СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.271

ХИМИЯ 11-ВЕРШИННЫХ ПОЛИЭДРИЧЕСКИХ ГИДРИДОВ БОРА (ОБЗОР)

© 2019 г. И.Б.Сиваев*

Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Россия, 119991 Москва, ул. Вавилова, 28 *E-mail: sivaev@ineos.ac.ru Поступила в редакцию 09.01.2019 г. После доработки 23.01.2019 г. Принята к публикации 15.02.2019 г.

Рассмотрено современное состояние химии 11-вершинных полиэдрических гидридов бора, включая их синтез и взаимопревращения, реакции замещения концевых атомов водорода и реакции внедрения с закрытием икосаэдрического остова.

Ключевые слова: гидриды бора, синтез, производные **DOI:** 10.1134/S0044457X19080142

введение

Полиэдрические гидриды бора уже более 50 лет привлекают внимание исследователей благодаря как разнообразию структурных типов и необычному характеру связывания в них, что привело к созданию концепции трехмерной ароматичности [1, 2], так и различным перспективным областям их применения [3]. Последние включают использование солей и производных полиэдрических гидридов бора в качестве компонентов ракетного топлива и различных пиротехнических смесей [4-8], потенциальных источников водорода [9, 10], твердотельных электролитов [11–16], структурных элементов жидких кристаллов [17–19], использование слабокоординирующихся анионов в катализе и для стабилизации высокореакционных комплексов и органических интермедиатов [20-23], использование в медицине, в том числе в бор-нейтронозахватной терапии рака [24-27] и как носителей радиоактивной метки в радионуклидной диагностике [28–32].

Семейство 11-вершинных гидридов бора занимает уникальное место в ряду полиэдрических гидридов бора. Несмотря на то, что они впервые синтезированы еще в 1960-х гг. [33, 34] и достаточно доступны, их химия изучена гораздо в меньшей степени [35], чем химия их соседей – *клозо*-декаборатного [36, 37] и *клозо*-додекаборатного анионов [38]. Во многом это связано со строением *клозо*-ундекаборатного аниона [B₁₁H₁₁]²⁻, который представляет собой октадекаэдр, одну из вершин которого занимает атом бора с KЧ = 6 (по бору). Это приводит к ослаблению части связей бор-бор с его участием, и анион [B₁₁H₁₁]²⁻ часто рассматривается как квази-*клозо*-полиэдрический [39, 40]. Как результат, клозо-ундекаборатный анион легко раскрывается до нидо-ундекаборатного, который может существовать в виде нескольких протонированных форм, из которых наиболее устойчивой является тетрадекагидронидо-ундекаборат-анион [$B_{11}H_{14}$]⁻ (рис. 1). Все это осложняет, а часто приводит и к непредсказуемости их химического поведения. Данный обзор представляет собой попытку обобщения известных к настоящему моменту данных по химии 11вершинных гидридов бора.

Синтез и свойства 11-вершинных гидридов бора

Синтез тетрадекагидро-*нидо*-ундекаборатного аниона из декаборана(14), производство которого было налажено в США и СССР в 60-х гг. прошлого века, был описан еще в 1962 г. Реакция декаборана(14) $B_{10}H_{14}$ с тетрагидроборатами щелочных металлов (LiBH₄ или NaBH₄) в кипящих эфирных растворителях (1,2-диметоксиэтан, 1,4-диоксан) приводит к образованию соответствующих солей аниона [$B_{11}H_{14}$]⁻ с выходом ~75% [33]. Позже этот же подход был применен для синтеза неодимовой соли Nd[$B_{11}H_{14}$]³ · 4(diglyme), которая была получена с выходом 70% по реакции декаборана(14) с Nd[BH_4]³ · THF в диглиме при 85–90°C [41].

Тетрадекагидро-*нидо*-ундекаборатный анион $[B_{11}H_{14}]^-$ также может быть получен с высоким выходом взаимодействием декаборана(14) с комплексом хлорборана ClH₂B · SMe₂ в тетрагидрофуране в присутствии 2 экв NaH или реакцией Na[B₁₀H₁₃] с ClH₂B · SMe₂ в эфире в присутствии

Рис. 1. Структура и порядок нумерации атомов в анионах *клозо*- $[B_{11}H_{11}]^2$ и *нидо*- $[B_{11}H_{14}]^-$.

1,8-*бис*(диметиламино)нафталина ("протонной губки") [42]. Реакция NaBH₄ с дибораном B_2H_6 в 1,4-диоксане при 80°С приводит к образованию натриевой соли аниона $[B_{11}H_{14}]^-$, выделенной в виде сольвата Na[$B_{11}H_{14}$] · 2.50(CH₂CH₂)₂O [43]. Калиевая соль K[$B_{11}H_{14}$] образуется при взаимодействии K[B_9H_{14}] с B_2H_6 или B_5H_9 в кипящем 1,2-диметоксиэтане [44].

Реакция пентаборана(9) B_5H_9 с гидридом натрия или калия или *t*-BuLi в кипящем 1,2-диметоксиэтане приводит к образованию соответствующих солей аниона $[B_{11}H_{14}]^-$ с выходом до 85% [44]. Полученные соли щелочных металлов могут быть легко переведены в малорастворимые и нерастворимые в воде соли K[B_{11}H_{14}], (Me_4N)[B_{11}H_{14}], (Et_3NH)[B_{11}H_{14}], (Ph_4P)[B_{11}H_{14}] и (PPN)[B_{11}H_{14}].

Депротонирование B_5H_9 MeLi в диэтиловом эфире при -78° C с последующим добавлением Cp₂ZrCl₂ приводит к образованию неустойчивого комплекса [2,3- μ -(Cp₂ClZr)B₅H₈], попытка хроматографической очистки которого дает с низким выходом катионный цирконаборан с анионом [B₁₁H₁₄]⁻ в качестве противоиона

Рис. 2. Кристаллическая структура тетрадекагидро*нидо*-ундекаборатного аниона [B₁₁H₁₄]⁻ [50]. $[(Cp_2Zr)_2B_5H_8]^+[B_{11}H_{14}]^-$. Аналогичная реакция с Cp_2HfCl_2 приводит к гафнаборану $[(Cp_2Hf)_2B_5H_8]^+[B_{11}H_{14}]^-$ [45].

В отсутствие промышленного производства декаборана(14) и пентаборана(9) удобным способом получения аниона $[B_{11}H_{14}]^-$ является реакция тетрагидробората натрия NaBH₄ с эфиратом трехфтористого бора F₃B · OEt₂ в диглиме при 105°С [46, 47]. Выход целевого продукта в виде тетраэтиламмониевой соли составляет 63%. Реакция протекает через образование аниона [B₃H₈]⁻, поэтому использование в качестве исходного соединения $(Et_4N)[B_3H_8]$ приводит к аналогичному результату [46]. Вместо F₃B · OEt₂ в реакции с NaBH₄ можно использовать также другие кислоты Льюиса (BCl₃, SiCl₄ и алкилгалогениды) [47]. Использованию в качестве исходного соединения тетрагидробората калия KBH₄ препятствует его низкая растворимость в диглиме, а в случае тетрагидробората лития LiBH₄ выделение целевого продукта осложняется сольватацией катиона Li⁺ [47].

