ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 8, с. 889–893

– ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546.162-791.2

ФАЗОВАЯ ДИАГРАММА СИСТЕМЫ МОНОЭТАНОЛАМИН– ДИМЕТИЛСУЛЬФОКСИД ПО ДАННЫМ ДИФФЕРЕНЦИАЛЬНОЙ СКАНИРУЮЩЕЙ КАЛОРИМЕТРИИ

© 2019 г. И.А. Солонина¹, М. Н. Родникова^{1, *}, М. Р. Киселев², А. В. Хорошилов¹, С. В. Макаев¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119991 Москва, Ленинский пр-т, 31 ²Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Россия, 119071 Москва, Ленинский пр-т, 31, корп. 4 *E-mail: rodnikova@igic.ras.ru Поступила в редакцию 19.12.2018 г.

После доработки 31.01.2019 г. Принята к публикации 15.03.2019 г.

Методом дифференциальной сканирующей калориметрии исследована фазовая диаграмма системы моноэтаноламин (МЭА)–диметилсульфоксид (ДМСО) в интервалах температур от +25 до -140° С и от -140 до $+40^{\circ}$ С. Получена фазовая диаграмма МЭА–ДМСО эвтектического типа (температура плавления эвтектического состава -10° С при концентрации ~50 мол. % ДМСО), которая характеризуется сильным переохлаждением жидкой фазы и расстекловыванием при температуре около -120° С. Проведено сравнение с литературными данными результатов исследования фазовых диаграмм вода (H₂O)–ДМСО и этиленгликоль (ЭГ)–ДМСО. Возможность сильного переохлаждения жидкой фазы в системах МЭА–ДМСО, ЭГ–ДМСО, H₂O–ДМСО и их тенденция к стеклованию объясняются устойчивостью пространственных сеток водородных связей самих растворителей.

Ключевые слова: моноэтаноламин, диметилсульфоксид, фазовая диаграмма, дифференциальная сканирующая калориметрия

DOI: 10.1134/S0044457X19080154

ВВЕДЕНИЕ

Моноэтаноламин (**МЭА**) — простейший представитель класса аминоспиртов. Наличие в молекуле аминной и гидроксильной групп позволяет образовывать пространственную сетку водородных связей в конденсированных фазах. Конформации его молекулы в газообразном, жидком и твердом состоянии были исследованы методами квантовой химии [1–3], колебательной спектроскопии [4–6], рентгеноструктурного анализа [7, 8] и молекулярной динамики [9–12]. Была показана предпочтительность *гош*-конформации [1] в газовой фазе, легкость конформационного перехода при переходе в жидкую фазу [9, 10] и превалирование *транс*-конформации в кристаллическом состоянии МЭА [7].

Широкая область применения объясняется особыми свойствами МЭА, связанными в основном с существованием пространственной сетки водородных связей в жидком МЭА. Наличие пространственной сетки в жидком МЭА обусловливает его переохлаждение, трудность кристаллизации и легкость стеклообразования [13]. С этими свойствами связано и его применение в криобиологии [14, 15].

Диметилсульфоксид (ДМСО) имеет высокую практическую значимость. Помимо широкого применения в органическом синтезе [16] он успешно применяется в медицине в качестве транспорта лекарственных веществ в ткани в форме водных и этиленгликолевых растворов ДМСО, в биологии – в качестве криоагента биологических систем [17–22].

Фазовая диаграмма H_2O –ДМСО, изученная авторами [23, 24], имеет конгруэнтно плавящееся при -63°С соединение состава ДМСО · $3H_2O$ и два инконгруэнтно плавящихся при более низкой температуре (-70°С) соединения состава ДМСО · $2H_2O$ и ДМСО · H_2O .

