ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.248+541.67

СТРОЕНИЕ КОМПЛЕКСА SiCl₄←O=C[N(CH₃)₂]₂ И ПЕРЕРАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ ПРИ ЕГО ОБРАЗОВАНИИ ПО РЕЗУЛЬТАТАМ РАСЧЕТОВ *ab initio*

© 2019 г. В. П. Фешин^{1, *}, Е. В. Фешина¹

¹Институт технической химии УрО РАН, ул. Академика Королева, 3, Пермь, 614013 Россия

**E-mail: vpfeshin@mail.ru* Поступила в редакцию 21.01.2019 г. После доработки 05.03.2019 г. Принята к публикации 15.03.2019 г.

Для установления строения комплекса SiCl₄ с тетраметилмочевиной выполнены расчеты его возможных структур состава 1 : 1 и 1 : 2 методами RHF, B3LYP и MP2 с базисным набором 6-31G(d). Подтверждено, что этот комплекс имеет состав 1 : 1 и строение тригональной бипирамиды с необычным расположением лиганда не в аксиальном, а в экваториальном положении. При образовании комплекса происходит перенос электронной плотности с атомов водорода, карбонильного углерода и атомов азота – донора электронов – на атомы хлора – акцептора, а также на карбонильный атом кислорода и атомы углерода метильных групп самого донора электронов. Переноса ее с координационного центра донора на координационный центр акцептора не происходит.

Ключевые слова: комплекс Cl₄Si←O=C[N(CH₃)₂]₂, строение, квантово-химические расчеты, ядерный квадрупольный резонанс, заселенности атомных орбиталей **DOI:** 10.1134/S0044457X19090113

введение

Интерес к координационным соединениям элементов 14 группы не ослабевает на протяжении многих десятилетий. Их изучению посвящено большое число публикаций, например [1–11]. Образование комплекса сопровождается перераспределением электронной плотности путем ее переноса с электронодонорного фрагмента молекулы на электроноакцепторный, а также поляризацией связей внутри этих фрагментов [1, 2]. Это перераспределение можно оценить количественно, проанализировав изменения зарядов атомов, полученных в результате квантово-химических расчетов системы, и сопоставив их с результатами расчетов исходных компонентов. Изменения зарядов атомов при образовании комплексов проанализированы нами в целом ряде систем, в том числе и при образовании комплекса SiCl₄ с тетраметилмочевиной [1, 2, 12]. Однако при расчете комплекса $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$ мы принимали фрагмент Cl−Si←O=C линейным [2, 12]. Для этого, как рекомендуется при расчетах линейных фрагментов [13], вводили мнимый атом Х, связанный с атомом О карбонильной группы, углы XOSi и C(1)OX принимали равными 90°, двугранный угол XOSiCl(2) = 0° , а угол C(1)OXSi = 180° .

Как показали наши дальнейшие исследования, карбонильная группа не находится на одной пря-

мой с аксиальной связью Cl−Si, поскольку в образовании координационной связи Si←O участвует одна из двух неподеленных пар электронов карбонильного атома кислорода (*p*- или *sp*-гибридизованная) [14]. Поэтому для изучения перераспределения электронной плотности при образовании этого комплекса и подтверждения его строения необходимо выполнить квантово-химический расчет корректно, с полной оптимизацией геометрии молекулы, не используя мнимый атом X.

На основании спектра ядерного квадрупольного резонанса (**ЯКР**) на ядрах ³⁵Cl комплекса SiCl₄ с тетраметилмочевиной мы полагали, что этот комплекс имеет необычное тригонально-бипирамидальное строение, при котором лиганд занимает не аксиальное, как в других подобных комплексах, а экваториальное положение тригональной бипирамиды [15].

