_ ФИЗИКОХИМИЯ ____ РАСТВОРОВ ____

УДК 541.183+544.135+621.039.714+546.36+547.458

СОРБЕНТЫ ИМПРЕГНИРОВАННОГО ТИПА ДЛЯ ИЗВЛЕЧЕНИЯ Рb²⁺ ИЗ НЕЙТРАЛЬНЫХ И КИСЛЫХ ВОДНЫХ РАСТВОРОВ

© 2019 г. Н. А. Бежин^{1,} *, И. И. Довгий^{2,} **, А. Ю. Ляпунов³, В. Е. Баулин^{4, 5}, Д. В. Баулин⁴, А. Ю. Цивадзе⁴

¹Севастопольский государственный университет, ул. Университетская, 33, Севастополь, 299053 Россия

²Морской гидрофизический институт РАН, ул. Капитанская, 2, Севастополь, 299011 Россия

³Физико-химический институт им. А.В. Богатского НАН Украины,

Люстдорфская дорога, 86, Одесса, 65080 Украина

⁴Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр-т, 31, корп. 4, Москва, 119071 Россия

⁵Институт физиологически активных веществ РАН, Северный проезд, 1,

Черноголовка, Московская обл., 142432 Россия

*E-mail: nickbezhin@yandex.ru **E-mail: dovhyi.illarion@yandex.ru Поступила в редакцию 20.12.2018 г. После доработки 07.02.2019 г. Принята к публикации 15.03.2019 г.

Разработан синтетически удобный метод получения фосфорилподанда 1,8-*бис*[2-(дифенилфосфосфорилметил)фенокси]-3,6-диоксаоктана (L). Изучено извлечение Pb²⁺ сорбентами импрегнированного типа, в которых в качестве экстрагентов используют изодентатные органические лиганды – фосфорилподанд L и краун-эфир (4,4',(5')-ди(*mpem*-бутил)дициклогексил-18-краун-6). Сорбент на основе фосфорилподанда количественно извлекает свинец из нейтральных сред (R = 98.4%) и практически не извлекает его из кислых растворов. Напротив, сорбенты на основе 4,4',(5')ди(*mpem*-бутил)дициклогексил-18-краун-6 не извлекают свинец из нейтральных сред и эффективно сорбируют его из азотнокислых и солянокислых сред (из 3 М растворов азотной кислоты – R == 90%, из 2 М растворов соляной кислоты – R = 73.2%). Исследовано влияние типа разбавителя и носителя, процедуры предварительной подготовки носителя, температуры и времени импрегнирования, растворителя для импрегнирования носителя на сорбцию свинца сорбентами на основе 4,4',(5')-ди(*mpem*-бутил)дициклогексил-18-краун-6.

Ключевые слова: сорбция, 1,8-*бис*[2-(дифенилфосфосфорилметил)фенокси]-3,6-диоксаоктан, 4,4',(5')-ди(*трет*-бутил)-дициклогексил-18-краун-6

DOI: 10.1134/S0044457X19090034

ВВЕДЕНИЕ

Изотопы свинца — одни из наиболее биологически опасных из всей группы радионуклидов, техногенное поступление которых в окружающую среду связано в первую очередь со сжиганием углеводородного топлива, деятельностью уранодобывающих и перерабатывающих предприятий и производством фосфорных удобрений. Проблема контроля содержания свинца в водных средах (естественные водоемы, промышленные и сточные воды) весьма актуальна, так как именно с водой свинец попадает в живые организмы, вызывая патологические изменения.

Современная методология количественного анализа содержания радионуклидов, как правило, включает стадии предварительного экстрак-

ционно-хроматографического концентрирования и/или селективного выделения определяемого элемента с использованием эффективных сорбционных материалов (сорбентов) [1-6]. Среди многообразия существующих сорбционных материалов особый интерес представляют сорбенты импрегнированного типа, которые получают путем нековалентного закрепления органических экстрагентов, эффективно извлекающих целевой радионуклид. на поверхности макропористых носителей. В качестве экстрагентов для получения сорбентов импрегнированного типа для селективного извлечения ряда радионуклидов широко применяются макроциклические краун-эфиры [7, 8]. В частности, широко изучены возможности применения сорбентов импрегнированного типа, изготовленных на основе смеси изомеров 4,4',(5')-ди(трет-

Рис. 1. Строение 1,8-*бис*[2-(дифенилфосфосфорилметил)фенокси]-3,6-диоксаоктана.

Рис. 2. Строение 4,4',(5')-ди(*трет*-бутил)дициклогексил-18-краун-6.

