_____ ФИЗИЧЕСКИЕ МЕТОДЫ ____ ИССЛЕДОВАНИЯ

УДК 536.63

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ГЕРМАНАТОВ DyInGe₂O₇ И HoInGe₂O₇ В ОБЛАСТИ 350–1000 К

© 2019 г. Л. Т. Денисова^{1, *}, Л. А. Иртюго¹, Ю. Ф. Каргин², В. В. Белецкий¹, Н. В. Белоусова¹, В. М. Денисов¹

¹Сибирский федеральный университет, Институт цветных металлов и материаловедения, Свободный пр-т, 79, Красноярск, 660041 Россия

²Институт металлургии и материаловедения им. А.А. Байкова РАН, Ленинский пр-т, 49, Москва, 119991 Россия

*E-mail: antluba@mail.ru

Поступила в редакцию 25.01.2019 г. После доработки 13.02.2019 г. Принята к публикации 15.03.2019 г.

Многоступенчатым обжигом стехиометрических смесей исходных оксидов (метод твердофазных реакций) на воздухе в интервале температур 1273–1473 К синтезированы соединения DyInGe₂O₇ и HoInGe₂O₇. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость поликристаллических образцов германатов диспрозия-индия и гольмия-индия. На основании экспериментальных данных $C_p = f(T)$ рассчитаны термодинамические свойства исследованных оксидных соединений.

Ключевые слова: германаты редкоземельных элементов, твердофазный синтез, теплоемкость, термодинамические свойства

DOI: 10.1134/S0044457X19090071

введение

Оксидные соединения на основе германия длительное время привлекают внимание как практиков, так и исследователей. В первую очередь это относится к германатам редкоземельных элементов (РЗЭ) [1–12]. Германаты А2Ge2O7 и ABGe₂O₇ (А и В – редкоземельные и трехвалентные элементы, переходные металлы) могут быть идентифицированы в двух типах кристаллической структуры: тортвейтитоподобной и тортвейтитовой [13]. Например, соединения DyInGe₂O₇ и HoInGe₂O₇ имеют тортвейтитоподобную структуру (пр. гр. *C*2/*c*) [13]. Германаты Dy₂Ge₂O₇ и Но₂Ge₂O₇ кристаллизуются в тетрагональной сингонии (пр. гр. P4₁2₁2) [1, 14–17], а In₂Ge₂O₇ имеет структуру тортвейтита с симметрией, описываемой пр. гр. С2/т [18]. Несмотря на большой интерес к германатам РЗЭ, многие их свойства, в частности термохимические, не изучены. Диаграммы состояния систем $Dy_2Ge_2O_7$ – $In_2Ge_2O_7$ и $Ho_2Ge_2O_7$ -In₂Ge₂O₇ не построены. В то же время для оптимизации условий синтеза и уточнения фазовых равновесий методами термодинамики необходимы сведения об их термодинамических свойствах, поэтому представляется целесообразным исследовать термодинамические свойства оксидных соединений DyInGe₂O₇ и HoInGe₂O₇.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез германатов DyInGe₂O₇ и HoInGe₂O₇ проводили методом твердофазных реакций с использованием в качестве исходных компонентов Dy_2O_3 и Ho_2O_3 (х. ч.), In_2O_3 (ос. ч.) и GeO_2 (99.999%, ФГУП "Германий"). Стехиометрические смеси предварительно прокаленных при 1173 К исходных оксидов перетирали в агатовой ступке и прессовали в таблетки. Их последовательно обжигали на воздухе при температурах 1273 (40 ч), 1373 (100 ч) и 1473 К (60 ч). Достаточно высокие температуры твердофазного синтеза могут привести к частичному испарению GeO₂ [14, 19], поэтому синтез проводили в закрытых тиглях из оксида бериллия, количество добавляемого сверх стехиометрии GeO₂ и временной интервал подбирали экспериментально. Контроль фазового состава полученных образцов осуществляли методом рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANalytical, Нидерланды, CuK_{α} -излучение). Дифрактограммы регистрировали с помощью высокоскоростного детектора PIXcel. Параметры решеток синтезированных германатов определяли полнопрофильным уточнением методом минимизации производной разности [20].

Рис. 1. Рентгенограммы DyInGe₂O₇ (а) и HoInGe₂O₇ (б) при комнатной температуре, профили рентгенограмм: *1* – экспериментальный, *2* – расчетный, *3* – разностный; штрихи указывают расчетное положение рефлексов.

Измерения теплоемкости DyInGe₂O₇ и HoInGe₂O₇ проводили на приборе STA 449 C Jupiter (Netzsch, Германия). Методика экспериментов подобна описанной в [21–23]. Полученные результаты обрабатывали с помощью пакета аналитических программ Netzsch Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12 ("Systat Software Inc", США). Ошибка экспериментов не превышала 2%, что характерно для дифференциальных сканирующих калориметров, работающих в области высоких температур.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Дифрактограммы полученных германатов диспрозия-индия и гольмия-индия приведены на рис. 1. По нашим данным, параметры элементар-

Рис. 2. Температурные зависимости молярной теплоемкости $DyInGe_2O_7(1)$ и HoInGe $_2O_7(2)$.