Спектр ЯКР ³⁵Сl этого комплекса состоит из двух значительно удаленных друг от друга дублетов. Высокочастотный дублет (21.653 и 21.155 МГц) отнесен к двум экваториальным атомам хлора, а низкочастотный (18.448 и 17.343 МГц) – к двум аксиальным. С таким строением комплекса $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$ согласуются и параметры асимметрии градиента электрического поля (ГЭП) на ядрах ³⁵Cl: высокочастотному дублету соответствуют большие величины параметров

Связь, угол	Ι		П			III	
	RHF	MP2	RHF	MP2	B3LYP	RHF	B3LYP
Si–Cl(1)	2.041	2.040	2.075	2.076	2.098	2.145	2.164
Si–Cl(2)	2.027	2.033	2.083	2.088	2.113	2.160	2.184
Si–Cl(3)	2.027	2.023	2.261	2.234	2.268	2.207	2.242
Si–Cl(4)	2.029	2.024	2.161	2.144	2.175	2.169	2.198
Si←O	3.548	3.297	1.750	1.790	1.790	1.88; 2,02	1.90; 2.03
SiOC	162.52	121.79	138.14	129.39	133.86	155.9; 138.0	149.4; 135.6

Таблица 1. Длины связей Si–Cl, Si←O (Å) и угол SiOC (град) в структурах I–III, рассчитанных методами RHF/6-31G(d), MP2/6-31G(d) и B3LYP /6-31G(d)

асимметрии (43.1 ± 4.1 и 38.8 ± 2.6%), характерные для экваториальных атомов хлора, а низкочастотному — незначительные (7.5 ± 2.0 и 1.7 ± ± 0.5%) [16].

Поскольку линии в спектре ЯКР ³⁵Cl системы $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$ состава 1 : 2 значительно интенсивней, чем состава 1 : 1, можно полагать, что $SiCl_4$ с $O = C[N(CH_3)_2]_2$ образует также комплекс состава 1 : 2 *цис*-октаэдрического строения, в котором два атома хлора занимают аксиальные положения, а два других — экваториальные [1, 2, 15]. Экспериментальные частоты ЯКР ³⁵Cl и параметры асимметрии ГЭП на ядрах ³⁵Cl этого комплекса не противоречат такому строению.

Для уточнения строения комплекса SiCl₄ с $O=C[N(CH_3)_2]_2$ и изучения перераспределения электронной плотности при его образовании мы выполнили неэмпирические расчеты этого комплекса тригонально-бипирамидального (состав 1 : 1) и *цис*-октаэдрического строения (состав 1 : 2) несколькими методами с полной оптимизацией геометрии молекул, а также расчеты методом MP2/6-31G(d) его исходных компонентов. Корректность установления строения контролировали по экспериментальным спектрам ЯКР ³⁵Cl.

РАСЧЕТНАЯ ЧАСТЬ

Bce расчеты выполнены по программе GAUSSIAN 03W [17] ограниченным методом Хартри-Фока (RHF), методом Хартри-Фока с учетом корреляции электронов по методу Меллера-Плессета второго порядка (МР2), а также методом функционала плотности (B3LYP) с полной оптимизацией геометрии молекул без использования мнимого атома Х. Все расчеты выполнены с базисным набором 6-31G(d) без ограничений по симметрии. Структура II рассчитана также методом RHF/6-31 + G(d,p). Оптимизированные структуры соответствуют минимуму на поверхности потенциальной энергии, поскольку мнимые частоты валентных колебаний отсутствуют. Результаты расчетов использованы для оценки частот ЯКР и параметров асимметрии ГЭП на ядрах ³⁵Cl. При расчетах начало системы координат помещали в место расположения ядра атома хлора, параметры ЯКР которого намерены оценить. Во всех случаях ось *z* системы координат совпадает с соответствующей связью Cl–Si. Рассчитанные параметры ЯКР ³⁵Cl сопоставлены с имеющимися экспериментальными данными.

