимость биосовместимых фосфатов кальция возрастает с уменьшением мольного отношения Са/Р. Для гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ мольное отношение Ca/P = 1.67, и это нерезорбируемый фосфат кальция, известный как неорганический компонент костной ткани [18, 19]. Для лечения дефектов костной ткани широко используют материалы на основе трикальцийфосфата $Ca_3(PO_4)_2$, мольное отношение Ca/P = 1.5 [20]. Исследователи обращают внимание и на фосфаты кальция с отношением Са/Р = 1 из-за присущей им биосовместимости и более высокой резорбируемости. Отношение Са/Р = 1 присуще следующим фосфатам кальция: $Ca_2P_2O_7$, $Ca_2P_2O_7$. $\cdot xH_2O$, CaHPO₄, CaHPO₄ $\cdot 2H_2O$. При этом высокотемпературный пирофосфат кальция Са₂Р₂О₇ в форме γ- и β-модификаций может быть получен в результате термической конверсии гидратированных и/или кислых фосфатов кальция, а также в результате гетерофазных реакций в порошковых смесях, включающих соединения с отношением Са/Р, большим и меньшим 1, например, по реакциям (1) [17], (2) [21] или (3) [22]:

$$2CaHPO_4 \cdot 2H_2O = Ca_2P_2O_7 + 5H_2O,$$
 (1)

$$Ca_2P_2O_7 \cdot xH_2O = Ca_2P_2O_7 + xH_2O,$$
 (2)

$$2CaCO_3 + 2(NH_4)_2HPO_4 =$$

= Ca₂P₂O₇ + 4NH₃ + 2H₂O + 2CO₂. (3)

Синтез гидратированных кислых фосфатов кальция лежит в основе получения брушитного/монетитного цементного камня [23]. Для синтеза брушита или монетита необходимо присутствие в зоне реакции одновременно Ca^{2+} (из соединения основной природы) и $H_2PO_4^-$ (из соединения кислой природы):

$$\operatorname{Ca}^{2+} + \operatorname{H}_2\operatorname{PO}_4^- + 2\operatorname{H}_2\operatorname{O} \to \operatorname{CaHPO}_4 \cdot 2\operatorname{H}_2\operatorname{O} + \operatorname{H}^+. (4)$$

В обзоре [23] перечислены щелочные компоненты: трикальцийфосфат Са₃(РО₄)₂, гидроксиапатит кальция Ca₁₀(PO₄)₆(OH)₂, тетракальциевый фосфат Са₄(PO₄)₂O, оксид кальция СаO, гидроксид кальция Ca(OH)₂, а также компоненты кислого характера: фосфорная кислота Н₃РО₄, монокальцийфосфат моногидрат Ca(H₂PO₄)₂ · H₂O, серная кислота H₂SO₄, пирофосфорная кислота H₄P₂O₇, лимонная кислота C₃H₅O(COOH)₃. Выбор компонентов лля получения калынийфосфатного цемента, использование которого часто предполагается in situ в неинвазивных методах компенсации дефектов костной ткани, учитывает природу образующегося сопутствующего продукта реакции. При использовании большинства перечисленных компонентов в любом сочетании сопутствующим продуктом реакции является вода – нетоксичное вещество для тканей организма.

Таким образом, синтез брушита $CaHPO_4 \cdot 2H_2O$ или монетита $CaHPO_4$ может быть осуществлен при взаимодействии растворов соответствующих солей или в пастах при формировании цементного камня. При этом синтез кислого ортофосфата кальция с мольным отношением Ca/P = 1 (монетит $CaHPO_4$) в условиях механической активации до настоящего времени в литературе не описан, хотя данный метод позволяет получать активные порошки в качестве исходного материала для получения керамики или композитов с полимерной матрицей.