бутил)дициклогексил-18-краун-6 (ДТБДЦГ18К6) для радиоаналитического определения ²¹⁰Pb [9]. Эти сорбенты коммерчески доступны (Triskem Int., Франция): Sr Resin и Pb Resin для извлечения ²¹⁰Pb из кислых сред, TK-101 – из нейтральных.

Синтетически доступные ациклические аналоги краун-эфиров – поданды с фосфорилсодержащими концевыми группами – весьма перспективный класс комплексообразующих соединений для использования в качестве компонентов экстрагентов в сорбционных материалах импрегнированного типа [10]. Преимуществом фосфорилподандов, с одной стороны, является возможность изменять в широких пределах координирующие свойства фосфорильной группы путем варьирования заместителей при атоме фосфора, а с другой – методы фосфорорганической химии позволяют конструировать широкий набор фосфорилсодержащих концевых групп различного строения, что открывает широкие возможности для направленной модификации их комплексообразующих свойств.

Потенциально гексадентатное соединение 1,8-*бис*[2-(дифенилфосфосфорилметил)фенокси]-3,6-диоксаоктан (L) (рис. 1) относится к фосфорилподандам нейтрального типа. По величинам констант устойчивости комплексов с 2,4-динитрофенолятами катионов щелочных металлов в смешанном растворителе $TГФ-CHCl_3$ (4 : 1 по объему) это соединение практически не уступает таким краун-эфирам, как 18-краун-6, дибензо-18-краун-6 и дициклогексил-18-краун-6 [11]. Более того, оно запатентовано в качестве селективного переносчика катиона Pb²⁺ в составе полимерной мембраны свинец-селективного электрода [12]. Однако в качестве экстрагента в сорбентах импрегнированного типа для извлечения катионов Pb^{2+} L ранее не изучался.

В настоящей работе приводится модифицированный метод получения L. Впервые синтезирован и изучен методами элементного анализа и ИК-спектроскопии комплекс $L \cdot Pb(NO_3)_2 \cdot H_2O_3$. На основе L получен и исследован новый сорбент импрегнированного типа для селективного извлечения Pb²⁺. Для сравнения эффективности и условий сорбции Pb²⁺ получен также ряд импрегнированных сорбентов на основе изодентатного краун-эфира – ДТБДЦГ18К6 (рис. 2). При этом определены оптимальные условия синтеза сорбентов на основе ДТБДЦГ18К6 для извлечения свинца: влияние на сорбционные характеристики типа разбавителя и носителя, процедуры предварительной подготовки носителя, температуры и времени импрегнирования, растворителя для импрегнирования.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Определение строения. Спектры ЯМР ¹Н и ³¹Р записывали на спектрометре BrukerCXP-200, стандарты – ТМС (внутренний) и 85%-ная H_3PO_4 (внешний). Температуры плавления измеряли на приборе Boetius PHMK 05. Элементный анализ проводили на C,H,N-анализаторе (Carlo Erba Strumentazione, Italy).

ИК-спектры поглощения регистрировали на ИК-спектрометре Bruker Vertex 70 (суспензия в вазелиновом масле) и ИК-спектрометре с Фурье-преобразованием ФСМ-2202 (таблетки в KBr) в диапазоне 400–4000 см⁻¹.

Термогравиметрические исследования проводили на дериватографе Q-600 фирмы Intestech и Термоскан-2 фирмы Аналитприбор в атмосфере аргона в температурном интервале 20–500°С при скорости нагревания 10 град/мин.

Материалы. Для синтеза импрегнированных сорбентов использовали ДТБДЦГ18К6 с содержанием основного вещества >98%, а также L, полученный по методике, описанной ниже.

В качестве носителей использовали стиролдивинилбензольный носитель LPS-500 (частицы 150—250 мкм) производства АНО "Синтез полимерных сорбентов" (г. Москва, Россия) и гидрофобизированный силикагель (частицы 250— 500 мкм) производства ООО "Сорбент-Технологии" (г. Москва, Россия).

Азотная кислота, соляная кислота, гидроксид натрия, иодид натрия, оксид фосфора(V), диоксан, метанол, ацетон, хлороформ, октанол-1, нитробензол (РеаХим, Россия), 1,8-дихлор-3,6-диоксаоктан (РеаРус, Россия), спирт-теломер n3 (Гало-Полимер, Россия) имели квалификацию "ч. д. а.". Для приготовления исследуемых и градуировочных растворов использовали концентрированную азотную или соляную кислоту и стандартный образец раствора металла Pb – MCO 0526:2003.