Строение аниона $[B_{11}H_{14}]^-$ установлено методом рентгеноструктурного анализа (**PCA**) его солей: (Et₃NBn)[B₁₁H₁₄] [48], (Me₃PH)[B₁₁H₁₄] [49], (Ph₃PH)[B₁₁H₁₄] [50] и [(Cp₂Zr)₂B₅H₈][B₁₁H₁₄] [45]. Борный остов аниона представляет собой икосаэдр с одной отсутствующей вершиной, каждый атом бора которого связан с одним *экзо*-атомом водорода; два из трех оставшихся атомов водорода занимают положение мостиков, связывающих атомы бора открытой пентагональной грани, в то время как третий атом занимает *эндо*-положение над открытой гранью (рис. 2). Расстояния B–B в открытой грани аниона составляют 1.856–1.919 Å, в то время как длины остальных связей B–B лежат в интервале 1.741–1.784 Å.

Спектр ЯМР ¹¹В{¹H} (Me₃NH)[B₁₁H₁₄] в тетрагидрофуране- d_8 содержит три сигнала при –14.1, –15.8 и –16.7 м. д. с соотношением интегральных интенсивностей 1 : 5 : 5, а спектр ЯМР ¹H{¹¹B} – сигналы *экзо*-атомов водорода при 1.93, 1.72 и 1.28 м. д. (1 : 5 : 5), а также сигнал трех "дополни-

Рис. 3. Кристаллическая структура тридекагидро-*нидо*-ундекаборатного аниона $[B_{11}H_{13}]^{2-}$ – вид сбоку (а) и сверху (б) [56].

тельных" спектрально-эквивалентных атомов водорода, связанных с открытой пентагональной гранью при —3.68 м. д., что свидетельствует о быстрой миграции последних в растворе [51].

Натриевая соль Na[B₁₁H₁₄] претерпевает обратимый фазовый переход из ромбической (*Pnma*) фазы в кубическую ($\overline{I43d}$) при 353–361 К (нагревание) и 326 К (охлаждение) [52]. Ионная проводимость Na[B₁₁H₁₄] при 40°С составляет 45 мСм см⁻¹, что меньше, чем в Na[1-CB₉H₁₀] (σ = 100 мСм см⁻¹) и Na[CB₁₁H₁₂] (σ = 62 мСм см⁻¹), но существенно выше, чем в Na₂[B₁₀H₁₀] (σ = 7.0 мСм см⁻¹) [52].

Протонирование аниона $[B_{11}H_{14}]^-$ безводным HCl при -78° C приводит к образованию $B_{11}H_{15}$, неустойчивого выше 0°C и разлагающегося с выделением водорода. $B_{11}H_{15}$ легко депротонируется Me_3P и Me_2O с регенерацией аниона $[B_{11}H_{14}]^-$ [49].

Депротонирование $[B_{11}H_{14}]^-$ в щелочном водном растворе [42, 53] или NaH в тетрагидрофуране [54, 55] приводит к образованию аниона $[B_{11}H_{13}]^{2-}$, структура которого установлена методом PCA – Cs(Me₄N)[B₁₁H₁₃] (рис. 3) [56].

Депротонирование аниона $[B_{11}H_{14}]^-$ двумя эквивалентами *t*-BuLi в тетрагидрофуране или тетрагидропиране приводит к образованию аниона $[B_{11}H_{12}]^{3-}$. Обработка последнего раствором $H[BF_4]$ в диэтиловом эфире способствует регенерации $[B_{11}H_{14}]^-$ [57].

Твердотельный пиролиз $Cs_2[B_{11}H_{13}]$ [34, 53] или $Na_2[B_{11}H_{13}]$ [55] при 270°С протекает с выделением водорода и приводит к образованию цезиевой соли *клозо*-ундекаборатного аниона

 $Cs_2[B_{11}H_{11}]$. В более мягких условиях пиролиз суспензии [Li(THP)_x]₃[B₁₁H₁₂] в тетрагидропиране при 80°С сопровождается выделением LiH и образованием *клозо*-ундекабората [Li(THP)₃]₂[B₁₁H₁₁] [57].

Клозо-ундекаборат лития [Li(THP)₃]₂[B₁₁H₁₁] образуется при взаимолействии также [B₁₁H₁₃SMe₂] с *t*-BuLi или *n*-BuLi в тетрагидропиране [58]. Аналогичным образом получается клозо-ундекаборат калия K₂[B₁₁H₁₁] с выходом, близким к количественному, при обработке $[B_{11}H_{13}SMe_2]$ триэтилгидроборатом калия К[HBEt₃] в тетрагидрофуране [58]. Соль (К(18-краун-6))₂[В₁₁Н₁₁] получена взаимодействием K₂[B₁₁H₁₁] с 18-краун-6 в хлористом метилене, а соли (PhNMe₃)₂[B₁₁H₁₁], $(BnNEt_3)_2[B_{11}H_{11}], (Ph_3PMe)_2[B_{11}H_{11}], (Ph_4As)_2[B_{11}H_{11}]$ и $(PPN)_2[B_{11}H_{11}]$ – осаждением соответствующими хлоридами из Na₂[B₁₁H₁₁] или K₂[B₁₁H₁₁] в водном растворе [34, 58].

Недавно был предложен удобный способ получения *клозо*-ундекаборатного аниона окислением аниона $[B_{11}H_{13}]^{2-}$ оксидом свинца(IV) PbO₂ в водном щелочном растворе [59].

Строение [Li(THP)₃]₂[B₁₁H₁₁] и (Bn-NEt₃)₂[B₁₁H₁₁] было установлено методом PCA. Структура *клозо*-ундекаборатного аниона [B₁₁H₁₁]^{2–} представляет собой октадекаэдр, содержащий пять различных типов атомов бора, в том числе уникальный гексакоординированный атом B(1) и тетракоординированные атомы B(2) и B(3) (рис. 4). Следует отметить, что длины связей B(1)–B(2,3) (1.744–1.747 Å) типичны для борных полиэдров, в то время как связи B(1)–B(4,5,6,7) значительно длиннее (1.988–2.026 Å), это обусловливает легкость их разрыва с последующей

Рис. 4. Кристаллическая структура *клозо*-ундекаборатного аниона $[B_{11}H_{11}]^{2-}$ [58].

перегруппировкой полиэдра. В структуре $[Li(THP)_3]_2[B_{11}H_{11}]$ катионы $[Li(THP)_3]^+$ координированы гранями полиэдра B(2)-B(5) и B(3)-B(6) [58].

Анион $[B_{11}H_{11}]^{2-}$ структурно нежесткий и в растворе претерпевает быструю полиэдрическую перегруппировку, что находит отражение в спектре ЯМР ¹¹В, содержащем только один сигнал в области –17 м. д. [58].

В щелочном водном растворе анион $[B_{11}H_{14}]^{-1}$ медленно окисляется до 1-окса-нидо-додекабората [B₁₁H₁₂O]⁻ [60, 61], который также может быть получен мягким окислением клозо-ундекаборатного аниона $[B_{11}H_{11}]^{2-}$ хлоридом железа(III) FeCl₃ · ·6H₂O в ацетонитриле [62] или окислением депротонированной формы [В₁₁Н₁₂]³⁻ кислородом воздуха [57], а также окислением клозо-додекаборатного аниона $[B_{12}H_{12}]^{2-}$ пероксодисульфатом калия $K_2S_2O_8$ в кислом водном растворе в присутствии AgNO₃ [62]. Согласно данным РСА, атом кислорода в анионе $[B_{11}H_{12}O]^-$ занимает эндо-положение нал открытой пентагональной гранью и связан с тремя ее атомами бора, а два оставшихся атома бора соединены водородным мостиком (рис. 5) [62].

Ионная проводимость Na[B₁₁H₁₂O] в диапазоне 0–150°C очень низкая ($\sigma < 10^{-5}$ Cm см⁻¹), что намного меньше, чем в Na[B₁₁H₁₄] [61].