Цель настоящей работы — синтез фосфата кальция с мольным отношением Ca/P = 1 (монетит $CaHPO_4$) из плохо растворимых соединений — кислой соли кальция (монокальцийфосфата моногидрата $Ca(H_2PO_4)_2 \cdot H_2O)$ и основной соли кальция (гидроксиапатита кальция $Ca_{10}(PO_4)_6(OH)_2$) в условиях механической активации. Использование данной пары прекурсоров позволит получить порошок, не содержащий токсичных сопутствующих продуктов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Количество исходных солей для проведения синтеза определили по реакции (5), обеспечивающей синтез фосфата кальция с мольным отношением Ca/P = 1:

$$4Ca(H_2PO_4)_2 \cdot H_2O + + Ca_{10}(PO_4)_6(OH)_2 = 14CaHPO_4 + 6H_2O.$$
(5)

Рассчитанные количества гидроксиапатита Ca₁₀(PO₄)₆(OH)₂ (CAS № 1306-06-5, puriss. p.a. ≥90%, Riedel-deHaen, Sigma-Aldrich Laborchemikalien, 04238, lot 70080, Германия) и монокальцийфосфата моногидрата Ca(H₂PO₄)₂ · H₂O (CAS № 10031-30-8 puriss. p.a. ≥85%. Sigma-Aldrich) помешали в емкости из лиоксила циркония. К порошковой смеси добавляли мелющие тела из диоксида циркония при соотношении масса порошка : масса мелющих тел = 1 : 5. После добавления ацетона (ГОСТ 2603-79) емкости с порошками и ацетоном закрывали и закрепляли в планетарной мельнице. Продолжительность механической активации при скорости вращения 600 об./мин составляла 20 мин. После завершения обработки в планетарной мельнице порошок сушили на воздухе при комнатной температуре в течение 2 ч. После сушки порошки пропускали через сито с размером ячеек 200 мкм. Из полученных порошков на ручном прессе Carver Laboratory Press model c (USA) изготавливали компактные порошковые заготовки в форме таблеток диаметром 12 мм и высотой 2-3 мм при давлении прессования 100 МПа без использования временного технологического связующего. Сформованные порошковые заготовки обжигали в печи при различных температурах в интервале 900-1100°С (скорость нагрева 5 град/мин, выдержка при заданной температуре 2 ч, охлаждение вместе с печью).

Линейную усадку и геометрическую плотность образцов керамики определяли, измерив их массу и размеры (с точностью ±0.05 мм) до и после обжига.

Рентгенофазовый анализ (**РФА**) синтезированного порошка, порошковых смесей после проведения синтеза в условиях механической активации и образцов после обжига проводили на дифрактометре Rigaku D/Max-2500 с вращающимся анодом (Япония) с использованием CuK_{α} -излучения. Для проведения качественного фазового анализа использовали базу данных ICDD PDF2 [24].

Синхронный термический анализ (ТА) выполняли на термоанализаторе NETZSCH STA 409 PC Luxx (NETZSCH, Германия) при скорости нагревания 10 град/мин. Масса образца составляла не менее 10 мг. Исследование состава образующейся при разложении образцов газовой фазы проводили при помощи квадрупольного масс-спектрометра QMS 403C Aëolos (NETZSCH, Германия), совмещенного с термоанализатором NETZSCH STA 409 PC Luxx. Масс-спектры (**MS**) записывали для массовых чисел 18 и 17 (H_2O^+ и OH^+), 44 (CO_2^+).