Частоты ЯКР (v) и параметры асимметрии ГЭП (η) на ядрах ³⁵Cl рассчитывали по уравнениям (1) и (2) соответственно [18], в которых использовали не полные заселенности валентных *p*-орбиталей атомов хлора (Np_x , Np_y и Np_z), а лишь их менее диффузных 3*p*-составляющих ($N3p_x$, $N3p_y$ и $N3p_z$), полученные в результате квантовохимических и DFT-расчетов. Расчеты по этой методике приводят к удовлетворительному соответствию между экспериментальными и вычисленными параметрами ЯКР различных хлорсодержащих органических и элементоорганических соединений [1, 19, 20].

$$v = (e^2 Q q_{am} / 2\hbar) [-N3p_z + + (N3p_x + N3p_y) / 2] (1 + \eta^2 / 3)^{1/2},$$
(1)

$$\eta = |3(N3p_x - N3p_y)/(2N3p_z - N3p_x - N3p_y)|, (2)$$

где $e^2 Qq_{at}$ — атомная константа квадрупольного взаимодействия, \hbar — постоянная Планка. Величина $e^2 Qq_{at}$ найдена по экспериментальной частоте ЯКР ³⁵Cl Cl₂ и заселенностям *3p*-составляющих валентных *p*-орбиталей атомов Cl этой молекулы, полученным из расчета ее соответствующим методом [1, 19, 20].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты расчета методом RHF/6-31G(d) системы $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$ тригонально-бипирамидального строения (I) с лигандом в аксиальном положении тригональной бипирамиды с полной оптимизацией геометрии молекулы практически не отличаются от полученных ранее [1, 12] при использовании мнимого атома Х. Например, при этих расчетах расстояние Si...O остается таким же (табл. 1), близким к сумме ван-дер-ваальсовых радиусов атомов Si и O [21] и свидетельствующим об отсутствии комплексообразования. По заселенностям 3*p*-составляющих валентных *p*-орбиталей атомов хлора и уравнениям (1) и (2) мы оценили частоты ЯКР ³⁵Cl и параметры асимметрии ГЭП на ядрах ³⁵Cl атомов хлора в наибо-

Согласно результатам расчета методом RHF/6-31G(d) системы $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ такого же строения расстояние Ge...О также близко к сумме ван-дер-ваальсовых радиусов атомов Ge и O, а параметры ЯКР ³⁵Cl, вычисленные по результатам этих расчетов, существенно отличаются от экспериментальных. Однако при расчете этой системы методом MP2/6-31G(d) получено значительно меньшее расстояние Ge...O, а вычисленные по этим результатам параметры ЯКР ³⁵Сl близки к экспериментальным [22]. Поэтому можно полагать, что расчет системы $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$ методом MP2/6-31G(d) также может привести к удовлетворительному соответствию с экспериментальными данными. Мы выполнили эти расчеты. К сожалению, расстояние Si...O оказалось лишь незначительно меньше (табл. 1), чем при расчете методом RHF/6-31G(d), а вычисленные по результатам этих расчетов параметры ЯКР ³⁵Cl значительно отличаются от экспериментальных (табл. 2). Длины связей Si–Cl в структуре I, рассчитанные методами RHF/6-31G(d) и MP2/6-31G(d), различаются незначительно, тогда как углы SiOC - существенно.

По-видимому, комплекс $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$, как мы полагали ранее [1, 2, 12], все же имеет необычное тригонально-бипирамидальное строение, при котором лиганд занимает одно из экваториальных положений бипирамиды II. Расчет такой структуры методами RHF/6-31G(d), MP2/6-31G(d) и B3LYP /6-31G(d) привел к несколько различающимся результатам. Однако соотношение длин связей Si-Cl, рассчитанных этими методами, одинаково: две наиболее короткие связи Si-Cl и две заметно различающиеся длинные. Длина координационной связи Si←O, по результатам расчетов этими тремя методами, практически одинакова, так же как и углы SiOC. Соотношение частот ЯКР ³⁵СІ и параметров асимметрии ГЭП на ядрах 35 Cl, вычисленных по заселенностям 3р-составляющих валентных р-орбиталей атомов хлора, полученных из расчетов этими тремя методами и по уравнениям (1) и (2)

лее длинной и наиболее короткой связях. Частоты ЯКР оказались близки между собой, а параметры асимметрии ГЭП близки или равны нулю (табл. 2). Такие параметры ЯКР не соответствуют экспериментальным данным.