ных ячеек DyInGe₂O₇ и HoInGe₂O₇ (пр. гр. C2/c) соответственно равны: a = 6.8446(2), b = $= 8.8625(2), c = 9.8112(2) \text{ Å}, \beta = 101.579(1)^{\circ}, V =$ = 583.04(3) Å³ и a = 6.8371(2), b = 8.8819(2),c = 9.8218(1) Å, $\beta = 101.724(1)^{\circ}$, V = 584.00(1) Å³. Эти данные удовлетворительно согласуются с результатами [13]. Согласно [13], соединения ABGe₂O₇ могут кристаллизоваться в четырех разных пространственных группах в зависимости от соотношения ионных радиусов $r_{\rm B}/r_{\rm A}$. Для $r_{\rm B}/r_{\rm A} > 0.80$ характерна пр. гр. С2/с, что и реализуется для DyInGe₂O₇ и HoInGe₂O₇. Подобная пространственная группа наблюдается и для TbInGe₂O₇ [13]. Сопоставление ионных радиусов РЗЭ в соединениях с тортвейтитоподобными структурами (TbInGe₂O₇, DyInGe₂O₇ и HoInGe₂O₇) с параметрами элементарной ячейки показывает, что с уменьшением *r* от 0.923 (Тb³⁺) до 0.901 Å (Ho³⁺) параметр *а* уменьшается от 6.9918 до 6.8371 Å, а *с* увеличивается от 9.7892 Å до 9.8218 Å. Закономерные изменения в ряду Тb-Dy-Но наблюдаются для *V* – от 586.25 до 584.00 Å³ и β – от 101.401° до 101.724° . Параметр *b* при этом остается практически постоянным в пределах 8.87 ± 0.01 Å. Данные о структуре TbInGe₂O₇ взяты из работы [13].

На рис. 2 показаны температурные зависимости теплоемкости DyInGe₂O₇ и HoInGe₂O₇, из которых видно, что с ростом температуры значения теплоемкости закономерно увеличиваются, а на зависимостях $C_p = f(T)$ нет экстремумов. По-видимому, это свидетельствует об отсутствии полиморфных превращений в исследованном интервале температур и позволяет описать полученные данные по влиянию температуры на теплоем-

<i>Т</i> , К	<i>С_p,</i> Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350 K), Дж/(моль K)	Ф°(<i>T</i>) – Φ°(350 К), Дж/(моль К)
350	230.4	_	_	_
400	237.3	11.70	31.24	1.99
450	242.3	23.70	59.50	6.83
500	246.2	35.91	85.23	13.40
550	249.2	48.30	108.8	21.02
600	251.8	60.83	130.6	29.26
650	254.0	73.48	150.9	37.85
700	256.0	86.23	169.8	46.60
750	257.7	99.07	187.5	55.41
800	259.3	112.0	204.2	64.19
850	260.8	125.0	220.0	72.90
900	262.1	138.1	234.9	81.49
950	263.5	151.2	249.1	89.94
1000	264.7	164.4	262.7	98.24

Таблица 1. Термодинамические свойства DyInGe₂O₇

Таблица 2. Термодинамические свойства HoInGe₂O₇

Т, К	<i>С_р,</i> Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350 K), Дж/(моль K)	Ф°(<i>T</i>) – Ф°(350 К), Дж/(моль К)
350	224.2	_	_	_
400	230.6	11.38	30.38	1.93
450	235.5	23.03	57.83	6.64
500	239.4	34.91	82.85	13.03
550	242.6	46.96	105.8	20.43
600	245.5	59.16	127.0	28.45
650	248.0	71.50	146.8	36.80
700	250.4	83.97	165.3	45.32
750	252.6	96.54	182.6	53.91
800	254.7	109.2	199.0	62.47
850	256.6	122.0	214.5	70.96
900	258.2	134.9	229.2	79.35
950	260.4	147.6	243.2	87.60
1000	262.2	160.9	256.6	95.73

кость классическим уравнением Майера-Келли [24, 25]:

$$C_{p} = a + bT + cT^{-2}, (1)$$

которое для DyInGe₂O₇ и HoInGe₂O₇ имеет соответственно следующий вид:

$$C_p = (249.44 \pm 0.40) + (18.20 \pm 0.40) \times \times 10^{-3}T - (31.22 \pm 0.42) \times 10^5 T^{-2},$$
(2)

$$C_p = (234.30 \pm 0.50) + (30.44 \pm 0.51) \times \times 10^{-3}T - (25.37 \pm 0.48) \times 10^5 T^{-2}.$$
 (3)

Коэффициенты корреляции для уравнений (2) и (3) равны 0.9993 и 0.9992, а максимальные отклонения от сглаживающих кривых – 0.36 и 0.41%.

На основании уравнений (2) и (3) по известным термодинамическим соотношениям рассчитаны термодинамические функции исследованных германатов (изменения энтальпии и энтропии, приведенной энергии Гиббса) [25]. Результаты приведены в табл. 1 и 2. Из представленных данных следует, что для DyInGe₂O₇ и HoInGe₂O₇ при всех исследованных температурах значения C_p не превышают предел Дюлонга—Пти 3*Rs*, где *R* — универсальная газовая постоянная, *s* — число атомов в формульной единице соединения.