Фазовая диаграмма этиленгликоль (ЭГ)–ДМСО, полученная в [25], характеризуется сильным переохлаждением жидкой фазы, стеклованием при -125° С и образованием соединения состава ДМСО · 2ЭГ с температурой плавления ~ -60° С, достаточно близкой к температуре плавления соседних эвтектик (-75 и -70° С). Заметим, что в си-

Параметр	МЭА	ЭГ	H ₂ O	ДМСО
<i>M</i> [26]	61	62	18	78
μ, D [27]	2.27	2.88	1.83	3.96
DN_{SbCl_5} [28]	41 [29]	18.5 [29]	18	29.8
$\Delta_{\mathrm{vap}} H$, кДж/моль [30]	49.83	50	40.66	54.39
Постоянная Трутона $\Delta H_{ m ucn}/T_{ m kun},$ кал/моль К	26.9	25.5	26.05	_
<i>T</i> _{пл} , °С [26]	10.3	-12.9	0	18.5
<i>Т</i> _{кип} , °С [26]	170	197	100	189
р ^(25°C) , кг/м ³ ×10 ³ [26]	1.012	1.113	0.99707	1.0955
$η^{(25^{\circ}C)}$, Πa c × 10 ⁻³	18.95 [31]	16.16 [32]	0.8903 [32]	2.194 [33]

Таблица 1. Физико-химические характеристики исследуемых веществ [26-33]

стеме зарегистрировано падение базовой линии при температуре +8...-5°С в интервале концентраций 5–50 мол. % ДМСО, что позволяет предположить существование расслаивания в этой области.

Представляло интерес исследовать фазовую диаграмму системы МЭА–ДМСО и сравнить ее с фазовыми диаграммами H_2O –ДМСО и ЭГ– ДМСО, чтобы выявить влияние особенностей пространственных сеток H_2O , ЭГ и МЭА на фазовые диаграммы их систем.

Физико-химические характеристики исследуемых МЭА и ДМСО представлены в табл. 1 [26-33]. В обоих веществах отмечается близкий интервал жилкой фазы. близкие значения плотности, но колоссальная разница в вязкости – вязкость МЭА почти в 9 раз больше, чем ДМСО (наличие пространственной сетки Н-связей). Следует отметить большой дипольный момент молекулы ДМСО. Молекула ДМСО амфифильна: сольвофобную часть составляют две СН₃-группы, сольвофильную – >S=О группа. Пирамидальное строение молекулы ДМСО с атомом S в вершине показано в [34]. Радиус молекулы достаточно большой, расчет пор в жидком МЭА методом молекулярной динамики показал меньший радиус [35]. Но сетка МЭА лабильна и способна образовывать достаточно большие пустоты [36].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Растворы ДМСО в МЭА готовили гравиметрически в безводной атмосфере в токе азота. Для приготовления образцов использовали МЭА марки "Acros" (99%) без дополнительной очистки и свежеперегнанный ДМСО марки "Acros". Чистоту растворителей определяли хроматографически. Содержание воды в образцах не превышало 0.1% (по методу Фишера). Отбор проб и заполнение кювет проводили в сухой камере в токе азота. Термическое поведение образцов системы МЭА– ДМСО исследовали методом дифференциальной сканирующей калориметрии на установках TA Instruments Q100 DSC (при температурах от +25 до -90° C и от -90 до $+40^{\circ}$ C, скорость сканирования 3 град/мин, измерения в токе аргона высокой чистоты, погрешность измерений $\pm 1^{\circ}$ C) и MET-TLER TA4000 (Швейцария) в режиме DSC30 (быстрое охлаждение образца парами жидкого азота и нагревание со скоростью 3 град/мин в интервале температур от -140 до $+40^{\circ}$ C, погрешность измерений $\pm 5^{\circ}$ C).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Температуры фазовых переходов в системе МЭА–ДМСО представлены в табл. 2, величины изменения энтальпии (в кДж/моль) в системе МЭА–ДМСО в зависимости от мольной концентрации ДМСО – в табл. 3. Полученные термограммы использованы для построения фазовой диаграммы системы МЭА–ДМСО (рис. 1).

На термограммах при охлаждении образцов со скоростью 3 град/мин (TA Instruments Q100) зарегистрированы экзотермические пики, отвечающие кристаллизации переохлажденных образцов $(T_{\rm kp}\downarrow)$.