(табл. 3), соответствует экспериментальным: две высокочастотные линии с небольшим расщеплением, принадлежащие экваториальным атомам хлора, и две низкочастотные со значительным расщеплением, принадлежащие аксиальным атомам хлора. Первым соответствуют большие значения параметров асимметрии, вторым — малые (табл. 3). Наиболее близки к экспериментальным

Таблица 2. Заселенности 3*p*-составляющих валентных *p*-орбиталей атомов хлора (*N*3*p*) в структуре I, рассчитанной методами RHF/6-31G(d) и MP2/6-31G(d), вычисленные по ним частоты ЯКР ³⁵Cl (v_B) и параметры асимметрии (η_B) ГЭП на ядрах ³⁵Cl

Метод	Атом	$N3p_x, e$	N3р _y , е	N3p _z , e	ν _в , МГц	$\eta_{\scriptscriptstyle B}, \%$
RHF	Cl(1)	1.279	1.279	1.055	20.853	0.0
	Cl(2)	1.288	1.277	1.050	21.646	2.37
MP2	Cl(1)	1.279	1.279	1.056	20.433	0.0
	Cl(2)	1.288	1.275	1.053	20.962	8.53

Таблица 3. Заселенности 3*p*-составляющих валентных *p*-орбиталей атомов хлора (*N*3*p*) в структуре II, рассчитанной методами RHF/6-31G(d), MP2/6-31G(d) и B3LYP/6-31G(d), а также атома Cl(3) в этой структуре, рассчитанной методом RHF/6-31 + G(d,p), вычисленные по ним частоты ЯКР ³⁵Cl (v_B) и параметры асимметрии (η_B) ГЭП на ядрах ³⁵Cl

Метод	Атом	$N3p_x, e$	N3p _y , e	N3p _z , e	ν _в , МГц	$\eta_{\scriptscriptstyle B}, \%$
RHF	Cl(1)	1.307	1.255	1.047	22.183	33.33
	Cl(2)	1.309	1.252	1.046	22.309	36.46
	Cl(3)	1.258	1.253	1.087	15.631	4.45
	Cl(4)	1.271	1.266	1.067	18.763	3.72
RHF	Cl(3)	1.260	1.256	1.090	15.428	3.57
MP2	Cl(1)	1.305	1.256	1.049	21.565	31.75
	Cl(2)	1.308	1.251	1.046	21.867	36.62
	Cl(3)	1.262	1.257	1.089	15.627	4.40
	Cl(4)	1.274	1.267	1.067	18.654	5.16
	Cl(1)	1.317	1.267	1.056	22.328	31.78
B3LYP	Cl(2)	1.319	1.262	1.054	22.007	36.15
	Cl(3)	1.275	1.268	1.085	17.364	5.63
	Cl(4)	1.287	1.278	1.069	19.881	6.32

Таблица 4. Заселенности 3*p*-составляющих валентных *p*-орбиталей атомов хлора (*N*3*p*) в структуре III, рассчитанной методами RHF/6-31G(d) и B3LYP/6-31G(d), вычисленные по ним частоты ЯКР ³⁵Cl ($\nu_{\rm B}$) и параметры асимметрии ($\eta_{\rm B}$) ГЭП на ядрах ³⁵Cl

Метод	Атом	$N3p_x, e$	N3p _y , e	N3p _z , e	ν _в , МГц	$\eta_{\scriptscriptstyle B}, \%$
RHF	Cl(1)	1.274	1.277	1.056	20.434	2.05
	Cl(2)	1.277	1.269	1.062	19.653	5.69
	Cl(3)	1.265	1.268	1.072	18.108	2.31
	Cl(4)	1.273	1.270	1.066	19.132	2.19
B3LYP	Cl(1)	1.288	1.290	1.059	21.404	1.3
	Cl(3)	1.279	1.279	1.077	18.798	0.0