1,8-бис[2-(дифенилфосфосфорилме-Синтез тил)фенокси]-3,6-диоксаоктана L. Суспензию 4.5 г (14 ммоль) 2-дифенилфосфорилметилфенола [12] и 0.56 г (14 ммоль) мелкорастертого NaOH в 35 мл сухого диоксана перемешивали 0.5 ч при температуре 95°С, затем добавляли 1.3 г (7 ммоль) 1,8-дихлор-3,6-диоксаоктана, смесь кипятили в течение 8 ч, затем упаривали в вакууме, к остатку добавляли 50 мл воды, концентрированной HCl подкисляли до pH 1 и экстрагировали CHCl₃ (3 × × 25 мл). Экстракт промывали разбавленной (1:2) HCl (2 × 30 мл), водой (2 × 30 мл) и упаривали в вакууме. Остаток растворяли в 40 мл безводного ацетонитрила, добавляли 2.25 г (15 ммоль) сухого NaI, кипятили в течение 1 ч и после охлаждения до 8°С отфильтровывали осадок, который промывали кипящим ацетонитрилом (10 мл) и высушивали в вакууме. Осадок был идентифицирован как комплекс L с NaI состава 1 : 1. Выход 4.3 г, 77%.

С Н Р Найдено, %: 59.81, 59.73; 4.52, 4.90; 6.63, 6.91. Для С₄₄Н₄₄INaO₆P₂ вычислено, %: 60.01; 5.04; 7.03.

К полученному комплексу добавляли 50 мл разбавленной (1:1) HCl и перемешивали в течение 2 ч при 50°C, после охлаждения до комнатной температуры осадок отфильтровывали, промывали водой до рН 7 фильтрата и сушили в вакуумном эксикаторе над P_2O_5 до постоянного веса. Выход 3.3 г, 65%, $t_{nn} = 131.5 - 133$ °C (бензол-гексан).

С Н Р Найдено, %: 72.31, 71.96; 5.95, 57.9; 8.26, 83.9. Для С₄₄Н₄₄IO₆P₂ вычислено, %: 72.32; 6.07; 8.48.

Спектр ¹Н (ацетон-d₆, δ . м. д.): 3.80 д (4H, ²Jp-н = 15), 3.78 м (8H), 3.93 м (4H), 6.80 м (4H), 7.18 м (2H), 7.43 м (14H), 7.85 м (8H). Спектр ³¹P (ацетон-d₆, δ . м. д.): 28.51.

Синтез комплекса $L \cdot Pb(NO_3)_2 \cdot H_2O$. К раствору L в этаноле при комнатной температуре быстро прибавляли этанольный раствор $Pb(NO_3)_2$, при этом мольное соотношение L : М составляло 1 : 1. Комплекс L · $Pb(NO_3)_2 \cdot H_2O$ медленно осаждался в виде очень мелких кристаллов белого цвета, которые затем отфильтровывали, промывали этанолом и сушили при комнатной температуре.

вычислено, %: 48.93; 4.29; 4.59; 5.79.

Попытки получить комплекс $L \cdot Pb(NO_3)_2 \cdot H_2O$ в виде монокристаллов для рентгеноструктурного анализа не увенчались успехом.

Методики подготовки носителя и получения сорбента. Методика подготовки носителя подробно описана в [13, 14].

Получение сорбента на основе L проводили способом, аналогичным описанному в [13], на основе ДТБДЦГ18К6 — способом, аналогичным описанному в [15].

Сорбционное извлечение свинца в статических условиях. Использовали нейтральные, азотнокислые (0.01—8 моль/л) и солянокислые (0.01—4 моль/л) растворы с концентрацией свинца 5 мг/л.

Сорбцию осуществляли согласно [13, 15] при соотношении V: m = 100 мл/г в течение 48 ч.

Определение концентрации свинца в растворах, расчет коэффициента распределения, степени извлечения и емкости сорбента проводили аналогично [13, 15].

Десорбция свинца в статических условиях. Сорбент, насыщенный свинцом, отделяли фильтрацией под вакуумом для удаления следов маточного раствора.

Десорбцию свинца проводили 6 М соляной кислотой при соотношении V: m = 100 мл/г в течение 48 ч согласно [13].