Окисление аниона $[B_{11}H_{14}]^-$ перманганатом калия KMnO₄ или бихроматом натрия в водном растворе приводит к образованию $B_{10}H_{14}$ с выходом ~50% [47], что открывает удобный путь к получению декаборана(14) в лабораторных условиях. При использовании в качестве окислителя пе-

Рис. 5. Кристаллическая структура аниона $[B_{11}H_{12}O]^-$ [62].

рекиси водорода параллельно с декабораном(14) образуется макрополиэдрический анион $[B_{22}H_{22}]^{2-}$ [47], выход которого может быть увеличен до 60% [63].

Мягкое окисление аниона $[B_{11}H_{11}]^-$ хлоридом железа(III) FeCl₃ · 6H₂O в ацетонитриле при 0°C приводит к окислительной сшивке двух полиэдров с образованием аниона $[B_{22}H_{22}]^{2-}$ [58].

Производные со связью бор-галоген

Реакция клозо-ундекаборатного аниона $[B_{11}H_{11}]^{2-}$ с HgBr₂ в хлористом метилене приводит с умеренным выходом к бромопроизводному тетрагидроундекаборатного аниона $[7-B_{11}H_{13}Br]^-$ наряду с небольшим количеством продукта окисления $[B_{22}H_{22}]^{2-}$ (схема 1). Структура (Et₃NBn)[7-B₁₁H₁₃Br] установлена методом РСА (рис. 6) [48].

Схема 1.

Галогенирование аниона $[B_{11}H_{11}]^{2-}$ было предметом неоднократных исследований [34, 64–66]. Хлорирование *клозо*-ундекаборатного аниона $[B_{11}H_{11}]^{2-}$ газообразным хлором в водном растворе при комнатной температуре приводит к полиэдрическому сжатию полиэдра с образованием перхлорированного *клозо*-декаборатного аниона $[B_{10}Cl_{10}]^{2-}$ в качестве основного продукта [66], в то время как реакция с N-хлорсукцинимидом в во-

Рис. 6. Кристаллическая структура [7-B₁₁H₁₃Br]⁻ [48].

Рис. 7. Кристаллическая структура [2,3,4,5,6,8,9,10-В₁₁Н₃Cl₈]²⁻ (а) и [2,3,4,5,6,7,8,9,10-В₁₁Н₂Cl₉]²⁻ (б) [66].

де приводит к образованию 7-гидроксипроизводного нидо-тетрадекаундекаборатного аниона [7-B₁₁H₁₃OH]⁻ [66]. При хлорировании аниона [B₁₁H₁₁]²⁻ N-хлорсукцинимидом в хлористом метилене состав продуктов реакции зависит от соотношения реагентов и времени реакции [65, 66]. При этом получить чистый перхлорированный клозо-ундекаборат не удается даже при использовании 20 экв N-хлорсукцинимида – через 2 ч при комнатной температуре фиксируется смесь из 61% [B₁₁Cl₁₁]²⁻, 12% [B₁₁HCl₁₀]²⁻ и 27% [B₁₀Cl₁₀]²⁻, а через 24 ч единственным продуктом реакции является перхлорированый клозо-декаборатный анион [B₁₀Cl₁₀]²⁻. Попытка хлорировать [B₁₁HCl₁₀]²⁻ с использованием 2 экв *трет*-бутилгипохлорита *t*-BuOCl в ацетонитриле привела к смеси, содержащей 67% $[B_{11}Cl_{11}]^{2-}$ и 33% $[B_{10}Cl_{10}]^{2-}$, а при использовании 4 экв *t*-BuOCl единственным продуктом реакции был анион $[B_{10}Cl_{10}]^{2-}$ [66]. Методом PCA определено строение $(Bu_4N)_2[2,3,4,5,6,8,9,10-B_{11}H_3-Cl_8]_{0.5}[2,3,4,5,6,7,8,9,10-B_{11}H_2Cl_9]_{0.5}$ · Me₂CO (рис. 7) [66].

Попытка получить пербромпроизводное *кло*зо-ундекаборатного аниона $[B_{11}H_{11}]^{2-}$ его обработкой бромом в водном растворе при 0°С привела к сжатию полиэдра с образованием смеси бромпроизводных *клозо*-декаборатного аниона $[B_{10}Br_{10}]^{2-}$ и $[B_{10}Br_9OH]^{2-}$ [64, 66]. В то же время реакция материнского *клозо*-ундекаборат-аниона с бромом или иодом в хлористом метилене приводит к соответствующим пербром- $[B_{11}Br_{11}]^{2-}$ и

Рис. 8. Кристаллическая структура анионов $[B_{11}Br_{11}]^{2-}$ (а) и $[B_{11}I_{11}]^{2-}$ (б) [65].

Рис. 9. Кристаллическая структура [7-B₁₁H₁₃OEt]⁻ [67].

периодпроизводным $[B_{11}I_{11}]^{2-}$ [65, 66]. Строение $(Et_3NBn)_2[B_{11}Br_{11}]$ и $(Et_3NBn)_2[B_{11}I_{11}]$ определено методом PCA (рис. 8) [65].

Производные со связью бор-кислород

Реакция клозо-ундекаборатного аниона $[B_{11}H_{11}]^{2-}$ с соляной кислотой приводит к раскрытию полиэдра с образованием гидроксипроизводного *нидо*-тетрагидроундекаборатного аниона $[7-B_{11}H_{13}OH]^-$ [67], а реакция $[B_{11}H_{11}]^{2-}$ с три-

фторуксусной кислотой в чистом хлористом метилене или смеси хлористого этилена и этанола приводит к трифторацетокси- и этоксипроизводным $[7-B_{11}H_{13}OC(O)CF_3]^-$ [58] и $[7-B_{11}H_{13}OEt]^-$ [67] соответственно (схема 2). Строение (PPN)[7-B₁₁H₁₃OEt] · 0.5CH₂Cl₂ установлено методом PCA (рис. 9) [67]. Предполагается что все эти реакции протекают через образование протонированной формы $[B_{11}H_{12}]^-$ с последующей нуклеофильной атакой [67].

Рис. 10. Кристаллические структуры [7-B₁₁H₁₃SMe₂] [70] (a), [2-B₁₁H₁₃SMe₂] [70] (б) и [7-B₁₁H₁₂SMe₂]⁻ [71] (в).

Схема 2.

Сообщалось также о взаимодействии $Na[B_{11}H_{14}]$ с тетрагидрофураном и 1,4-диоксаном в кислой среде, однако продукты этих реакций не были надежно охарактеризованы [68].

Производные со связью бор-сера

Аналогично диметилсульфониевому производному 7,8-дикарба-*нидо*-ундекаборатного аниона [10-Me₂S-7,8-C₂B₉H₁₁] [69] диметилсульфониевое производное [7-B₁₁H₁₃SMe₂] образуется с хорошим выходом при взаимодействии аниона [B₁₁H₁₄]⁻ с диметилсульфидом в присутствии HCl или H₂SO₄ [68, 70]. Нагревание [7-B₁₁H₁₃SMe₂] при 110°C приводит к их изомеризации в [1-B₁₁H₁₃SMe₂] и [2-B₁₁H₁₃SMe₂] (схема 3). Строение 2- и 7-изомеров установлено методом PCA (рис. 10) [70].

Рис. 11. Кристаллическая структура [4-B₁₁H₁₀SMe₂]⁻ [74].

Рис. 12. Структура аниона $[\mu$ -4,6-Se₃-B₁₁H₉]²⁻ [75].