ЗАКЛЮЧЕНИЕ

Методом дифференциальной сканирующей калориметрии экспериментально измерена зависимость молярной теплоемкости от температуры поликристаллических образцов германатов DyInGe₂O₇ и HoInGe₂O₇ в интервале 350–1000 К. Полученные зависимости могут быть описаны классическим уравнением Майера—Келли. На основании полученных экспериментальных зависимостей $C_p = f(T)$ рассчитаны термодинамические свойства (изменения энтальпии и энтропии, приведенная энергия Гиббса) германатов диспрозия-индия и гольмия-индия.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках Государственного задания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017—2019 гг. (проект № 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

СПИСОК ЛИТЕРАТУРЫ

- 1. Демьянец Л.Н., Лобачев А.Н., Емельченко Г.А. Германаты редкоземельных элементов. М.: Наука, 1980. 152 с.
- Juarez-Arellano E.A., Bucio L., Hernandez J.A. et al. // J. Solid State Chem. 2003. V. 170. P. 418. https://doi.org/10.1016/S0022-4596(02)00134-2
- Juarez-Arellano E.A., Bucio L., Ruvalcaba J.L. et al. // Z. Kristallogr. 2002. V. 217. P. 201.
- Juarez-Arellano E.A., Rosales I., Oliver A. et al. // Acta Crystallogr. 2004. V. C60. P. i14. https://doi.org/10.1107/S0108270103029056
- Chang Y.-S., Lin H.-J., Chai Y.-L. et al. // J. Alloys Compd. 2008. V. 460. P. 421. https://doi.org/10.1016/jjallcom.2007.05.060
- 6. Портной К.И., Тимофеева Н.И. Кислородные соединения редкоземельных элементов. М.: Металлургия, 1986. 480 с.
- Бондарь И.А., Виноградова В.Н., Демьянец Л.Н. и др. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. М.: Наука, 1983. 288 с.
- Morosan E., Fleitman J.A., Huang Q. et al. // Phys. Rev. B. 2008. V. 77. P. 224423-1. https://doi.org/10.1103/PhysRevB.77.224423

- 9. Торопов Н.А., Бондарь И.А., Лазарев А.Н. и др. Силикаты редкоземельных элементов и их аналоги. Л.: Наука, 1971. 230 с.
- Ke X., Dahlberg M.L., Morosan E. et al. // Phys. Rev. B. 2008. V. 78. P. 104411-1. https://doi.org/10.1103/PhysRevB78.104411
- 11. Subramanian M.A., Sleight A.W. // Handbook Phys Chem. Rare Earth. 1993. V. 16. P. 225.
- 12. *Leskelä M., Ninistö L. //* Handbook Phys Chem. Rare Earth. 1986. V. 8. P. 203.
- Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S. et al. // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1.
- Becker U.W., Felsche J. // J. Less-Comm. Met. 1987. V. 128. P. 269.
- Moran D.M., Richardson F.S., Koralewski M. et al. // J. Alloys Compd. 1992. V. 180. P. 171.
- Jana Y.M., Ghosh M., Wanklyn B.M. // J. Magn. Magn. Mater. 1998. V. 183. P. 135.
- Johnson A.W.S., Preston A.R. // Ultramicroscopy. 1994. V. 55. P. 348.
- Gaewdang T., Chaminade J.P., Gravereau P. et al. // Z. Anorg. Allg. Chem. 1994. V. 620. P. 1965.
- 19. Глушкова В.Б., Давтян И.А., Келер Э.К. // Изв. АН СССР. Неорган. материалы. 1967. Т. 3. № 1. С. 119.
- 20. *Solovyov L.A.* // J. Appl. Crystallogr. 2004. V. 37. P. 743.

https://doi.org/10.1107/S0021889804015638

- Denisov V.M., Denisova L.T., Irtyugo L.A. et al. // Russ. Phys. Solid State. 2010. V. 52. № 7. Р. 1362. [Денисов В.М., Денисова Л.Т., Иртюго Л.А. и др. // ФТТ. 2010. Т. 52. № 7. С. 1274.] https://doi.org/10.1134/S1063783410070073
- 22. Denisova L.T., Irtyugo L.A., Kargin Yu.F. et al. // Inorg. Mater. 2017. V. 53. № 1. Р. 93. [Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф., Белецкий В.В., Денисов В.М. // Неорган. материалы. 2017. Т. 53. № 1. С. 71.] https://doi.org/10.1134/S0020168517010046
- 23. Denisova L.T., Irtyugo L.A., Belousova N.V. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. № 3. Р. 598. [Денисова Л.Т., Иртюго Л.А., Белоусова Н.В. и др. // Журн. физ. химии. 2019. Т. 93. № 3. С. 476.] https://doi.org/10.1134/S003602441903004X
- 24. *Maier C.G., Kelly K.K.* // J. Am. Chem. Soc. 1932. V. 54. P. 3243.
- 25. *Чудненко К.В.* Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: Гео, 2010. 287 с.