Степень десорбции определяли аналогично [13].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Впервые фосфорилподанд L синтезировали алкилированием 2-дифенилфосфорилфенолята натрия с дитозилатом триэтиленгликоля в кипящем диоксане, при этом 2-дифенилфосфорилфенолят натрия получали отдельной стадией, а очистку конечного продукта проводили дробной кристаллизацией или колоночной хроматографией [12]. В настоящей работе фосфорилподанд L получен алкилированием 2-дифенилфосфорилфенола синтетически доступным дихлоридом триэтиленгликоля в межфазной системе Cs₂CO_{3тв}/диоксан, при этом была исключена стадия предварительного приготовления 2-дифенилфосфорилметилфенолята натрия, а в качестве алкилирующего реагента вместо дитозилата триэтиленгликоля использовали синтетически доступный дихлорид триэтиленгликоля. Более того, эффективное вы-

	Лиганд	Носитель			Найдено Вычислено)
№ образца				_	содержание ли		ганда	Γ _{теор} , мг/г
			Разбавитель	Растворитель	в сорбенте, мас. %		в разба- вителе, моль/л	
Ι	L	LPS-500	—	CHCl ₃	24.8	24.8	-	70.4
II.1	ДТБДЦГ18К6	LPS-500	Октанол-1	CHCl ₃	11.5	11.4	0.75	48.8
II.2	ДТБДЦГ18К6	LPS-500	Нитробензол	CHCl ₃	9.77	10.2	0.75	43.6
II.3	ДТБДЦГ18К6	LPS-500	Спирт-теломер n3	CHCl ₃	8.92	8.83	0.75	37.8
II.4	ДТБДЦГ18К6	ГС	Спирт-теломер n3	CHCl ₃	8.95	8.83	0.75	37.8
III.1	ДТБДЦГ18К6	LPS-500	Октанол-1	CH ₃ OH	11.2	11.4	0.75	48.8
III.2	ДТБДЦГ18К6	LPS-500	Нитробензол	CH ₃ OH	9.65	10.2	0.75	43.6
III.3	ДТБДЦГ18К6	LPS-500	Спирт-теломер n3	CH ₃ OH	8.73	8.83	0.75	37.8
IV.1	ДТБДЦГ18К6	LPS-500	Спирт-теломер n3	CHCl ₃	3.09	3.13	0.25	13.4
IV.2	ДТБДЦГ18К6	LPS-500	Спирт-теломер n3	CHCl ₃	6.08	6.06	0.5	26.0
IV.3	ДТБДЦГ18К6	LPS-500	Спирт-теломер n3	CHCl ₃	11.7	11.4	1	48.9

Таблица 1. Типы и характеристики полученных образцов сорбентов

деление и очистку L осуществляли через стадии образования и последующего разложения комплек-

са L с иодистым натрием, выход фосфорилподанда L составил 65%.

Ph Ph Ph L

При смешении этанольных растворов L и $Pb(NO_3)_2$ при комнатной температуре образуется комплекс L · $Pb(NO_3)_2 \cdot H_2O$, состав которого не зависит от соотношения исходных компонентов. В ИК-спектре полученного соединения полоса v(P=O) находится при 1183 см⁻¹, что немного ниже по сравнению с ее положением в спектре L (1195 см⁻¹), а полоса v(Ph=O) не меняет своего положения, что позволяет сделать вывод о пре-имущественной координации катиона Pb^{2+} с L.

Состав полученных сорбентов. Типы и характеристики полученных образцов сорбентов приведены в табл. 1.

На рис. 3 приведены ИК-спектры сорбентов на основе ДТБДЦГ18К6 и носителей LPS-500 (образец II.3) и ГС (образец II.4) до и после сорбции свинца из 3 М азотнокислого раствора. В интервале 1400–1750 см⁻¹ идентифицируются узкие линии пропускания ДТБДЦГ18К6 [16], в областях 750–1000, 2300–2400 и 2800–3100 см⁻¹ – спирта-теломера n3 [17]. В интервале 500—1250 см⁻¹ на рис. За идентифицируются узкие линии пропускания стирол-дивинилбензольного носителя [18], на рис. Зб — широкие линии гидрофобизированного силикагеля [19]. Присутствующие в ИК-спектрах образцов сорбентов после сорбции свинца из азотнокислых растворов узкие линии пропускания в области 1350—1400 см⁻¹, характерные для валентных колебаний NO_3^- связей [17], указывают на извлечение нитрата свинца краун-эфиром. В исходных образцах сорбентов линии в данной области спектра отсутствуют.