Микроструктуру образцов исследовали методом растровой электронной микроскопии на электронном микроскопе LEO SUPRA 50VP (Carl Zeiss, Германия; автоэмиссионный источник); съемку осуществляли при ускоряющем напряжении 3–20 кВ во вторичных электронах (детектор SE2). На поверхность образцов напыляли слой хрома (до 10 нм).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены результаты РФА исходных реагентов и синтезированного монетита СаНРО₄, которые позволяют сделать вывод о том, что после механической активации порошковой смеси в ацетоне в течение 20 мин все исходные реагенты исчерпаны, а фазовый состав порошка представлен монетитом CaHPO₄ (карточка PDF 9-80). Действительно, реакция (5) свидетельствует о том, что при взаимодействии монокальцийфосфата моногидрата $Ca(H_2PO_4)_2 \cdot H_2O$ (карточка PDF 9-347) и гидроксиапатита Ca₁₀(PO₄)₆(OH)₂ (карточка PDF 74-566) количества воды достаточно для образования монетита CaHPO₄. И хотя оба исходных вещества обладают низкой растворимостью (~17 г/л для Ca(H₂PO₄)₂ · H₂O и ~0.0003 г/л для Са₁₀(PO₄)₆(OH)₂) [25], а количества воды в зоне реакции невелико (даже с учетом некоторого количества воды, присутствующего в ацетоне), механическая активация обеспечивает протекание реакции (5). Следует отметить, что растворимость монетита СаНРО₄ занимает промежуточное положение между растворимостью гидроксиапатита Са₁₀(РО₄)₆(ОН)₂ и монокальцийфосфата моногидрата $Ca(H_2PO_4)_2 \cdot H_2O$ и составляет ~0.048 г/л. Однако более высокая растворимость монокальцийфосфата моногидрата Ca(H₂PO₄)₂ · H₂O по сравнению с растворимостью гидроксиапатита кальция и монетита, по всей видимости, обеспечивает в водных сегментах (каплях) в условиях механической активации уровень рН, благоприятный для образования и сохранения монетита СаНРО₄, а не гидроксиапатита.

На рис. 2 представлены микрофотографии исходных порошков и синтезированного монетита CaHPO₄. Размер пластинок монокальций-фосфата моногидрата Ca(H₂PO₄)₂ · H₂O достаточно большой и составляет 50–300 мкм при толщине 15–20 мкм (рис. 2а). Размер частиц гидроксиапатита Ca₁₀(PO₄)₆(OH)₂ составляет 100–200 нм (рис. 2б). Размер частиц синтезированного монетита CaHPO₄ может быть оценен как 100–300 нм (рис. 2в). При этом на фото можно заметить частицы как столбчатой морфоло-

Рис. 1. РФА исходных веществ $Ca(H_2PO_4)_2 \cdot H_2O$ (карточка PDF 9-347), $Ca_{10}(PO_4)_6(OH)_2$ (карточка PDF 74-566) и синтезированного фосфата кальция CaHPO₄ (карточка PDF 9-80).

гии, так и с формой, близкой к изометричной. Известно, что для монетита СаНРО₄, полученного из растворов, характерна пластинчатая морфология частиц [26]. В данном случае для монетита СаНРО₄, полученного в условиях механической активации из плохо растворимых в воде фосфатов кальция в присутствии ацетона, пластинчатая морфология частиц не наблюдается. Такой результат может быть обусловлен тем, что химическая реакция (5) синтеза монетита СаНРО₄ протекает на поверхности гидроксиапатита Ca₁₀(PO₄)₆(OH)₂. Можно считать, что в описанных условиях происходит гетерогенный синтез на поверхности раздела твердое/жидкость, где твердое – гидроксиапатит кальция, а жидкость – водный раствор монокальцийфосфата моногидрата $Ca(H_2PO_4)_2 \cdot H_2O$. Ацетон при этом выполняет роль среды дезагрегации, обеспечивающей подвижность мелющих тел, частиц порошка и сегментов (капель) водного раствора. Некоторое увеличение размера частиц монетита СаНРО₄ по сравнению с размером частиц гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ может быть обусловлено тем, что из одного моля гид-

(б) Ca₁₀(PO₄)₆(OH)₂

(в) СаНРО₄

Рис. 2. Микрофотографии исходных веществ $Ca(H_2PO_4)_2 \cdot H_2O(a), Ca_{10}(PO_4)_6(OH)_2(6)$ и синтезированного фосфата кальция CaHPO₄ (в).