7-Диметилсульфониевое производное легко депротонируется эквимольным количеством *t*-BuNH₂ в толуоле, *n*-BuLi в гексане, NaH или K[HBEt₃] в тетрагидрофуране или пиридина в толуоле с образованием соответствующих солей аниона [7-B₁₁H₁₂SMe₂]⁻ [71, 72]. Строение солей (Et₄N)[7-B₁₁H₁₂SMe₂] [71] и (HPy)[7-B₁₁H₁₂SMe₂] [72] было установлено методом PCA (рис. 10).

4-Диметилсульфониевое производное клозоундекаборатного аниона $[4-B_{11}H_{10}SMe_2]^-$ получено взаимодействием материнского аниона $[B_{11}H_{11}]^{2-}$ с диметилсульфоксидом в уксусном ангидриде (схема 4) [73]. Строение (Et₄N)[4-B₁₁H₁₀SMe₂] установлено методом PCA (рис. 11) [74].

Схема 4.

Производные со связью бор-селен

Реакция Na[B₁₁H₁₄] с полиселенидом аммония в водном растворе при комнатной температуре неожиданно привела к образованию производного с селеновым мостиком [μ -4,6-Se₃-B₁₁H₉]²⁻, выделенного в виде тетраэтиламониевой соли, строение которой установлено методом PCA (рис. 12) [75].

Производные со связью бор—азот

Взаимодействие 7-диметилсульфониевого производного тетрадекагидро-*нидо*-ундекаборатного аниона [7-В₁₁Н₁₃SMe₂] с эквимольным количеством амина (неопентиламин, циклогексиламин, анилин, *пара*-толуидин, пиридин, хинолин) в кипящем бензоле приводит к замещению диметилсульфидной группы аминами с образованием соответствующих производных [7-В₁₁Н₁₃L] (схема 5), которые могут быть депротонированы *n*-ВuLi или *t*-BuLi с образованием анионов [7-В₁₁Н₁₂L]⁻. Реакция [7-В₁₁Н₁₃SMe₂] с 2 экв неопентиламина непосредственно приводит к образованию соли (Me₃CCH₂NH₃)[7-В₁₁Н₁₂NH₂CH₂CMe₃] [72].

Пиридиниевое производное $[7-B_{11}H_{13}Py]$ образуется также при взаимодействии пиридина с протонированной формой *клозо*-ундекаборатного аниона $[B_{11}H_{12}]^-$ (схема 6) [67]:

Структура 7-пиридиниевого производного установлена методом РСА (рис. 13) [67].

Подобно диметилсульфониевому производному нагревание $[7-B_{11}H_{13}NH_2CH_2CMe_3]$ и $[7-B_{11}H_{13}Py]$ при 170°С приводит к их изомеризации в соответствующие 1- и 2-изомеры [72].

Нагревание раствора (PPN)[7-B₁₁H₁₂SMe₂] в ацетонитриле при 60°С приводит к образованию нитрилиевого производного (PPN)[7-B₁₁H₁₂N≡CMe] с хорошим выходом (схема 7) [72].

Производные со связью бор-фосфор

Взаимодействие $[7-B_{11}H_{13}SMe_2]$ с PPh₃ или PPh₂Me в кипящем бензоле приводит к замещению диметилсульфидной группы с образованием соответствующих фосфониевых производных $[7-B_{11}H_{13}L]$ (L = PPh₃, PPh₂Me) (схема 8). Реакция (PPN)[7-B₁₁H₁₂SMe₂] с трифенилфосфином в хлористом метилене приводит к образованию (PPN)[7-B₁₁H₁₂PPh₃] с высоким выходом [72].

 $L = PPh_3, PPh_2Me$

Схема 8.

Рис. 13. Кристаллическая молекулярная структура [7-В₁₁Н₁₃Ру] [67].

Рис. 14. Кристаллическая молекулярная структура [7-B₁₁H₁₃PPh₂CH₂P(O)Ph₂] [48].

В ходе реакции клозо-ундекабората $(Et_3NBn)_2[B_{11}H_{11}]$ с трифторуксусной кислотой в хлористом метилене с последующим добавлением бис(дифенилфосфино)метана образуется с высоким выходом фосфониевое производное

[7- $B_{11}H_{13}PPh_2CH_2PPh_2$] (схема 9). Кристаллизацией последнего из смеси $CH_2Cl_2-Et_2O$ был получен соответствующий фосфиноксид [7- $B_{11}H_{13}PPh_2CH_2P(O)Ph_2$], строение которого было установлено методом PCA (рис. 14) [48].

Схема 9.

Алкильные производные тетрадекагидро-*нидо*ундекаборатного аниона [B₁₁H₁₄]⁻ образуются при взаимодействии соответствующих производных декаборана (14) с комплексом хлорборана $ClH_2B \cdot SMe_2$ в тетрагидрофуране в присутствии гидрида натрия (схема 10). Структура (Ph₃PMe)[7-B₁₁H₁₃CMe₂CHMe₂] установлена методом PCA (рис. 15) [42].

Реакция клозо-ундекабората К₂[В₁₁Н₁₁] с избытком KCN в воде при 110-140°С приводит к раскрытию борного остова с образованием цианопроизводного [7-B₁₁H₁₂CN]²⁻, выделенного осаждением из водного раствора в виде цезиевой и тетрафенилфосфониевой солей. Анион [7-В₁₁Н₁₂CN]²⁻ легко протонируется соляной кислотой в водном растворе до [7-B₁₁H₁₃CN]⁻, выделенного осаждением в виде тетраэтиламмониевой соли, а его окисление с помощью PbO₂ приводит цианопроизводному клозоундекабората $[2-B_{11}H_{10}CN]^{2-}$, выделенному в виде цезиевой, тетраэтиламониевой и 1-метил-3-этилимилазолиевых солей. Предполагается, что окисление протекает через промежуточное образование клозо-плюмбаборана [2-NC-1-PbB₁₁H₁₀]²⁻, который был идентифицирован с помощью РСА (см.

ниже). Взаимодействие полученного клозо-ундекабората [2-В₁₁Н₁₀СN]²⁻ с КСN при 110°С приводит к дицианопроизводному нидо-ундекабората $[7,9-B_{11}H_{11}(CN)_2]^{2-}$, выделенному в виде цезиевой и тетраэтиламмониевой солей. Анион [7,9- $B_{11}H_{11}(CN)_2]^{2-}$ легко протонируется соляной кислотой с образованием [7,9-В₁₁Н₁₂(CN)₂]⁻. Окисление нидо-ундекабората $[7,9-B_{11}H_{11}(CN)_2]^{2-}$ с помощью PbO₂, в свою очередь, приводит к дицианопроизводному клозо-ундекабората в виде смеси двух изомеров – $[2,3-B_{11}H_9(CN)_2]^{2-}$ и $[2,6-B_{11}H_9(CN)_2]^{2-}$, первый из которых является термодинамически более устойчивым (схема 11). Строение (EMIm)₂[7- $B_{11}H_{12}CN$, $(Et_4N)_2[7,9-B_{11}H_{10}(CN)_2]$, $(Ph_4P)_2[2 B_{11}H_{10}CN$] · CH₂Cl₂ и (Et₄N)₂[$B_{11}H_9(CN)_2$] установлено методом РСА (рис. 16) [76].

Рис. 15. Кристаллическая структура [7-В₁₁Н₁₃СМе₂СНМе₂]⁻ [42].

(б)

Рис. 16. Кристаллические структуры анионов *нидо*- $[7-B_{11}H_{12}CN]^{2-}$ (a), *нидо*- $[7,9-B_{11}H_{10}(CN)_2]^{2-}$ (b), *клозо*- $[2,3-B_{11}H_9(CN)_2]^{2-}$ (г) и *клозо*- $[2,6-B_{11}H_9(CN)_2]^{2-}$ (д) [76].