частоты ЯКР, вычисленные по результатам расчетов структуры II методом MP2/6-31G(d). При этом существенно ниже экспериментальной оказалась частота ЯКР аксиального атома Cl(3). Частота ЯКР аксиального атома Cl(4), вычисленная по результатам расчетов структуры II методом B3LYP/6-31G(d), существенно выше экспериментальной, тогда как частоты трех других атомов хлора также близки к экспериментальным. Расчет структуры II методом RHF/6-31G(d) привел к заметному отличию от экспериментальной не только частоты аксиального атома хлора, но и одного из экваториальных. Кроме особенностей расчетных методов некоторое несоответствие между вычисленными и экспериментальными параметрами ЯКР ³⁵Cl для комплекса Cl₄Si \leftarrow O=C[N(CH₃)₂]₂ может быть обусловлено тем. что экспериментальные данные получены для кристаллического вещества при 77 К, а расчеты выполнены для индивидуальной молекулы комплекса в стандартных условиях.

Молекула комплекса $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$ содержит атомы с неподеленными парами электронов. Согласно [3], при расчете таких систем необходимо использовать базисные наборы с диффузными функциями. Поскольку в молекуле комплекса содержится большое количество атомов водорода, рекомендуется также использовать поляризованный базисный набор, дополненный р-функциями атомов водорода [13]. Чтобы проверить, насколько эти поправки изменят полученные нами результаты расчетов, мы выполнили расчет структуры II методом RHF с базисным набором 6-31 + G(d,p), содержащим такие функции (табл. 3). При этом начало системы координат поместили в место расположения ядра аксиального атома Cl(3), для которого, по результатам расчетов методами RHF/6-31G(d) и MP2/6-31G(d), получена частота ЯКР ³⁵Cl, существенно отличающаяся от экспериментальной. Как видно из табл. 3, учет этих поправок не приводит к существенным изменениям ни частоты ЯКР, ни параметра асимметрии ГЭП. Поэтому дальнейшие расчеты с таким базисным набором мы не выполняли.

Согласно расчетам комплекса $Cl_4Si \leftarrow O=C[N(CH_3)_2]_2$ методом MP2/6-31G(d), полная энергия комплекса структуры II на 7.2 ккал/моль выше, чем структуры I. Это подтверждает сделанный ранее вывод [1, 2] о том, что комплексы соединений элементов 14 группы зачастую не имеют энергетически наиболее выгодной формы. Для их образования необходимо некоторое повышение полной энергии молекулы. Возможно, предпочтительное образование структуры II, а не структуры I обусловлено тем, что в структуре II частичный отрицательный заряд атома кислорода и положительный заряд атома кремния выше (-0.760 и 1.245 *е* по результатам расчетов методом MP2/6-31G(d)), чем в структуре I (-0.671 и 0.983 *e*).

Соотношение частот ЯКР ³⁵Cl и параметров асимметрии ГЭП на ядрах ³⁵Cl, установленное экспериментально для комплекса SiCl₄ с тетраметилмочевиной, может соответствовать также структуре III *цис*-октаэдрического строения, тем более что интенсивность линий в спектре ЯКР ³⁵Cl образца состава 1 : 2, как уже отмечалось, выше, чем состава 1 : 1.