Приведенные на рис. 4 термограммы сорбентов на основе ДТБДЦГ18К6 и носителей LPS-500 (образец II.3) и ГС (образец II.4) показывают, что полученные сорбенты термически устойчивы при нагревании на воздухе до температуры 80°С. В интервале 80–220°С происходит уменьшение массы сорбента за счет эндотермического процесса испарения спирта-теломера n3, температу-

Рис. 3. ИК-спектры полученных сорбентов II.3 (а) и II.4 (б) до и после сорбции свинца.

ра кипения которого составляет 170°С согласно ТУ 2412-001-23184793-99. В интервале 250-400°С идет экзотермический процесс термоокислительной деструкции ДТБДЦГ18К6, после 400°С происходит уменьшение массы сорбента на основе стирол-дивинилбензольного носителя LPS-500 за счет экзотермического процесса термоокислительной деструкции последнего. У сорбента на основе гидрофобизированного силикагеля после деструкции органических соединений остается неорганическая основа – оксид кремния.

Влияние среды на извлечение свинца сорбентом на основе L. Установлено, что сорбент на основе L (образец I) количественно сорбирует свинец из нейтральной среды (R = 98.4%) и практически не сорбирует его из растворов азотной и соляной кислот (рис. 5).

Влияние среды на извлечение свинца сорбентами на основе ДТБДЦГ18К6. Установлено, что сорбенты на основе ДТБДЦГ18К6 (образцы II.1–II.3) имеют лучшие характеристики сорбции свинца из

Рис. 4. Термограммы полученных сорбентов II.3 (а) и II.4 (б).

Рис. 5. Зависимость коэффициентов распределения свинца от концентрации азотной и соляной кислот для сорбента на основе L.

Рис. 6. Зависимость коэффициентов распределения свинца от концентрации азотной кислоты для сорбентов на основе ДТБДЦГ18К6.

3 М растворов азотной кислоты — R = 94-96%(рис. 6) и 2 М растворов соляной кислоты — R = 46-73% (рис. 7).

Вероятной причиной различного характера влияния кислотности водной фазы на эффективность сорбции ионов свинца сорбентами, импрегнированными подандом и краун-эфиром, является преимущественное связывание протона или протонированной молекулы воды фосфорильными группами, атомы кислорода которых обладают значительно большей координирующей способностью, чем эфирные атомы кислорода в ДТБДЦГ18К6, что и приводит к подавлению сорбции ионов Pb²⁺ в кислых средах.

Также следует отметить, что сорбенты на основе ДТБДЦГ18К6 и спирт-теломера n3 показывают более высокие сорбционные характеристики извлечения свинца, чем сорбенты на основе октанола-1 или нитробензола. Объяснение влияния типа разбавителя на сорбцию металлов сорбентами импрегнированного типа было дано в [15].

Поэтому дальнейшие эксперименты проводили с сорбентами на основе ДТБДЦГ18К6 и спирта-

Рис. 7. Зависимость коэффициентов распределения свинца от концентрации соляной кислоты для сорбентов на основе ДТБДЦГ18К6.

теломера n3, показавшими наилучшие сорбционные характеристики из растворов с концентрацией азотной кислоты 3 моль/л и концентрацией соляной кислоты 2 моль/л.

Влияние типа носителя. Для определения влияния типа носителя на сорбцию свинца сравнивали сорбенты на основе стирол-дивинилбензольного носителя LPS-500 и гидрофобизированного силикагеля (образцы II.3 и II.4 соответственно). Установлено, что сорбенты на основе LPS-500 имеют лучшие показатели сорбции (табл. 2).

Полученные результаты показывают, что предварительная промывка стирол-дивинилбензольного носителя метанолом и ацетоном приводит к заметному увеличению сорбционных характеристик сорбентов, что связано, по-видимому, с удалением примесей моно- и олигомеров, которые могут снижать сродство разбавителя и краунэфира к носителю. Промывка же модифицированного неорганического гидрофобизированного

№ 06 0 2019*	Носитель	Отмывка		3 M HNO ₃		2 M HCl			
ле образца			K_p , мл/г	<i>R</i> , %	Γ , мг/г	<i>К_р</i> , мл/г	<i>R</i> , %	Γ , мг/г	
II.3	LPS-500	_	495	83.2	0.464	261	72.3	0.372	
II.3	LPS-500	+	2390	96.0	0.524	291	74.4	0.383	
II.4	ГС	—	549	84.6	0.472	174	63.5	0.361	
II.4	ГС	+	229	69.6	0.319	128	56.1	0.319	

Таблица 2. Параметры извлечения свинца сорбентами на основе различных носителей

* Расшифровка образцов полученных сорбентов и их состав приведены в табл. 1.

