ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 9, с. 988–990

– ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546.571.681.815.22

ИССЛЕДОВАНИЕ СИСТЕМЫ AgGaS₂-PbS И НЕКОТОРЫЕ СВОЙСТВА ФАЗ ПЕРЕМЕННОГО СОСТАВА

© 2019 г. С. К. Джахангирова¹, Ш. Г. Мамедов^{2,} *, Д. С. Аждарова², О. М. Алиев², Г. Р. Курбанов³

¹Азербайджанский государственный педагогический университет, пр-т Г. Гаджибекли, 68, Баку, АZ1000 Азербайджан ²Институт катализа и неорганический химии им. М. Нагиева НАН Азербайджана, пр-т Г. Джавида, 113, Баку, Az1143 Азербайджан ³Азербайджанский государственный университет нефти и промышленности, пр-т Азадлыг, 20, Баку, AZ1010 Азербайджан *E-mail: azxim@mail.ru

> Поступила в редакцию 28.09.2018 г. После доработки 14.02.2019 г. Принята к публикации 15.03.2019 г.

Методами физико-химического анализа (дифференциального термического, рентгенофазового и металлографического) изучен квазибинарный разрез $AgGaS_2$ –PbS в тройной системе $Ag_2S-Ga_2S_3$ –PbS. Построена диаграмма состояния системы и установлено образование четверного соединения состава $AgPb_2GaS_4$, образующегося по перитектической реакции при 1225 К. Определены условия образования и изучены его физико-химические свойства. Установлено, что соединение $AgPb_2GaS_4$ кристаллизуется в орторомбической сингонии с параметрами кристаллической решетки: a = 8.20, b = 6.84, c = 6.62 Å, пр. гр. $Pmn2_1$. По данным физико-химического анализа установлено образование узких областей твердых растворов на основе исходных компонентов.

Ключевые слова: соединение AgPb₂GaS₄, сингония, перитектика, система Ag₂S–Ga₂S₃–PbS **DOI:** 10.1134/S0044457X19090095

введение

Интерес к изучению систем, содержащих сульфиды серебра и свинца, обусловлен прежде всего возможностями их практического использования при изготовлении солнечных батарей, фотодиодов, люминофоров и др. [1–9].

Исходные компоненты, составляющие четверную систему $AgGaS_2$ –PbS, подробно изучены в [10-19]. Наряду с Ag₉GaS₆ и Ag₂Ga₂₀S₃₁ соединение AgGaS₂ установлено при исследовании двойной системы Ag₂S-Ga₂S₃ [13, 20, 21]. Соединение Ag₂Ga₂₀S₃₁ образуется по перитектической реакции при 1268 K, а AgGaS₂ и Ag₉GaS₆ плавятся конгруэнтно при 1270 и 1063 К соответственно. Соединение AgGaS₂ кристаллизуется в структурном типе халькопирита (a = 5.7544, c = 10.299 Å, пр. гр. I42d) [14] и является полупроводником р-типа проводимости с шириной запрещенный зоны (ΔE) 2.75 эВ [22]. Соединение PbS, плавящееся конгруэнтно при 1400 К [23], встречается в природе в виде минерала галенита, являющегося одним из наиболее распространенных свинцовых минералов. Синтез PbS осуществляют различными методами [15, 24]. В работе [24] отмечена возможность выращивания монокристалла PbS размером до 2 мм высокой чистоты в силикагелях при обычных температурах. Полупроводник PbS с шириной запрещенной зоны 0.42 эВ [23, 25] кристаллизуется в кубической решетке (пр. гр. *Fm3m*) с параметром a = 5.935 Å [5]. Структура PbS состоит из сплошных стенок октаэдров с KЧ = 6. На основании данных магнитных измерений высказано предположение о преимущественно ковалентном характере связи PbS [23, 25]. Для получения материалов с полифункциональными свойствами изучение системы AgGaS₂—PbS имеет большое значение.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы для исследования системы $AgGaS_2$ – PbS синтезировали из лигатур Ag_2S , Ga_2S_3 и PbS при 1250–1400 K в откачанных кварцевых ампулах. Лигатуры получали из особо чистых элементов: серебра "16", галлия "Гл-ООО", серы "17-3", свинца "В4". При максимальной температуре образцы выдерживали в течение 1 ч, затем температуру медленно (со скоростью 40 град/ч) снижали до 1100 K и в этом режиме гомогенизировали в течение 2 нед, что обеспечивало однородность слитков.

Рис. 1. Фазовая диаграмма системы AgGaS₂-PbS.