роксиапатита $Ca_{10}(PO_4)_6(OH)_2$ (M = 1004 г/моль) с плотностью 3.16 г/см³ образуется 14 молей монетита (M = 136 г/моль) с плотностью 2.93 г/см³. При этом объем отдельно взятой частицы может увеличиться примерно в два раза.

Данные термического анализа исходных веществ и синтезированного монетита CaHPO₄

Рис. 3. ТА исходных веществ $Ca(H_2PO_4)_2 \cdot H_2O$, $Ca_{10}(PO_4)_6(OH)_2$ и синтезированного фосфата кальция CaHPO₄.

Рис. 4. МS исходных веществ $Ca(H_2PO_4)_2 \cdot H_2O$, $Ca_{10}(PO_4)_6(OH)_2$ и синтезированного фосфата кальция $CaHPO_4$ для m/z = 18.

представлены на рис. 3 и 4. Данные ТА и МS для исходных веществ — $Ca(H_2PO_4)_2 \cdot H_2O$ и $Ca_{10}(PO_4)_6(OH)_2$ — даны для сравнения. Сопоставление данных ТА и MS подтверждает отсутствие исходных веществ в синтезированном порошке, что согласуется с результатами РФА (рис. 1). Для монетита CaHPO₄ при 400°C характерно протекание реакции (6), отражающей превращение монетита CaHPO₄ в пирофосфат Ca₂P₂O₇.

$$2CaHPO_4 = Ca_2P_2O_7 + H_2O_1$$
 (6)

Общая потеря массы порошка монетита $CaHPO_4$ при нагревании составила ~7% (рис. 3). По дан-

Рис. 5. РФА образцов керамики из порошка $CaHPO_4$, синтезированного из $Ca(H_2PO_4)_2$ · H_2O и $Ca_{10}(PO_4)_6(OH)_2$, после обжига при 900, 1000 и 1100°C (а) и штрих-диаграмма для карточки PDF 81-2257 (β - $Ca_2P_2O_7$) (б).

ным MS, уменьшение массы монетита $CaHPO_4$ происходит за счет выделения воды в интервале $300-475^{\circ}C$ (рис. 4).

Рис. 6. Линейные размеры (а) и плотность (б) образцов керамики из порошка CaHPO₄, синтезированного из Ca(H_2PO_4)₂ · H_2O и Ca₁₀(PO₄)₆(OH)₂, после обжига при 900, 1000 и 1100°C.

По данным РФА (рис. 5), фазовый состав керамики после тестовых обжигов в интервале температур 900–1100°С представлен β -Ca₂P₂O₇.

На рис. 6 приведены значения линейной усадки (а) и плотности (б) образцов керамики до и после обжига. Плотность образца, отпрессованного при 100 МПа из синтезированного порошка, по сравнению с теоретической плотностью β -пирофосфата кальция (3.09 г/см³) составила 45%. Линейная усадка образцов после обжига при 900°С составила 17%, а после обжига при 1100°С – 25%. Плотность образцов после обжига при 1000– 1100°С составила 74–76% по сравнению с теоре-

(в) 1100°C

Рис. 7. Микрофотографии образцов керамики из порошка CaHPO₄, синтезированного из Ca(H₂PO₄)₂ · · H₂O и Ca₁₀(PO₄)₆(OH)₂, после обжига при 900 (a), 1000 (б) и 1100°C (в).

тической плотностью β -пирофосфата кальция (3.09 г/см³).

На рис. 7 представлена микроструктура керамики на основе β -Ca₂P₂O₇ после обжига при различных температурах в интервале 900–1100°С. Размер зерен после обжига при 900–1000°С составляет 2–4 мкм. При этом микроструктура керамики после обжига при 900°С выглядит более

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 9 2019

рыхлой и пористой. Размер зерен керамики после обжига при 1100°С составляет 5–10 мкм.