№ образиа	Носитель	Среда	Параметр	$ au_{импрегнирования}, ч$					
л ооризци	Hoemenb			0.5	1	2	3		
II.3	LPS-500	3 M HNO ₃	K_p , мл/г	1690	3060	2390	2180		
II.3	LPS-500	3 M HNO ₃	<i>R</i> , %	94.4	96.8	96.0	95.6		
II.3	LPS-500	3 M HNO ₃	Γ , мг/г	0.516	0.529	0.524	0.522		
II.3	LPS-500	2 M HCl	K_p , мл/г	205	272	273	285		
II.3	LPS-500	2 M HCl	R, %	67.2	73.1	73.2	74.1		
II.3	LPS-500	2 M HCl	Γ , мг/г	0.345	0.376	0.376	0.381		
II.4	ГС	3 M HNO ₃	K_p , мл/г	563	468	460	473		
II.4	ГС	3 M HNO ₃	R, %	84.9	82.4	82.1	82.5		
II.4	ГС	3 M HNO ₃	Γ , мг/г	0.464	0.450	0.448	0.451		
II.4	ГС	2 M HCl	<i>К_р</i> , мл/г	171	172	148	131		
II.4	ГС	2 M HCl	<i>R</i> , %	63.1	63.1	59.7	56.7		
II.4	ГС	2 M HCl	Γ , мг/г	0.325	0.325	0.307	0.291		

Таблица 3. Параметры извлечения свинца сорбентами, полученными при различном времени импрегнирования

Таблица 4. Параметры извлечения свинца сорбентами, полученными при различной температуре импрегнирования

№ образиа	Носитель	Среда	Параметр	$t_{импретнирования}, °С$					
л ооризци				30	40	50	60		
II.3	LPS-500	3 M HNO ₃	K_p , мл/г	3230	2300	2430	2390		
II.3	LPS-500	3 M HNO ₃	R, %	97.0	95.8	96.0	96.0		
II.3	LPS-500	3 M HNO ₃	Γ, мг/г	0.530	0.523	0.524	0.524		
II.3	LPS-500	2 M HCl	K_p , мл/г	299	299	295	273		
II.3	LPS-500	2 M HCl	R, %	75.0	75.0	74.7	73.2		
II.3	LPS-500	2 M HCl	Γ, мг/г	0.385	0.385	0.384	0.376		
II.4	ГС	3 M HNO ₃	K_p , мл/г	652	640	872	460		
II.4	ГС	3 M HNO ₃	R, %	86.7	86.5	89.7	82.1		
II.4	ГС	3 M HNO ₃	Γ, мг/г	0.473	0.472	0.490	0.448		
II.4	ГС	2 M HCl	K_p , мл/г	153	145	145	148		
II.4	ГС	2 M HCl	R, %	60.5	59.2	59.2	59.7		
II.4	ГС	2 M HCl	Γ , мг/г	0.311	0.304	0.304	0.307		

силикагеля приводит к уменьшению сорбционных характеристик получаемого сорбента.

Влияние времени и температуры импрегнирования носителя. Авторы многочисленных работ редко выбирают оптимальные условия получения для различных сорбентов, предназначенных для извлечения определенного металла. В основном авторы используют свои собственные методы получения для всех типов сорбентов. Так, например, время импрегнирования носителя у одних авторов составляет несколько минут [9, 20–22], у других – день [23–25]. Поэтому важным фактором является оптимизация методов получения сорбентов (времени и температуры импрегнирования). Для определения влияния времени и температуры импрегнирования носителя на сорбцию свинца сравнивали сорбенты, полученные при различном времени (0.5, 1, 2 и 3 ч) и различной температуре (30, 40, 50 и 60°С) импрегнирования носителя.

Установлено, что оптимальное время импрегнирования сорбентов на основе стирол-дивинилбензольного носителя LPS-500 составляет 1— 3 ч, для сорбентов на основе гидрофобизированного диоксида кремния — 0.5—1 ч (табл. 3), оптимальная температура импрегнирования 30—50°С для всех сорбентов (табл. 4).