С увеличением концентрации ДМСО до ~42 мол. % экзотермический пик кристаллизации переохлажденных образцов смещается в сторону меньших температур ($T_{\rm kp}\downarrow$ от -33 до -60° С), площадь экзотермического пика с увеличением концентрации ДМСО уменьшается по абсолютной величине ($\Delta H_{\rm kp}\downarrow$ от -10.13 до -7.63 кДж/моль).

Начиная с ~42 мол. % ДМСО, в области отрицательных температур фиксируются два экзотермических пика кристаллизации переохлажденных образцов: $T_{\rm kp}$ и $T_{\rm kp2}$ (табл. 2), площадь которых с увеличением концентрации ДМСО $\Delta H_{\rm kp}$ уменьшается, а $\Delta H_{\rm kp2}$ увеличивается (табл. 3).

ФАЗОВАЯ ДИАГРАММА СИСТЕМЫ

/ 1							
ДМСО, мол. %	$T_{\rm kp}\downarrow$	$T_{\rm kp2}\downarrow$	$T_{ m paccтекл}$ ↑	$T_{\rm \kappa p}$	$T_{\rm kp2}$	$T_{\rm пл}$ ↑	$T_{_{\mathrm{ЭВТ}}}\uparrow$
0	-	33	-127			1	0
0.61	-33		-119			9	
2.77	-35		-121			8	
5.12	-30		-121			10	-10
6.47	-32		-92			10	-10
8.33	-33		-117			9	-9
10.00	-38		-120	-55		6	-10
11.93	-36		-113	-67		8	-10
14.67	-41		-112	-66		6	-12
19.96	-44		-112	-72	-47	5	-9
25.00	-48		-118	-58	-40	3	-11
29.55	-60		-113	-73		1	-9
33.17	-60		-114	-72	-41	1	-9
41.87	-40	-35	-118	-55		_	-9
50.61	-39	-32	-114	-43		_	-8
61.66	-44	-19	-118	-56		-3	-11
69.71	-51	-7	-118	-62		3	-12
79.96	-50	-5	-119	-55		7	-12
90.05	-40	2	-119	-53		11	-11
100	1	0				1	9

Таблица 2. Температуры фазовых переходов (°С) в системе МЭА-ДМСО в зависимости от концентрации ДМСО

Примечание. $T_{\rm kp} \downarrow$ – температура кристаллизации (°С) образца при его охлаждении со скоростью 3 град/мин (ТА Instruments Q100), $T_{\rm paccrekn} \uparrow$ – температура расстекловывания (°С) быстро охлажденного образца (Mettler TA4000), $T_{\rm kp} \uparrow$ – температура кристаллизации (°С) образца при его нагревании со скоростью 3 град/мин (Mettler TA4000), $T_{\rm nn} \uparrow$ – температура плавления (°С) образца при его нагревании со скоростью 3 град/мин (Mettler TA4000), $T_{\rm nn} \uparrow$ – температура плавления (°С) образца при его нагревании со скоростью 3 град/мин (Mettler TA4000), $T_{\rm nn} \uparrow$ – температура плавления (°С) образца при его нагревании со скоростью 3 град/мин (TA Instruments Q100, Mettler TA4000).

При нагревании быстро охлажденных образцов (Mettler TA4000) со скоростью 3 град/мин на термограммах зарегистрировано падение базовой линии при низких температурах (в области ~ -120°С), которое соответствует температуре превращения стекла в переохлажденную жидкость ($T_{\text{расстекл1}}-T_{\text{расстекл2}}$ – линия расстекловывания, табл. 2, рис. 1). При последующем увеличении температуры отмечены экзотермические пики кристаллизации переохлажденной жидкости на этапе нагрева ($T_{\text{кр}}$ 1 $T_{\text{кр2}}$), табл. 2).