Цианоапроизводное фторированного клозо-ундекабората [2-B₁₁F₁₀CN]²⁻ получено необычной реакцией полиэдрического сжатия при обработке 1-аминопроизводного ундекафтор-карба-клозододекаборатного аниона $[1-H_2N-1-CB_{11}F_{11}]^- 2$ экв диизопропиламида лития в тетрагидрофуране (схема 12). Аналогичная реакция протекает и при взаимодействии [1-H₂N-1-CB₁₁F₁₁]⁻ с алкиллитиевыми реагентами, однако избыток алкиллития приводит к продуктам частичного замещения атомов фтора алкильными группами. Так, в случае MeLi происходит замещение до семи атомов фтора с образованием клозо-[B₁₁F₃Me₇CN]⁻, идентифицированного методом масс-спектрометрии. Строение K₂[2-B₁₁F₁₀CN] установлено методом PCA (рис. 17) [77].

Рис. 17. Кристаллическая структура аниона [2- $B_{11}F_{10}CN$]^{2–}[77].

СИВАЕВ

Следует отметить, что подобно материнскому *клозо*-ундекаборатному аниону $[B_{11}H_{11}]^{2-}$ его замещенные производные обладают структурной нежесткостью, поэтому установить их строение можно только с помощью PCA.

Внедрение атомов непереходных элементов

Подобно 7,8-дикарба-*нидо*-ундекаборатному аниону $[7,8-C_2B_9H_{12}]^-$ анион $[B_{11}H_{14}]^-$ вступает в реакции внедрения атомов металлов и неметаллов с закрытием икосаэдрического остова. Простейшим примером такой реакции является достройка до *клозо*-додекаборатного аниона $[B_{12}H_{12}]^{2-}$. Так, взаимодействие $(Me_3NH)[B_{11}H_{14}]$ с триэтиламинбораном при 150°С или Na $[B_{11}H_{14}] \cdot 2.5O(CH_2CH_2)_2O$ с NaBH₄ в кипящем диглиме приводит с хорошим выходом к образованию *клозо*-додекаборатного аниона, выделенного в виде триэтиламмониевой соли $(Et_3NH)_2[B_{12}H_{12}]$ (схема 13) [43].

Клозо-додекаборатный анион также может быть получен непосредственно реакцией полиэдрического расширения при нагревании суспензии $(Et_3NBn)_2[B_{11}H_{11}]$ в триэтиламинборане $Et_3N \cdot BH_3$ при 130°C [58].

Внедрение атома углерода в тетрадекагидро-*нидо*-ундекаборат анион $[B_{11}H_{14}]^-$ широко используется для синтеза карба-*клозо*-додекаборат аниона $[CB_{11}H_{12}]^-$ и его производных [78, 79]. Так, реакция $(Me_3NH)[B_{11}H_{14}]$ с хлороформом в щелочном водном растворе приводит к образованию карба-*клозо*-додекаборатного аниона $[CB_{11}H_{12}]^-$ [80], а депротонирование $(Me_3NH)[B_{11}H_{14}]$ с помощью NaH в тетрагидрофуране с последующим добавлением бензальхлорида или его производных – к образованию соответствующих 1-арилпроизводных [1-Ar-1-CB₁₁H₁₁]⁻ [81] (схема 14).

Аналогичным образом получены гетеробораны с атомами V группы (схема 15). Депротонирование (Me₃NH)[$B_{11}H_{14}$] с *n*-BuLi в тетрагидрофуране с последующим удалением триметиламина и реакцией с PCl₃ приводит к образованию с низким выходом фосфа-клозо-додекабората [РВ11Н11], выделенного в виде триметиламмониевой соли, а аналогичная реакция без удаления триметиламина — к 1-триметиламин-1-фосфа-клозо-додекаборану [1-Me-1-PB₁₁H₁₁] [82]. Аналогичным образом депротонирование Na[B₁₁H₁₄] с NaH в тетрагидрофуране и последующая реакция с MePCl₂ приводят к 1-метил-1-фосфа-клозо-додекаборану [1-[54]. При $Me-1-PB_{11}H_{11}$] взаимодействии (Et₃NH)[B₁₁H₁₄] с As₂O₃ в щелочном водном растворе с умеренным выходом образуется арса-*кло*зо-додекаборат [AsB₁₁H₁₁]⁻, выделенный в виде триэтиламмониевой соли [55, 83]. В результате реакции (Et₃NH)[B₁₁H₁₄] с триэтиламином в тетрагидрофуране с последующим добавлением SbCl₃ с низким выходом образуется стиба-*клозо*-додекаборат [SbB₁₁H₁₁]⁻, выделенный в виде тетраметиламмониевой соли [84]. Депротонирование (Me₃NH)[B₁₁H₁₄] *н*-бутиллитием в тетрагидрофуране с последующим добавлением BiCl₃ приводит с умеренным выходом к висма-*клозо*-додекаборату [BiB₁₁H₁₁]⁻, выделенному в виде тетраметиламмониевой соли [55, 85].

Схема 15.

Селена- и теллура-*клозо*-додекабораны [SeB₁₁H₁₁] и [TeB₁₁H₁₁] получены с низким выходом реакцией $Na[B_{11}H_{14}]$ с $NaHSeO_3$ и TeO_2 соответственно в смеси вода-гептан (схема 16) [86].

Ряд икосаэдрических металлоборанов был получен реакциями внедрения в нидо-ундекаборатный анион атомов непереходных металлов. Так, реакция Na₂[B₁₁H₁₃] с AlMe₃ в кипящем 1,2-диметоксиэтане приводит с высоким выходом к 1-ме-

тил-1-алюма-клозо-додекаборат-аниону [1-Ме-1- $AlB_{11}H_{11}l^{2-}$ (схема 17), структура трифениларсониевой соли которого была установлена методом РСА (рис. 18) [87].

Схема 17.

Депротонированием (Me₃NH)[$B_{11}H_{14}$] *н*-булиллитием в тетрагидрофуране с последующей реакцией с GeCl₂ или SnCl₂ с высоким выходом были получены герма- и станна-клозо-додекаборат-анионы $[GeB_{11}H_{11}]^{2-}$ и $[SnB_{11}H_{11}]^{2-}$ (схема 18) [88]. Химия станна-клозо-додекаборатного аниона [89] (рис. 19) подробно изучена в [90]; оказалось, что он является хорошим лигандом для образования различных комплексов со связью олово-металл [91-98]. Герма-клозо-додекаборатный анион также может выступать в качестве лиганда, образуя комплексы со связью германий-металл [99-101].

Рис. 18. Кристаллическая структура аниона [1-Ме-1- $AlB_{11}H_{11}$]²⁻[87].

Рис. 19. Фрагмент структуры [Li(THF)₃]₂[SnB₁₁H₁₁] (атомы углерода тетрагидрофурановых лигандов опущены для ясности [89].

Взаимодействие (Me₃NH)[B₁₁H₁₄] с PbCl₂ в щелочном водном растворе приводит с хорошим выходом к плюмба-*клозо*-додекаборат-аниону [PbB₁₁H₁₁]^{2–}, выделенному в виде тетраметиламмониевой соли (схема 19) [88].

Внедрение атомов переходных металлов

Металлобораны переходных металлов на основе ундекаборатного аниона изучены в гораздо меньшей степени, чем другие гетеробораны и аналогичные металлокарбораны [102]. В реакции $(Me_3NH)[B_{11}H_{14}]$ с NiCl₂ · 6H₂O в 2.5 М водном растворе NaOH с высоким выходом образуется диамагнитный желтый сэндвичевый комплекс никеля(IV) [1,1'-Ni(B₁₁H₁₁)₂]^{4–}, выделенный в виде цезиевой и трифенилметилфосфониевой солей (схема 19) [103].