№ образца	Растворитель	Разбавитель		3 M HNO ₃		2 M HCl				
			<i>К_p</i> , мл/г	<i>R</i> , %	<i>Г</i> , мг/г	K_p , мл/г	<i>R</i> , %	<i>Γ</i> , мг/г		
II.1	CHCl ₃	Октанол	1740	94.6	0.528	86.5	46.4	0.263		
II.2	CHCl ₃	Нитробензол	2030	95.3	0.532	169	62.8	0.357		
II.3	CHCl ₃	Спирт-теломер n3	2390	96.0	0.524	273	73.2	0.376		
III.1	CH ₃ OH	Октанол	532	84.2	0.470	64.2	39.1	0.222		
III.2	CH ₃ OH	Нитробензол	575	85.2	0.475	120	54.5	0.309		
III.3	CH ₃ OH	Спирт-теломер n3	589	85.5	0.477	197	66.3	0.359		

Таблица 5. Параметры извлечения свинца сорбентами на основе различных растворителей

Влияние растворителя для импрегнирования носителя. Сравнивали сорбенты, полученные с использованием хлороформа и метанола (образцы II и III соответственно), для определения влияния растворителя для импрегнирования носителя на сорбцию свинца.

Обнаружено, что сорбенты, полученные с использованием хлороформа в качестве растворителя, имеют более высокие параметры сорбции, чем сорбенты, полученные с использованием метанола (табл. 5). В то время как метанол используется при получении сорбента Pb Resin, широко применяемого для сорбции свинца [9].

К недостаткам следует отнести большую трудность получения сорбентов с использованием хлороформа, поскольку большее время занимает сушка сорбента до постоянной массы.

Влияние концентрации краун-эфира в сорбенте. Сравнивали сорбенты, имеющие различную концентрацию краун-эфира в спирте-теломере n3.

Рис. 8. Коэффициенты распределения свинца в зависимости от концентрации краун-эфира в разбавителе (сорбенте). Установлено, что показатели сорбции значительно увеличиваются при повышении концентрации краун-эфира от 0.25 до 0.75 моль/л, при росте же концентрации краун-эфира от 0.75 до 1 моль/л показатели сорбции увеличиваются незначительно (рис. 8).

Десорбция свинца. Установлено, что свинец десорбируется из сорбента I на основе L на 40.0%, из сорбента II.3 на основе ДТБДЦГ18К6 — на 95.2%.

ЗАКЛЮЧЕНИЕ

Сорбент на основе L количественно сорбирует свинец из нейтральной среды и может быть использован для извлечения Pb^{2+} из природных растворов. Сорбенты на основе ДТБДЦГ18К6 обладают лучшими характеристиками сорбции свинца из 3 М растворов азотной кислоты и 2 М растворов соляной кислоты и могут быть использованы для извлечения Pb^{2+} из технологических растворов.

Полученные ИК-спектры показали, что сорбенты на основе ДТБДЦГ18К6 представляют собой экстракционно-хроматографические смолы, содержащие раствор краун-эфира в разбавителе. Термограммы сорбентов на основе ДТБДЦГ18К6 показали, что эти сорбенты термически устойчивы при нагревании до 80°С.

Сорбент на основе стирол-дивинилбензольного носителя LPS-500, импрегнированного 0.75 М раствором ДТБДЦГ18К6 в спирте-теломере n3 с использованием хлороформа в качестве растворителя для импрегнирования, показал наилучшие характеристики сорбции свинца.

Оптимальное время импрегнирования сорбента на основе стирол-дивинилбензольного носителя LPS-500 составляет 1—3 ч, для сорбента на основе гидрофобизированного силикагеля — 0.5— 1 ч, оптимальная температура импрегнирования составляет 30—50°С для всех сорбентов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского фонда фундаментальных исследований и Правительства города Севастополя в рамках исследовательского проекта № 18-43-920004 р_а и частичной финансовой поддержке Фонда содействия развитию малых форм предприятий в научно-технической сфере (программа Старт-1, проект № С1-21807) и в рамках государственного задания ФАНО Российской Федерации (тема "Океанологические процессы" № 0827-2019-0003) и Программы Президиума РАН № 14П.