При дальнейшем повышении температуры со скоростью 3 град/мин зафиксированы эндотермические пики (T_{nn} и $T_{эвт}$, табл. 2), которым соответствует температура плавления образцов эвтектического состава ($T_{эвт1}-E-T_{эвт2}$ – эвтектическая линия) и температура плавления образцов ($T_{nn1}-E-T_{nn2}$ – линия ликвидуса) – рис. 1.

Максимум площади эндотермического пика при плавлении эвтектик приходится на ~50 мол. % ДМСО ($\Delta H_{_{ЭВТ}}$ ~ 13.62 кДж/моль). Площадь эндотермических пиков при плавлении образцов ($\Delta H_{_{ПЛ}}^{\uparrow}$) уменьшается от 0 до 33 мол. % ДМСО и начинает увеличиваться от 60 до 100 мол. % ДМСО (табл. 3).

На линии ликвидуса имеется стабильная эвтектика при температуре ~ -10°С и концентрации

Таблица	3.	Величины	изменения	энтальпии
(кДж/моли	ь) в	системе МЭА	–ДМСО в зави	исимости от
концентра	ции	ДМСО		

ДМСО, мол. %	$\Delta H_{\mathrm{kp}} \downarrow$	$\Delta H_{\mathrm{kp2}}\downarrow$	ΔH_{nn} \uparrow	$\Delta H_{\rm 3BT} \uparrow$
0	-10.13		11.53	
0.61	-6.11		6.84	
2.77	-8.79		10.33	
5.12	-11.51		12.06	0.19
6.47	-11.36		11.92	0.31
8.33	-10.92		9.92	0.62
10.00	-10.28		10.09	1.13
14.67	-10.67		6.79	2.48
19.96	-10.95		9.47	6.37
25.00	-10.57		10.96	3.65
29.55	-7.33		4.82	8.32
33.17	-7.40		2.73	10.93
41.87	-7.63	-3.75	13.62	
50.61	-6.68	-4.73	13.50	
61.66	-2.64	-5.08	2.43	9.79
69.71	-3.21	-6.63	2.91	3.64
79.96	-1.57	-8.06	5.30	1.64
90.05	-0.99	-10.38	8.85	1.30
100	-12.17		12.32	

Примечание. $\Delta H_{\rm kp} \downarrow$ — изменение энтальпии кристаллизации образца (кДж/моль) при его охлаждении со скоростью 3 град/мин, $\Delta H_{\rm III} \uparrow$ и $\Delta H_{\rm 3BT} \uparrow$ — изменение энтальпии плавления образца (кДж/моль) при его нагревании со скоростью 3 град/мин.

Рис. 1. Фазовая диаграмма системы МЭА–ДМСО: $T_{пл1}-E-T_{пл2}$ – линия ликвидуса; $T_{9BT1}-E-T_{9BT2}$ – эвтектическая линия; $T_{paccтекл1}-T_{paccтекл2}$ – линия расстекловывания, E – точка эвтектики.

~50 мол. % ДМСО. Положение линии ликвидуса $(T_{пл1}-E-T_{пл2})$ и эвтектических точек $(T_{эвт1}-E-T_{эвт2})$ на диаграмме состояний системы МЭА–ДМСО (рис. 1) в пределах погрешности измерений хорошо совпадает с результатами, полученными на двух установках (ТА Instruments Q100 и Mettler TA4000) с использованием двух способов охлаждения образцов.

ЗАКЛЮЧЕНИЕ

Получена фазовая диаграмма системы МЭА– ДМСО. Она обладает простой эвтектикой при ~50 мол. % ДМСО. Фазовая диаграмма системы H_2O –ДМСО имеет три гидрата: ДМСО · $3H_2O$, ДМСО · $2H_2O$ и ДМСО · H_2O , а фазовая диаграмма системы ЭГ–ДМСО – соединение состава ДМСО · 2ЭГ и область расслаивания от 5 до 50 мол. % ДМСО при температуре +8...-5°С. В системе МЭА–ДМСО не отмечено ни соединений, ни расслаивания, во всяком случае в исследованном нами интервале температур и давлений.