Восстановление Na₂[B₁₁H₁₃] амальгамой натрия в ацетонитриле с последующим добавлением Cp₂Ni и осаждением Me₄NCl приводит к желтому комплексу никеля(IV) [Me₄N]⁺[1-Cp-1-NiB₁₁H₁₁]⁻. Аналогичный продукт – [Bu₄N]⁺[1-Cp-1-NiB₁₁H₁₁]⁻ – образуется при взаимодействии *клозо*-ундекабората (Bu₄N)₂[B₁₁H₁₁] с [CpNi(CO)]₂ в кипящем тетрагидрофуране (схема 20) [104].

Рис. 20. Кристаллическая структура никелаборанов $[1,1-Cl_2-2,3,4,5,6-(OiPr)_5NiB_{11}H_6]^{2-}$ [105] (a) и $[1,1-(OH_2)_2-2,3,4,5,6-(OiPr)_5NiB_{11}H_6]$ [106] (b).

Нагревание $(Et_3NH)[B_{11}H_{14}]$ и $[(Ph_3P)_2NiCl_2]$ в изопропаноле в автоклаве при 170°С в течение 96 ч приводит к внедрению атома никеля и замещению всех атомов водорода в ближайшем к атому металла поясе борного остова изопропоксигруппами с образованием комплексов никеля(IV) $H_2[1,1-Cl_2-2,3,4,5,6-(OiPr)_5NiB_{11}H_6]$ [105] и [1,1- $(OH_2)_2-2,3,4,5,6-(OiPr)_5NiB_{11}H_6]$ [106], которые были разделены колоночной хроматографией и идентифицированы с помощью PCA (рис. 20).

Взаимодействие (Me₃NH)[B₁₁H₁₄] с соединениями меди(I) (Cu₂O или CuCl) или меди(II) (CuO или CuCl₂) в водном щелочном растворе приводит к образованию диамагнитного оранжевого сэндвичевого комплекса меди(V) [1,1'-Cu(B₁₁H₁₁)₂]³⁻, выделенного с умеренным выходом в виде тетраметиламмониевой и тетрабутиламмониевой солей (схема 21) [103]. Строение (Bu₄N)₃[1,1'-Cu(B₁₁H₁₁)₂] было установлено методом РСА (рис. 21).

Рис. 21. Кристаллическая структура купраборана [3,3]-Ni $(B_{11}H_{11})_2$]³⁻ [103].

Схема 21.

Обработка (Me_3NH)[$B_{11}H_{14}$] 4 экв MeLi в тетрагидрофуране при 0°C с последующим добавлением [($PhMe_2P$)₂PdBr₂] в THF-CH₂Cl₂ приводит к нейтральному рыжему комплексу палладия(III) [1,4-Br₂-1,2,5-($PhMe_2P$)-1-PdB₁₁H₈] (схема 22), строение которого установлено методом PCA (рис. 22) [107].

Рис. 22. Кристаллическая структура [1,4-Br₂-1,2,5-(PhMe₂P)-клозо-1-PdB₁₁H₈] [107].

красному

Реакция [Li(THF)_x]₃[$B_{11}H_{12}$], полученного обработкой [Me₃NH][$B_{11}H_{14}$] двумя эквивалентами *t*-BuLi в тетрагидрофуране, с [(Ph₃P)₃RhCl] в тетрагидрофуране приводит к соответствующему

[Li(THF)_x]⁺₂[Ph₃PH]⁺[1,1-(Ph₃P)₂-1-RhB₁₁H₁₁]⁻ (схема 23) [57].

икосаэдрическому

родаборану

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 18-03-00951).

СПИСОК ЛИТЕРАТУРЫ

- 1. *King R.B.* // Chem. Rev. 2001. V. 101. № 5. P. 1119. https://doi.org/10.1021/cr000442t
- Chen Z., King R.B. // Chem. Rev. 2005. V. 105. № 10. P. 3613. https://doi.org/10.1021/cr0300892
- 3. *Sivaev I.B., Bregadze V.I.* Polyhedral Boron Hydrides in Use: Current Status and Perspectives. Hauppauge: Nova Science Publishers, 2009. 85 p.
- 4. *Sivaev I.B.* // Chem. Heterocycl. Compd. 2017. V. 53. № 6/7. Р. 638. [*Сиваев И.Б.* // Химия гетероцикл. соединений. 2017. Т. 53. № 6/7. С. 638.] https://doi.org/10.1007/s10593-017-2106-9
- Shan Z.-X., Sheng L.-L., Yang R.-J. // Chin. J. Explos. Propellants. 2017. V. 40. № 3. P. 1. https://doi.org/10.14077/j.issn.1007-7812.2017.03.001
- Skachkova V.K., Goeva L.V., Gracheva A.V. et al.// Russ. J. Inorg. Chem. 2017. V. 62. № 1. Р. 84. [Скачкова В.К., Гоева Л.В., Грачева А.В. и др. // Журн. неорган. химии. 2017. Т. 62. № 1. С. 84.] https://doi.org/10.1134/S0036023617010211
- Sheng L., Shan Z., Guo X., Yang R. // Chin. J. Org. Chem. 2018. V. 38. № 8. P. 2093. https://doi.org/10.6023/cjoc201712022
- Sharon P., Afri M., Mitlin S. et al. // Polyhedron. 2019. V. 157. P. 71. https://doi.org/10.1016/j.poly.2018.09.055
- 9. *Stavila V., Her J.H., Zhou W. et al.* // J. Solid State Chem. 2010. V. 183. № 5. P. 1133. https://doi.org/10.1016/j.jssc.2010.03.026
- 10. *Safronov A.V., Jalisatgi S.S., Lee H.B. et al.* // Int. J. Hydrogen Energy. 2011. V. 36. № 1. P. 234. https://doi.org/10.1016/j.ijhydene.2010.08.120
- 11. Udovic T.J., Matsuo M., Unemoto A. et al. // Chem. Commun. 2014. V. 50. № 28. P. 3750. https://doi.org/10.1039/C3CC49805K
- Udovic T.J., Matsuo M., Tang W.S. et al. // Adv. Mater. 2014. V. 26. № 45. P. 7622. https://doi.org/10.1002/adma.201403157
- 13. *Sadikin Y., Brighi M., Schouwink P. et al.* // Adv. Energy Mater. 2015. V. 5. № 21. P. 1501016. https://doi.org/10.1002/aenm.201501016
- 14. Sadikin Y., Schouwink P., Brighi M. et al. // Inorg. Chem. 2017. V. 56. № 9. P. 5006. https://doi.org/10.1021/acs.inorgchem.7b00013
- Kweon K.E., Varley J.B., Shea P. et al. // Chem. Mater. 2017. V. 29. № 21. P. 9142. https://doi.org/0.1021/acs.chemmater.7b02902
- Brighi M., Murgia F., Łodziana Z. et al. // J. Power Sources. 2018. V. 404. P. 7. https://doi.org/10.1016/j.jpowsour.2018.09.085
- 17. *Kaszynski P.* // Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine. V. 3. Boron in Materials Chemistry / Eds.

Hosmane N.S., Eagling R. London: World Scientific Publishing Europe, 2018. P. 57.