Для проверки этого предположения мы выполнили расчет такой структуры методами RHF/6-31G(d) и B3LYP /6-31G(d). Связь Cl(3)-Si оказалась несколько длиннее трех других, довольно близких между собой. По заселенностям 3*р*-составляющих валентных *р*-орбиталей атомов хлора и уравнениям (1) и (2) оценили частоты ЯКР ³⁵СІ и параметры асимметрии ГЭП на ядрах ³⁵Сl соответственно (табл. 4). По результатам расчетов методом B3LYP/6-31G(d) оценили параметры ЯКР³⁵Сl только двух атомов хлора наиболее короткой и наиболее длинной связей Cl-Si. Частоты ЯКР, вычисленные по результатам расчетов обоими методами, находятся в том же диапазоне, что и экспериментальный спектр ЯКР, однако они близки между собой, как и параметры асимметрии, что не соответствует экспериментальным данным. По-видимому, более высокая интенсивность линий в спектре ЯКР ³⁵Сl образца состава 1 : 2, чем 1:1, может быть обусловлена большей упорядоченностью его кристаллической структуры.

Таким образом, результаты выполненных расчетов различными методами показывают, что экспериментальным данным ЯКР наиболее соответствует структура II комплекса Cl₄Si←O=C[N(CH₃)₂]₂, что подтверждает сделанные ранее выводы [1, 2, 12] о необычной структуре этого соединения. При этом

Таблица 5. Малликеновские заряды (q) атомов в структуре II и в исходных компонентах комплекса ($q_{\text{комп}}$), рассчитанных методом MP2/6-31G(d), а также изменение их в структуре II (Δq) по сравнению с исходными компонентами

Атомы	<i>q</i> , <i>e</i>	$q_{{ m KOM}{ m II}},e$	$\Delta q, e$	
2Cl _{akc}	-0.954	-0.465	-0.489	
2Cl _{экв}	-0.613	-0.465	-0.148	
Si	1.245	0.929	0.316	
0	-0.760	-0.646	-0.114	
Скарб	1.070	0.982	0.088	
2N	-1.264	-1.320	-0.056	
4C	-1.262	-1.170	-0.092	
12H	2.536	2.154	0.382	

наилучшее соответствие с экспериментальными данными ЯКР ³⁵Cl получено при расчете этого комплекса методом MP2/6-31G(d). Полученные данные показывают также, что корректность квантовохимических и DFT расчетов необходимо контролировать по экспериментальным данным, поскольку результаты расчетов различными методами могут заметно различаться между собой.

Для количественного анализа перераспределения электронной плотности при образовании комплекса $Cl_4Si \leftarrow O = C[N(CH_3)_2]_2$ необычной структуры II нами выполнены также квантово-химические расчеты его исходных компонентов методом MP2/6-31G(d). В табл. 5 представлены малликеновские заряды атомов в этом комплексе и его исходных компонентах. При образовании комплекса возрастают частичные отрицательные заряды атомов хлора (на 0.637 e), особенно аксиальных, а также положительный заряд атома кремния по сравнению с соответствующими атомами в исходных компонентах. При этом частичные отрицательные заряды атомов хлора возрастают не только за счет перенесенного заряда с донора электронов (-0.32 e), но и за счет поляризации связей Si-Cl, в результате которой электронная плотность с атома кремния переходит на атомы хлора (0.316 е). При образовании комплекса в молекуле донора электронов уменьшается электронная плотность атомов водорода, карбонильного углерода и атомов азота (на 0.526 е). Она перераспределяется между акцептором электронов (-0.32 е), атомом кислорода и атомами углерода метильных групп донора электронов (-0.206 е).