СПИСОК ЛИТЕРАТУРЫ

- Villa-Alfageme M., Mas J.L., Hurtado-Bermudez S., Masqué P. // Talanta. 2016. V. 160. P. 28. https://doi.org/10.1016/j.talanta.2016.06.051
- Lluch E., Barreda J., Tarancón A. et al. // Anal. Chim. Acta. 2016. V. 940. P. 38. https://doi.org/10.1016/j.aca.2016.08.004
- 3. *Filosofov D.V., Lebedev N.A., Radchenko V. et al.* // Solv. Extr. Ion Exch. 2015. V. 33. № 5. P. 496. https://doi.org/10.1080/07366299.2015.1046293
- Ye G., Bai F., Chen G. et al. // J. Mater. Chem. 2012.
 V. 22. № 39. P. 20878. https://doi.org/10.1039/C2JM34810A
- Kong X., Dang L., Shao X. et al. // J. Environ. Radioact. 2018. V. 193–194. P. 15. https://doi.org/10.1016/j.jenvrad.2018.08.010
- 6. *Momen Md.A., Dietz M.L.* // Talanta. 2019. https://doi.org/10.1016/j.talanta.2019.01.026
- Nesterov S.V. // Russ. Chem. Rev. 2000. V. 69. № 9. Р. 769. [*Нестеров С.В.* // Успехи химии. 2000. Т. 69. № 9. С. 840. https://doi.org/10.1070/RC2000v069n09ABEH000586]
- Bezhin N.A., Dovhyi I.I. // Russ. Chem. Rev. 2015.
 V. 84. № 12. Р. 1279. [Бежин Н.А., Довгий И.И. // Успехи химии. 2015. Т. 84. № 12. С. 1279. https://doi.org/10.1070/RCR4505]
- Horwitz E.Ph., Dietz M.L., Rhoads S. et al. // Anal. Chim. Acta. 1994. V. 292. P. 263. https://doi.org/10.1016/0003-2670(94)00068-9
- 10. *Tsivadze A.Y., Baulin V.E., Baulin D.V.* New Sorbents for Processing Radioactive Waste. Handbook of Ecomaterials / Eds. Martínez L., Kharissova O., Kharisov B.

Springer, Cham., 2018. P. 1. https://doi.org/10.1007/978-3-319-48281-1_64-1

- Evreinov V.I., Baulin V.E., Vostroknutova Z.N. et al. // Bull. Acad. Sci. USSR. Div. Chem. Sci. 1989. V. 38. P. 1828. [Евреинов В.И., Баулин В.Е., Вострокнутова З.Н. и др. // Изв. АН СССР. Сер. хим. 1989. № 9. C. 1990.]
- 12. *Копытин А.Н., Ильин Е.Г., Баулин В.Е. и др.* Пат. РФ № 2054666 // Бюл. изобр. 1996.
- 13. *Bezhin N.A., Dovhyi I.I., Lyapunov A.Yu.* // J. Radioanal. Nucl. Chem. 2017. V. 311. № 1. P. 317. https://doi.org/10.1007/s10967-016-4983-2
- 14. *Бежин Н.А., Довгий И.И.* Пат. РФ № 2636482 // Бюл. изобр. 2017. № 33.
- 15. Yankovskaya V.S., Dovhyi I.I., Bezhin N.A. et al. // J. Radioanal. Nucl. Chem. 2018. V. 318. № 2. P. 1085. https://doi.org/10.1007/s10967-018-6090-z
- Хираока М. Краун-соединения. Свойства и применения / Пер. с англ. Карцева В.Г., Якущенко И.К., под ред. Эммануэля Н.М. М.: Мир, 1986.
- Тарасевич Б.Н. ИК-спектры основных классов органических соединений. Справочные материалы. М.: МГУ им. М.В. Ломоносова, 2012.
- Guyot A., Revillon A., Yuan Q. // Polym. Bull. 1989. V. 21. P. 577.
- https://doi.org/10.1007/BF00264138 19. *Фоменко О.Е., Рёсснер Ф.* // Сорбционные и хрома-
- тографические процессы. 2009. Т. 9. № 5. С. 633. 20. *Horwitz E.Ph., Dietz M.L., Chiarizia R. //* J. Radioanal. Nucl. Chem. 1992. V. 161. № 2. Р. 575. https://doi.org/10.1007/BF02040504
- 21. *Horwitz E.Ph., Chiarizia R., Dietz M.L.* // Solv. Extr. Ion Exch. 1992. V. 10. № 2. P. 313. https://doi.org/10.1080/07366299208918107
- Dietz M.L., Yaeger J., Sajdak L.R. Jr., Jensen M.P. // Sep. Sci. Technol. 2005. V. 40. № 1–3. P. 349. https://doi.org/10.1081/SS-200042247
- 23. Zhang A., Wei Y.Z., Kumagai M., Koyama T. // J. Radioanal. Nucl. Chem. 2004. V. 262. № 3. P. 739. https://doi.org/10.1007/s10967-004-0502-y
- 24. Zhang A., Hu Q., Chai Zh. // Sep. Sci. Technol. 2009. V. 44. P. 2146. https://doi.org/10.1080/01496390902885239
- 25. *Zhang A., Xiao Ch., Liu Y. et al.* // J. Porous Mater. 2010. V. 17. № 2. P. 153. https://doi.org/10.1007/s10934-009-9287-2