Рис. 2. Термограмма сплава, содержащего 66.67 мол. % PbS: а — после отжига при 1175 К в течение 300 ч, б — после отжига при 1175 К в течение 400 ч, в — после отжига при 1200 К в течение 1100 ч.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 9

Отожженные сплавы системы $AgGaS_2$ –PbS исследовали методами дифференциального термического (ДТА-HTР-93, хромель-алюмелевая термопара, скорость нагревания 10 град/мин, эталон — прокаленный Al_2O_3), рентгенофазового (РФА-Д2 Phaser, Си K_{α} -излучение, Ni-фильтр), микроструктурного (микроскоп МИМ-7) анализа и измерением микротвердости (РМТ-3).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Построенная на основании данных физикохимического анализа диаграмма состояния системы AgGaS₂—PbS приведена на рис. 1. Система является квазибинарной и характеризуется образованием (при соотношении компонентов 1 : 2) четверного соединения AgPb₂GaS₄ по перитектической реакции: $\# + \beta$ (PbS) = AgPb₂GaS₄ при 1225 К. Соединение AgPb₂GaS₄ образует эвтектику с тиогаллатом серебра; координаты эвтектической точки: 40 мол. % PbS и *T* = 1150 К. Растворимость на основе тройного соединения AgGaS₂ составляет 5 мол. % PbS, а на основе сульфида свинца область гомогенности простирается до 10 мол. %.

Ликвидус системы $AgGaS_2$ —PbS состоит из трех ветвей первичной кристаллизации фаз: α (твердый раствор на основе $AgGaS_2$), $AgPb_2GaS_4$ и β (твердый раствор на основе сульфида свинца). Для идентификации соединения $AgPb_2GaS_4$ методом ДТА был выбран температурный режим отжига (1175 K), при котором сплавы с содержанием 60—90 мол. % PbS выдерживали в течение 300 ч, а затем вновь исследовали методами ДТА и РФА.

Повторное исследование с помощью ДТА и РФА показало, что термограмма сплава, содержащего 66.67 мол. % PbS, после термической обработки значительно отличается от термограммы неотожженного образца (рис. 2б). Интенсивность низкотемпературных эндоэффектов значительно vменьшилась, а плошали высокотемпературных пиков, наоборот, увеличились. С другой стороны, на порошковых рентгенограммах этих сплавов присутствие других фаз указывает на незавершенность синтеза. Поэтому для ускорения взаимодействия на межфазных границах литые образцы были перетерты в порошок в агатовой ступке, тщательно перемешаны, запрессованы в таблетки и отожжены при 1200 К в течение 1100 ч. Результаты ДТА и РФА этих образцов свидетельствуют об их однофазности (рис. 2в).

Измерение микротвердости сплавов системы $AgGaS_2$ —PbS показало, что в зависимости от состава наблюдаются три набора значений микротвердости: 3650—3660, 2350—2540 и 720—800 МПа, относящихся к α -твердым растворам на основе $AgGaS_2$, четверному соединению $AgPb_2GaS_4$ и β -твердым растворам на основе сульфида свинца.

2019

$d_{_{ m ЭКСП}}$, Å	<i>I</i> , %	$1/d^2_{$ эксп, Å	$1/d^2_{_{\rm BHY}}, {\rm \AA}$	hkl
5.01814	1.5	0.039714	0.03798	101
3.42273	32	0.0851	0.0831	020
3.19092	23.6	0.0982	0.10306	211, 201
2.9000	100	0.1187	0.1120	012
2.87704	2.0	0.1208	0.1207	121
2.49627	1.0	0.1605	0.1653	311
2.09748	21.8	0.2274	0.22596	013
2.03436	3.0	0.2417	0.2408	113
1.91816	5.0	0.2718	0.27807	032
1.78913	13.6	0.3124	0.3082	322
1.71435	7.3	0.3404	0.3435	421, 331
1.58185	1.0	0.3496	0.39276	510, 114
1.48322	8.0	0.4547	0.4550	520
1.38150	2.0	0.5236	0.5259	333, 050
1.32704	6.3	0.5679	0.5700	003
1.24865	1.0	0.6421	0.6477	612
1.21139	3.0	0.6819	0.6855	334

Таблица 1. Расчет рентгенограмм соединения $AgPb_2GaS_4$

Результаты РФА подтвердили образование в системе $AgGaS_2$ -PbS четверного соединения состава $AgPb_2GaS_4$ (табл. 1).

При сравнении рентгенограммы сплава состава 2 : 1 (AgPb₂GaS₄) с рентгенограммами исходных сульфидов (PbS, AgGaS₂) видно, что на рентгенограмме AgPb₂GaS₄ появляется ряд дифракционных линий, подтверждающих образование в системе AgGaS₂—PbS новой фазы.

Расчет рентгенограмм соединения AgPb₂GaS₄ показывает, что оно изоструктурно с соединением AgCd₂GaS₄ и кристаллизуется в орторомбической сингонии с параметрами решетки: a = 8.20, b = 6.84, c = 6.62 Å, пр. гр. *Pmn*2₁.

Таким образом, впервые изучена и построена T-x диаграмма состояния разреза AgGaS₂–PbS в квазитройной системе Ag₂S–Ga₂S₃–PbS. Установлено образование четверного соединения состава AgPb₂GaS₄, образующегося по перитектической реакции при 1225 К и кристаллизующегося в орторомбической сингонии.