Таким образом, при образовании комплекса Cl₄. Si←O=C[N(CH₃)₂]₂ (структура II) происходит перераспределение электронной плотности с атомов водорода, карбонильного углерода и атомов азота – донора электронов на атомы хлора – акцептора электронов, а также на карбонильный атом кислорода и атомы углерода метильных групп самого донора электронов. Переноса электронной плотности с координационного центра донора электронов на координационный центр акцептора электронов не происходит. Эти центры служат проводниками электронной плотности в основном с периферийных атомов водорода донора электронов на атомы хлора — акцептора.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Фешин В*. Природа координационной связи в соединениях элементов 14 группы. Саарбрюккен: LAMBERT Academic Publishing, 2018. 124 с.
- Фешин В.П. Проблемы координационных соединений элементов IVA группы по данным ЯКР и квантовой химии. Пермь: УрО РАН, 2015. 366 с.
- 3. *Korlyukov A.A.* // Russ. Chem. Rev. 2015. V. 84. № 4. P. 422.
- https://doi.org/10.1070/RCR4466
- 4. *Nikolin A.A., Negrebecky V.V.* // Russ. Chem. Rev. 2014. V. 83. № 9. P. 848.
- https://doi.org/10.1070/RC2014v083n09ABEH004385
- Кравченко Э.А., Кузнецов Н.Т., Новоторцев В.М. Ядерный квадрупольный резонанс в координационной химии. М.: Красанд, 2013. 260 с.
- 6. *Puri J.K., Singh R., Chahal V.K.* // Chem. Soc. Rev. 2011. V. 40. № 3. P. 1791.
- 7. *Negrebecky V.V., Tandura S.N., Baukov Yu.I.* // Russ. Chem. Rev. 2009. V. 78. № 1. P. 24. https://doi.org/10.1070/RC2009v078n01ABEH003888
- Trofimov A.B., Zakrzewsky V.G., Dolgounitcheva O. et al. // J. Am. Chem. Soc. 2005. V. 27. № 3. P. 986.
- Kravchenko E.A., Buslaev Yu.A. // Russ. Chem. Rev. 1999. V. 68. № 9. P. 787. https://doi.org/10.1070/RC1999v068n09ABEH000497
- 10. *Feshin V.P.* // Main Group Met. Chem. 1993. V. 16. № 6. P. 377.
- 11. Feshin V.P., Polygalova G.A. // J. Organomet. Chem. 1991. V. 409. P. 1.
- Feshin V.P., Feshina E.V. // Russ. J. Gen. Chem. 2007.
 V. 77. № 5. Р. 792. [Фешин В.П., Фешина Е.В. // Журн. общей химии. 2007. Т. 77. Вып. 5. С. 792.]
- 13. Foresman J.B., Frisch A.E. // Exploring Chemistry with Electronic Structure Methods. Second Edition. Pittsbourgh: Gaussian Inc., 1996. 302 p.
- 14. Яновская Л.А. Современные теоретические основы органической химии. М.: Химия, 1978. 358 с.
- Feshin V.P., Dolgushin G.V., Lazarev I.M. et al. // The Proc. of the USSR Academy of Sciences. 1987. V. 295.
 № 6. Р. 1415. [Фешин В.П., Долгушин Г.В., Лазарев И.М. и др. // Докл. АН СССР. 1987. Т. 295. № 6. С. 1415.]
- Buslaev Yu.A., Kravchenko E.A., Morgunov E.G. et al. // The Proc. of the USSR Academy of Sciences. 1988.
 V. 301. № 6. Р. 1407. [Буслаев Ю.А., Кравченко Э.А., Моргунов В.Г. и др. // Докл. АН СССР. 1988. Т. 301.
 № 6. С. 1408.]
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03W. Revision D.1. Gaussian, Inc. Wallingford. CT. 2005.
- 18. *Das T.P., Hahn E.L.* Nuclear Quadrupole Resonance Spectroscopy. N.Y.: Acad. Press, 1958. 223 p.
- Feshin V.P., Feshina E.V. // Z. Naturforsch. A. 2000. Bd. 55. № 2. S. 555.
- 20. *Фешин В.П.* Геминальное взаимодействие в органической и элементоорганической химии. Екатеринбург: УрО РАН, 2009. 265 с.
- 21. Бацанов С.С. // Изв. АН. Сер. хим. 1995. № 1. С. 24.
- Feshin V.P., Feshina E.V. // Russ. J. Inorg. Chem. 2019.
 V. 64. № 5. Р. 624. [Фешин В.П., Фешина Е.В. // Журн. неорган. химии. 2019. Т. 64. № 5. С. 510.]