- Ali M.O., Pociecha D., Wojciechowski J. et al. // J. Organomet. Chem. 2018. V. 865. P. 226. https://doi.org/10.1016/j.jorganchem.2018.04.003
- 19. Kaszynski P., Ali M.O., Lasseter J.C. et al. // Chem. Eur. J. 2019.
 - https://doi.org/10.1002/chem.201805392
- Knapp C. // Comprehensive Inorganic Chemistry II. V. 1. Amsterdam: Elsevier, 2013. P. 651.
- Sivaev I.B., Bregadze V.I. // Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine. V. 1. Boron in Organometallic Chemistry / Eds. Hosmane N.S., Eagling R. London: World Scientific Publishing Europe, 2018. P. 147.
- Avdeeva V.V., Malinina E.A., Sivaev I.B. et al. // Crystals. 2016. V. 6. P. 60. https://doi.org/10.3390/cryst6050060
- 23. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1673. https://doi.org/10.1134/S0036023617130022
- 24. Sivaev I.B., Bregadze V.I., Kuznetsov N.T. // Russ. Chem. Bull. 2002. V. 51. № 8. Р. 1362. [Сиваев И.Б., Брегадзе В.И., Кузнецов Н.Т. // Изв. Акад. наук. Сер. хим. 2002. № 8. С. 1256.] https://doi.org/10.1023/A:1020942418765
- Prikaznov A.V., Laskova Yu.N., Semioshkin A.A. et al. // Russ. Chem. Bull. 2011. V. 60. № 12. Р. 2550. [Приказнов А.В., Ласькова Ю.Н., Семиошкин А.А. и др. // Изв. Акад. наук. Сер. хим. 2011. № 12. С. 2501.] https://doi.org/10.1007/s11172-011-0392-4
- Kikuchi S., Kanoh D., Sato S. et al. // J. Control. Release. 2016. V. 237. P. 160. https://doi.org/10.1016/j.jconrel.2016.07.017
- 27. *Tachikawa S., Miyoshi T., Koganei H. et al.* // Chem. Commun. 2014. V. 50. № 82. P. 12325. https://doi.org/10.1039/C4CC04344H
- Bruskin A., Sivaev I., Persson M. et al. // Nucl. Med. Biol. 2004. V. 31. № 2. P. 205. https://doi.org/10.1016/j.nucmedbio.2003.08.005
- 29. Orlova A., Bruskin A., Sivaev I. et al. // Anticancer Res. 2006. V. 26. № 2A. P. 1217.
- 30. *Tolmachev V., Sjöberg S.* // Collect. Czech. Chem. Commun. 2002. V. 67. № 7. P. 913. https://doi.org/10.1135/cccc20020913
- Wilbur D.S., Chyan M.-K., Hamlin D.K. et al. // Bioconjugate Chem. 2011. V. 22. № 6. P. 1089. https://doi.org/10.1021/bc1005625
- 32. *Wilbur D.S., Chyan M.-K., Nakamae H. et al.* // Bioconjugate Chem. 2012. V. 23. № 3. P. 409. https://doi.org/10.1021/bc200401b
- 33. Aftandilian V.D., Miller H.C., Parshall G.W. et al. // Inorg. Chem. 1962. V. 1. № 4. P. 734. https://doi.org/10.1021/ic50004a003
- 34. Klanberg F, Muetterties E.L. // Inorg. Chem. 1966. V. 5. № 11. P. 1955. https://doi.org/10.1021/ic50045a027
- Volkov V., Paetzold P. // J. Organomet. Chem. 2003.
 V. 680. № 1–2. P. 301. https://doi.org/10.1016/S0022-328X(03)00460-1

- 36. *Sivaev I.B., Prikaznov A.V., Naoufal D.* // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
- Zhizhin K.Yu., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- 38. *Sivaev I.B., Bregadze V.I., Sjöberg S.* // Collect. Czech. Chem. Commun. 2002. V. 67. № 6. P. 679. https://doi.org/10.1135/cccc20020679
- 39. Kononova E.G., Leites L.A., Bukalov S.S. et al. // Eur. J. Inorg. Chem. 2007. № 31. P. 4911. https://doi.org/10.1002/ejic.200700461
- 40. Leites L.A., Aysin R.R., Kononova E.G. et al. // Russ. Chem. Bull. 2018. V. 67. № 8. Р. 1340. [Лейтес Л.А., Айсин Р.Р., Кононова Е.Г. и др. // Изв. Акад наук. Сер. хим. 2018. № 8. С. 1340.] https://doi.org/10.1007/s11172-018-2223-3
- 41. *Titov L.V., Gavrilova L.A., Petrovskii P.V. //* Russ. J. Inorg. Chem. 2008. V. 53. № 4. Р. 565. [*Титов Л.В., Гаврилова Л.А., Петровский П.В. //* Журн. неорган. химии. 2008. Т. 53. № 4. С. 621.] https://doi.org/10.1134/S0036023608040141
- 42. Gaines D.F., Bridges A.N., Hayashi R.K. // Inorg. Chem. 1994. V. 33. № 7. P. 1243. https://doi.org/10.1021/ic00085a002
- 43. *Miller H.C., Miller N.E., Muetterties E.L.* // Inorg. Chem. 1964. V. 3. № 10. P. 1456. https://doi.org/10.1021/ic50020a026
- 44. *Hosmane N.S., Wermer J.R., Hong Z. et al.* // Inorg. Chem. 1987. V. 26. № 21. P. 3638. https://doi.org/10.1021/ic00268a045
- 45. *Thomas R.L., Rath N.P., Barton L.* // Inorg. Chem. 2002. V. 41. № 1. P. 67. https://doi.org/10.1021/ic010665h
- 46. Dunks G.B., Ordonez K.P. // Inorg. Chem. 1978. V. 17. № 6. P. 1514. https://doi.org/10.1021/ic50184a025
- 47. Dunks G.B., Barker K., Hedaya E. et al. // Inorg. Chem. 1981. V. 20. № 6. P. 1692. https://doi.org/10.1021/ic50220a015
- 48. Volkov O., Radacki K., Thomas R.L. et al. // J. Organomet. Chem. 2005. V. 690. № 11. P. 2736. https://doi.org/10.1016/j.jorganchem.2005.02.029
- 49. Getman T.G., Krause J.A., Shore S.G. // Inorg. Chem. 1988. V. 27. № 14. P. 2398. https://doi.org/10.1021/ic00287a006
- 50. McGrath T.D., Welch A.J. // Acta Crystallogr. C. 1997. V. 53. № 2. P. 229. https://doi.org/10.1107/S0108270196013303
- Hepp A., Labbow R., Reiβ F. et al. // Eur. J. Inorg. Chem. 2018. № 25. P. 2905. https://doi.org/10.1002/ejic.201800219
- 52. *Tang W.S., Dimitrievska M., Stavila V. et al.* // Chem. Mater. 2017. V. 29. № 24. P. 10496. https://doi.org/10.1021/acs.chemmater.7b04332
- 53. Klanberg F, Muetterties E.L. // Inorg. Synth. 1968. V. 11. P. 24. https://doi.org/10.1002/9780470132425.ch6
- 54. Getman T.D., Deng H.-B., Hsu L.-Y. et al. // Inorg. Chem. 1989. V. 28. № 18. P. 3612. https://doi.org/10.1021/ic00317a046