Различие фазовых диаграмм указанных диметилсульфоксидных систем можно объяснить характеристиками молекул растворителей – H_2O , $\Im\Gamma$ и МЭА и их способностью образовывать водородные связи. Наибольшая энергия межмолекулярных H-связей – в МЭА [37]. Сходство физических состояний систем МЭА–ДМСО, $\Im\Gamma$ –ДМСО и H_2O –ДМСО на основе растворителей с пространственной сеткой водородных связей – это возможность сильного переохлаждения жидкой фазы в этих системах и тенденция систем к стеклованию, что определяется устойчивостью пространственных сеток водородных связей самих растворителей.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в сфере фундаментальных научных исследований и при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-03-00215.

СПИСОК ЛИТЕРАТУРЫ

- 1. Novakovskaya Yu.V., Rodnikova M.N. // Russ. J. Inorg. Chem. 2014. V. 59. № 11. Р. 1290. [Новаковская Ю.В., Родникова М.Н. // Журн. неорган. химии. 2014. T. 59. № 11. С. 1534.] https://doi.org/10.1134/S0036023614110175
- Vorobyov I., Yappert M.C., DuPre D.B. // J. Phys. Chem. A. 2002. V. 106. P. 668. https://doi.org/10.1021/jp013211e
- Silva C.F.P., Duarte M.L.T.S., Fausto R. // J. Mol. Struct. 1999. V. 482/483. P. 591. https://doi.org/10.1016/s0022-2860(98)00794-7
- 4. Харитонов Ю.Я., Хошабова Э.Г., Родникова М.Н. и др. // Докл. АН СССР. 1989. Т. 304. № 4. С. 917.
- Krueger P.J., Mettee H.D. // Can. J. Chem. 1965. V. 43. P. 2970.
- Lane J.R., Schroder S.D., Saunders G.C. et al. // J. Phys. Chem. A. 2016. V. 120. № 32. P. 6371. https://doi.org/10.1021/acs.jpca.6b05898
- Rodnikova M.N., Solonina I.A., Solovei A.B. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 12. Р. 1461. [Родникова М.Н., Солонина И.А., Соловей А.Б. и др. // Журн. неорган. химии. 2013. Т. 58. № 12. С. 1628.] https://doi.org/10.1134/S0036023613120176
- Mootz D., Brodalla D., Wiebcke M. // Acta Crystallogr. 1989. V. 45. P. 754.
- Novakovskaya Yu.V., Rodnikova M.N. // Dokl. Phys. Chem. 2016. V. 467. № 2. Р. 60. [Новаковская Ю.В., Родникова М.Н. // Докл. АН. 2016. Т. 467. № 6. С. 679.] https://doi.org/10.1134/S0012501616040047
- Gubskaya A.V., Kusalik P.G. // J. Phys. Chem. A. 2004.
 V. 108. P. 7151. https://doi.org/10.1021/jp0489222
- Alejandre J., Rivera J.L., Mora M.A. et al. // J. Phys. Chem. B. 2000. V. 104. P. 1332. https://doi.org/10.1021/jp993101w
- da Silva E.F., Kuznetsova T., Kvamme B. et al. // J. Phys. Chem. B. 2007. V. 111. P. 3695. https://doi.org/10.1021/jp068227p
- Solonina I.A., Rodnikova M.N., Kiselev M.P. et al. // Russ. J. Phys. Chem. A. 2015. V. 89. № 5. Р. 910. [Солонина И.А., Родникова М.Н., Киселев М.Р. и др. // Журн. физ. химии. 2015. Т. 89. № 5. С. 882.] https://doi.org/10.1134/S0036024415050301
- Грищенко В.И. // Проблемы криобиологии. 2005. Т. 15. № 3. С. 231.
- Baudot A., Cacela C., Duarte M.L. et al. // Cryobiology. 2002. V. 44. P. 150. https://doi.org/10.1016/s0011-2240(02)00017-2
- Martin D., Weise A., Niclas H.-J. // J. Angew. Chem., Int. Engl. Ed. 1967. V. 6. № 4. P. 318.