ЗАКЛЮЧЕНИЕ

Порошок монетита CaHPO₄ с размером частиц 100–300 нм, синтезированный из монокальцийфосфата моногидрата Ca(H₂PO₄)₂ · H₂O и гидроксиапатита кальция Ca₁₀(PO₄)₆(OH)₂ в условиях механической активации, может быть использован для получения керамических материалов с фазовым составом, включающим биосовместимую биорезорбируемую фазу – пирофосфат кальция β -Ca₂P₂O₇.

Кроме того, синтезированный порошок может быть использован в качестве наполнителя для создания материалов с полимерной матрицей, а также при допировании соответствующими ионами и в качестве матрицы при создании люминесцентных материалов.

Полученные из синтезированного порошка керамические кальцийфосфатные материалы, содержащие биорезорбируемую и биосовместимую фазу пирофосфата кальция β-Ca₂P₂O₇, могут быть рекомендованы для создания костных имплантатов.

БЛАГОДАРНОСТЬ

Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского университета.

ФИНАНСИРОВАНИЕ РАБОТЫ

Гранты РФФИ № 16-08-01172, 18-29-11079 и 18-53-00034.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы подтверждают отсутствие конфликта интересов.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

Т.В. Сафронова сформулировала цель, подготовила план эксперимента, написала текст статьи; И.С. Садилов, К.В. Чайкун синтезировали образцы, провели расшифровку данных РФА; Т.Б. Шаталова выполнила термический анализ (ТА, MS) и его интерпретацию, Я.Ю. Филиппов провел электронно-микроскопические исследования синтезированных порошков и образцов керамических материалов. Все авторы участвовали в обсуждении результатов.

СПИСОК ЛИТЕРАТУРЫ

- Киселева С.И. Пищевые и биологически активные добавки: учебное пособие. Новосибирск: Изд-во НГТУ, 2013. 48 с. ISBN 978-5-7782-2251-9
- Ruthner H., Noller H. // J. Catal. 1975. V. 38. № 1–3. P. 264. https://doi.org/10.1016/0021-9517(75)90087-1
- 3. *Ghantani V.C., Dongare M.K., Umbarkar S.B.* // RSC Advances. 2014. V. 4. № 63. P. 33319. https://doi.org/10.1039/c4ra06429a
- Расулов А.А., Бадалова О.А., Алимов У.К. и др. // Universum: технические науки. 2017. Т. 8. № 41. http://7universum.com/ru/tech/archive/item/5081
- Kolaya Siddhartha, Basu M., Sudarsana V., Tyagi A.K. // Solid State Sci. 2018. V. 85. P. 26. https://doi.org/10.1016/j.solidstatesciences.2018.09.007
- Roman-Lopez J., Lozano I.B., Cruz-Zaragoza E. et al. // Appl. Radiat. Isot. 2017. V. 124. P. 44. https://doi.org/10.1016/j.apradiso.2017.03.004
- Dorozhkin S.V. // Ceram. Int. 2015. V. 41. № 10. P. 13913. https://doi.org/10.1016/j.ceramint.2015.08.004
- Safronova T.V., Putlyaev V.I. // Inorg. Mater. 2017. V. 53. № 1. C. 17. https://doi.org/10.1134/S0020168516130057
- Xu H.H., Wang P., Wang L. et al. // Bone research. 2017.
 V. 5. P. 17056. https://doi.org/10.1038/boneres.2017.56
- Shavandi A., Bekhit A.El-Din A. et al. // J. Biomimetics, Biomaterials and Biomedical Engineering. 2015. V. 25. P. 98. https://doi.org/10.4028/www.scientific.net/JBBBE.25.98
- Ouerfelli N., Zid M.F. // J. Struct. Chem. 2016. V. 57. № 3. C. 628. https://doi.org/10.1134/S0022476616030252
- Chaikina M.V., Bulina N.V., Ishchenko A.V. et al. // Russ. Phys. J. 2014. V. 56. № 10. Р. 1176. [Чайкина М.В., Булина Н.В. и др. // Изв. вузов. Физика. 2013. Т. 56. № 10. С. 66.] https://doi.org/10.1007/s11182-014-0159-0
- Golovanova O.A. // Russ. J. Inorg. Chem. 2018. V. 63.
 № 12. Р. 1541. [Голованова О.А. // Журн. неорган. химии. 2018. Т. 63. №. 12. С. 1530.] https://doi.org/10.1134/S0036023618120094