ЗАКЛЮЧЕНИЕ

1. Методами физико-химического анализа построена T-x диаграмма системы AgGaS₂-PbS. Установлено, что при соотношении AgGaS₂ : PbS = = 1 : 2 по перитектической реакции образуется четверное соединение состава AgPb₂GaS₄.

2. Четверное соединение $AgPb_2GaS_4$ кристаллизуется в орторомбической сингонии с параметрами a = 8.20, b = 6.84, c = 6.62 Å.

СПИСОК ЛИТЕРАТУРЫ

- Zhao Beijun, Zhu Shifu, Li Zhenghui et al. // Chin. Sci. Bull. 2001. V. 46. № 23. P. 2009.
- Chemla D.S., Kapacek P.J., Robertson D.S. et al. // Opt. Commun. 1991. V. 3. № 1. P. 29.
- 3. *Noblanc J.P., Loudette J., Duraffourg G. et al.* // Appl. Phys. Lett. 1972. V. 20. № 7. P. 257.
- 4. Горюнова Н.А. Сложные алмазоподобные полупроводники. М.: Сов. радио, 1968. 215 с.
- Абрикосов Н.Х., Шелимова Л.Е. Полупроводниковые материалы на основе соединений A^{IV}B^{VI}. М.: Наука, 1975. 195 с.
- Kushwaha A.K., Khenata R., Bouhemadou A. et al. // J. Electron. Mater. 2017. V. 46. № 7. P. 4109. https://doi.org/10.1007/s11664-017-5290-6
- Uematsu Taro., Doi Toshihiro, Torimoto Tsukasa et al. // J. Phys. Chem. Lett. 2010. V. 1. № 22. P. 3283. https://doi.org/10.1021/jz101295w
- 8. *Karaagac H., Parlak M.* // J. Solid Films. 2011. V. 519. № 7. P. 2055.
- https://doi.org/10.1016/j.tsf.2010.10.027
 9. Karunagaran N., Ramasamy P. // Mater. Sci. Semicond. Process. 2016. V. 41. P. 54. https://doi.org/10.1016/j.mssp.2015.08.012
- Baojun Chen, Shifu Zhu, Beijun Zhao et al. // J. Cryst. Growth. 2008. V. 310. № 3. P. 635. https://doi.org/10.1016/j.jcrysgro.2007.10.067
- Sinyakova E.F., Kosyakov V.I., Kokh К.А. // Inorg. Mater. 2009. V. 45. № 11. Р. 1217. [Синякова Е.Ф., Косяков В.И., Кох К.А. // Неорган. материалы. 2009. Т. 45. № 11. С. 1298.] https://doi.org/10.1134/S0020168509110041
- Chykhrij S.I., Parasyuk O.V., Halka V.O. // J. Alloys Compd. 2000. V. 312. № 1–2. P. 189. https://doi.org/10.1016/S0925-8388(00)01145-2
- 13. Руднев Н.А., Мелихов И.В., Тузова А.М. // Журн. аналит. химии. 1973. Т. 28. № 4. С. 635.
- Olekseyuk I.D., Parasyuk O.V., Halka V.O. et al. // J. Alloys Compd. 2001. V. 325. № 10. P. 167. https://doi.org/10.1016/S0925-8388(01)01361-5
- Singh N.B., Hopkins R.H., Feichiner J.D. // J. Mater Sci. 1986. V. 21. P. 837.
- 16. Cary C.C., David B. // MRS Bull. 1998. № 7. P. 28.
- 17. *Zhaq B.Y., Zhu S.F., Yu F.L.* // Cryst. Res. Technol. 1998. V. 33. № 6. P. 943.
- 18. Xiu Zhiliang, Liu Suwen, Jiaoxian Yu et al. // J. Alloys Compd. 2008. V. 457. № 12. P. 9. https://doi.org/10.1016/j.jallcom.2007.03.060
- 19. Власенко О.И., Левицкий С.М., Криоков Ц.А. // Физика и химия твердого тела. 2006. Т. 7. № 4. С. 660.
- 20. *Brand G., Kramer V.* // Mater. Res. Bull. 1976. № 11. P. 1381.
- Лазарев В.Б., Киш З.З., Переш Е.Ю. и др. Сложные халькогениды в системе А^I−В^{III}−С^{VI}. М.: Металлургия, 1993. 229 с.
- 22. Угай Я.А. Введение в химию полупроводников. М.: Высш. школа, 1975. 302 с.
- 23. *Комарова Т.Н.* // Изв. Физ.-хим. ин-та при Иркутском ун-те. 1986. Т. 27. № 1. С. 23.
- 24. Самсонов Г.В., Дроздова С.В. Сульфиды. М.: Металлургия, 1972. 304 с.
- Заргарова М.И., Мамедов А.Н., Аждарова Д.С. и др. Неорганические вещества, синтезированные и исследованные в Азербайджане. Баку: Элм, 2004. 462 с.