892

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 8 2019

- 17. *Martin D., Hanthal H.G.* Dimethyl Sulfoxide. N.Y.: Wiley, 1975. 401 p.
- Slade L., Levine H. // Crit. Rev. Food Sci. Nutr. 1991. V. 30. P. 115.
- 19. *Buera M.P., Roos Y., Levine H. et al.* // Pure Appl. Chem. 2011. V. 83. № 8. P. 1567. https://doi.org/10.1351/PAC-REP-10-07-02
- Clegg J.S. // Comp. Biochem. Physiol. 2001. V. 128. P. 613.
- Shalaev E., Franks F. // Amorphous Food and Pharmaceutical Systems / Ed. Levine H. RSC Publishing, Cambridge, UK, 2002. P. 200–215.
- 22. Pichugin Yu., Fahy G.M., Morin R. // Cryobiology. 2006. V. 52. P. 228.
- Rasmussen D.H., Mackenzie A.P. // Nature (London). 1968. 220. P. 1315.
- 24. *Murthy S.S.N.* // Cryobiology. 1998. V. 36. P. 84. https://doi.org/10.1006/cryo.1997.2064
- Solonina I.A., Rodnikova M.N., Kiselev M.R. et al. // Russ. J. Phys. Chem. A. 2018. V. 92. № 5. Р. 918. [Солонина И.А., Родникова М.Н., Киселев М.Р. и др. // Журн. физ. химии. 2018. Т. 92. № 5. С. 751.] https://doi.org/10.1134/S0036024418050291
- 26. Aldrich. Handbook, 1989.
- Осипов О.Я., Минкин В.И., Грановский А.Д. Справочник по дипольным моментам. М.: Высш. школа, 1971.
- 28. *Гутман В*. Химия координационных соединений в неводных растворах. М.: Мир, 1971. 220 с.

- Родникова М.Н. Особенности растворителей с пространственной сеткой водородных связей Дис. дра ...хим. наук. М., 1998.
- 30. CRC Handbook of Chem. Phys. 85th ed. 2004.
- 31. *Maham Y., Liew C.-N., Mather A.E.* // J. Solution Chem. 2002. V. 31. № 9. P. 743. https://doi.org/10.1023/A:1021133008053
- 32. Quijada-Maldonado E., Meindersma G.W., de Haan A.B. // J. Chem. Thermodyn. 2013. V. 57. P. 500. https://doi.org/10.1016/j.jct.2012.08.024
- Palaiologou M.M., Molinou I.E., Tsierkezos N.G. // J. Chem. Eng. Data. 2002. 47. № 5. P.1285. https://doi.org/10.1021/je020063s
- 34. Thomas R., Shoemaker C.B., Eriks K. // Acta Crystallogr. 1966. V. 21. № 1. P. 12. https://doi.org/10.1107/s0365110x66002263
- Belashchenko D.K., Rodnikova M.N., Balabaev N.K. et al. // Russ. J. Phys. Chem. A. 2016. V. 90. № 1. P. 100. [Белащенко Д.К., Родникова М.Н., Балабаев Н.К. и др. // Журн. физ. химии. 2016. Т. 90. № 1. C. 64.]
 - https://doi.org/10.1134/S0036024416010052
- Rodnikova M.N., Solonina I.A., Troitskii V.M. et al. // Russ. J. Phys. Chem. A. 2015. V. 89. № 3. Р. 512. [Родникова М.Н., Солонина И.А., Троицкий В.М. и др. // Журн. физ. химии. 2015. Т. 89. № 3. С. 513.] https://doi.org/10.1134/S0036024415030255
- 37. Balabaev N.K., Belashchenko D.K., Rodnikova M.N. et al. // Russ. J. Phys. Chem. A. 2015. V. 89. № 3. P. 398. [Балабаев Н.К., Белащенко Д.К., Родникова М.Н. и др. // Журн. физ. химии. 2015. Т. 89. № 3. С. 401.] https://doi.org/10.1134/S003602441503005X