- 14. Solonenko A.P., Blesman A.I., Polonyankin D.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. V. 8. Р. 993. [Солоненко А.П., Блесман А.И., Полонянкин Д.А., Горбунов В.А. // Журн. неорган. химии. 2018. Т. 63. № 8. С. 953.]
 - https://doi.org/10.1134/S0036023618080211
- Safronova T.V., Putlyaev V.I., Filippov Ya.Yu. et al. // Glass Ceram. 2018. V. 75. № 3–4. Р. 118. [Сафронова Т.В., Путляев В.И., Филиппов Я.Ю. и др. // Стекло и керамика. 2018. № 3. С. 41.] https://doi.org/10.1007/s10717-018-0040-7
- 16. *Ezhova Z.A., Zakharov N.A., Koval E.M. et al.* // Russ. J. Inorg. Chem. 2018. V. 63. № 8. Р. 1001. [*Ежова Ж.А., Захаров Н.А., Коваль Е.М. и др.* // Журн. неорган. химии. 2018. Т. 63. № 8. С. 961.] https://doi.org/10.1134/S0036023618080065
- 17. Safronova T.V., Knot'ko A.V., Shatalova T.B. et al. // Glass Ceram. 2016. V. 73. № 1–2. Р. 25. [Сафронова Т.В., Кнотько А.В., Шаталова Т.Б. и др. // Стекло и керамика. 2016. № 1. С. 27.] https://doi.org/10.1007/s10717-016-9819-6
- 18. Данильченко С.Н. // Вісник СумДУ. Серія Фізика, математика, механіка. 2007. № 2. С. 33.
- 19. *Герк С.А., Голованова О.А.* // Вестник Омского ун-та. 2015. № 4 (78). С. 39.
- 20. *Carrodeguas R.G., De Aza S.* // Acta Biomaterialia. 2011. V. 7. № 10. P. 3536. https://doi.org/10.1016/j.actbio.2011.06.019
- 21. Safronova T.V., Putlyaev V.I., Kurbatova S.A. et al. // Inorg. Mater. 2015. V. 51. № 11. Р. 1177. [Сафронова Т.В., Путляев В.И., Курбатова С.А. и др. // Неорган. материалы. 2015. Т. 51. № 11. С. 1269.] https://doi.org/10.1134/S0020168515110096
- Safronova T.V., Putlyaev V.I., Ivanov V.K. et al. // Refract. Ind. Ceram. 2016. V. 56. № 5. Р. 502. [Сафронова Т.В., Путляев В.И., Иванов В.К. и др. // Новые огнеупоры. 2015. № 9. С. 45.] https://doi.org/10.1007/s11148-016-9877-x
- 23. *Tamimi F, Sheikh Z, Barralet J.* // Acta Biomaterialia. 2012. V. 8. № 2. P. 474. https://doi.org/10.1016/j.actbio.2011.08.005
- ICDD (2010). PDF-4+ 2010 (Database) / Ed. Soorya Kabekkodu. International Centre for Diffraction Data. Newtown Square. PA. USA. http://www.icdd.com/ products/pdf2.htm
- 25. *Dorozhkin S.V.* // Prog. Biomater. 2016. V. 5. № 1. P. 9. https://doi.org/10.1007/s40204-015-0045-z
- Mulongo-Masamba R., El Kassri T., Khachani M. et al. // J. Therm. Anal. Calorim. 2015. V. 124. № 1. P. 171. https://doi.org/10.1007/s10973-015-5130-y