- 55. Ouassas A., R'Kha C., Mongeot H. et al. // Inorg. Chim. Acta. 1991. V. 180. № 2. P. 257. https://doi.org/10.1016/S0020-1693(00)84941-5
- 56. *Fritchie C.J.* // Inorg. Chem. 1967. V. 6. № 6. P. 1199. https://doi.org/10.1021/ic50052a029
- 57. Dirk W., Paetzold P., Radacki K. // Z. Anorg. Allg. Chem. 2001. V. 627. № 12. P. 2615. https://doi.org/10.1002/1521-3749(200112)627:12<2615::AID-ZAAC2615>3.0.CO;2-M
- Volkov O., Dirk W., Englert U. et al. // Z. Anorg. Allg. Chem. 1999. V. 625. № 7. P. 1193. https://doi.org/10.1002/(SICI)1521-3749(199907)625:7<1193::AID-ZAAC1193>3.0.CO;2-L
- 59. *Bernhardt E., Willner H.* Verfahren zur Herstellung von *closo*-Boranaten. DE102008004530A1, 2009.
- 60. *Ouassas A., Fenet R., Mongeot H. et al.* // J. Chem. Soc., Chem. Commun. 1995. № 16. P. 1663. https://doi.org/10.1039/C39950001663
- 61. Ould-Amara S., Petit E., Devautour-Vinot S. et al. // ACS Omega. 2018. V. 3. № 10. P. 12878. https://doi.org/10.1021/acsomega.8b02192
- 62. *Volkov O., Paetzold P., Hu C.* // Z. Anorg. Allg. Chem. 2006. V. 632. № 6. P. 945. https://doi.org/10.1002/zaac.200500451
- 63. *Hosmane N.S., Franken A., Zhang G. et al.*// Main Group Met. Chem. 1998. V. 21. № 6. P. 319. https://doi.org/10.1515/MGMC.1998.21.6.319
- 64. *Tolpin E.I., Lipscomb W.N.* // J. Am. Chem. Soc. 1973. V. 95. № 7. P. 2384. https://doi.org/10.1021/ja00788a058
- 65. Volkov O., Paetzold P., Hu C. et al. // Z. Anorg. Allg. Chem. 2001. V. 627. № 5. P. 1029. https://doi.org/10.1002/1521-3749(200105)627:5<1029::AID-ZAAC1029>3.0.CO;2-B
- Warneke J., Konieczka S.Z., Hou G.-L. et al. // Phys. Chem. Chem. Phys. 2019. https://doi.org/10.1039/C8CP05313H
- Volkov O., Radacki K., Paetzold P. et al. // Z. Anorg. Allg. Chem. 2001. V. 627. № 6. P. 1185. https://doi.org/10.1002/1521-3749(200106)627:6<1185::AID-ZAAC1185>3.0.CO;2-F
- 68. *Edwards L.J., Makhlouf J.M.* // J. Am. Chem. Soc. 1966. V. 88. № 20. P. 4728. https://doi.org/10.1021/ja00972a040
- 69. Anufriev S.A., Sivaev I.B., Suponitsky K.Yu. et al. // Eur. J. Inorg. Chem. 2017. № 38–39. P. 4436. https://doi.org/10.1002/ejic.201700785
- 70. Keller D.L., Kester J.G., Huffman J.C. et al. // Inorg. Chem. 1993. V. 32. № 23. P. 5067. https://doi.org/10.1021/ic00075a020
- Bould J., Kivekäs R., Sillanpää R. et al. // Acta Crystallogr. C. 2003. V. 59. № 5. P. o271. https://doi.org/10.1107/S010827010300698X
- 72. Dirk W., Paetzold P., Hu C. et al. // Z. Anorg. Allg. Chem. 2004. V. 630. № 15. P. 2652. https://doi.org/10.1002/zaac.200400335
- 73. Wong E.H., Gatter M.G. // Inorg. Chim. Acta. 1982. V. 61. P. 95. https://doi.org/10.1016/S0020-1693(00)89124-0

- 74. *Wong E.H., Prasad L., Gabe E.J. et al.* // Inorg. Chem. 1983. V. 22. № 7. P. 1143. https://doi.org/10.1021/ic00149a029
- 75. Friesen G.D., Little J.L., Huffman J.C., Todd L.J. // Inorg. Chem. 1979. V. 18. № 3. P. 755. https://doi.org/10.1021/ic50193a044
- 76. *Konieczka S.Z., Schlüter F., Sindorf C. et al.* // Chem. Eur. J. 2018. V. 24. № 14. P. 3528. https://doi.org/10.1002/chem.201704860
- 77. *Finze M.* // Angew. Chem. Int. Ed. 2007. V. 46. № 46. P. 8880. https://doi.org/10.1002/anie.200703385
- 78. Körbe S., Schreiber P.J., Michl J. // Chem. Rev. 2006. V. 106. № 12. P. 5208. https://doi.org/10.1021/cr050548u
- 79. Douvris C., Michl J. // Chem. Rev. 2013. V. 113. № 10. P. PR179. https://doi.org/10.1021/cr400059k
- 80. *Franken A., King B.T., Rudolph J. et al.* // Collect. Czech. Chem. Commun. 2001. V. 66. № 8. P. 1238. https://doi.org/10.1135/cccc20011238
- 81. *Körbe S., Sowers D.B., Franken A. et al.* // Inorg. Chem. 2004. V. 43. № 25. P. 8158. https://doi.org/10.1021/ic049255u
- Little J.L., Whitesell M.A., Chapman R.W. et al. // Inorg. Chem. 1993. V. 32. № 15. P. 3369. https://doi.org/10.1021/ic00067a030
- Hanusa T.P., de Parisi N.R., Kester J.G. et al. // Inorg. Chem. 1987. V. 26. № 24. P. 4100. https://doi.org/10.1021/ic00271a026
- 84. *Little J.L.* // Inorg. Chem. 1979. V. 18. № 6. P. 1598. https://doi.org/10.1021/ic50196a042
- 85. Little J.L., Whitesell M.A., Kester J.G. et al. // Inorg. Chem. 1990. V. 29. № 4. P. 804. https://doi.org/10.1021/ic00329a046
- 86. *Friessen G.D., Todd L.J.* // J. Chem. Soc., Chem. Commun. 1978. № 8. P. 349. https://doi.org/10.1039/C39780000349
- 87. Getman T.D., Shore S.G. // Inorg. Chem. 1988. V. 27. № 20. P. 3439. https://doi.org/10.1021/ic00293a002
- 88. Chapman R.W., Kester J.G., Folting K. et al. // Inorg. Chem. 1992. V. 31. № 6. P. 979. https://doi.org/10.1021/ic00032a011
- 89. Gädt T., Wesemann L. // Z. Anorg. Allg. Chem. 2007. V. 633. № 5–6. P. 693. https://doi.org/10.1002/zaac.200600348
- 90. Gädt T., Wesemann L. // Organometalics. 2007. V. 26. № 10. P. 2474.
 - https://doi.org/10.102/om061042k

- 91. *Hagen S., Schubert H., Maichle-Mössmer C. et al.* // Inorg. Chem. 2007. V. 46. № 16. P. 6775. https://doi.org/10.1021/ic700464d
- 92. Kirchmann M., Fleischhauer S., Wesemann L. // Organometallics. 2008. V. 27. № 12. P. 2803. https://doi.org/10.102/om8001679
- 93. *Kirchmann M., Eichele K., Wesemann L. //* Inorg. Chem. 2008. V. 47. № 13. P. 5988. https://doi.org/10.1021/ic800357z
- 94. *Kirchmann M., Eichele K., Schappacher F.M. et al.* // Angew. Chem. Int. Ed. 2008. V. 47. № 5. P. 963. https://doi.org/10.1002/anie.200704814
- 95. *Kirchmann M., Eichele K., Wesemann L. //* Organometallics. 2008. V. 27. № 22. P. 6029. https://doi.org/10.1021/om8006536
- 96. Schubert H., Wesemann L. // Organometallics. 2010. V. 29. № 21. P. 4906. https://doi.org/10.1021/om1001556
- 97. Schubert H., Küchle F.-R., Wesemann L. // Collect. Czech. Chem. Commun. 2010. V. 75. № 9. P. 963. https://doi.org/10.1135/cccc20110040
- 98. Dimmer J.-A., Hornung M., Wütz T., Wesemann L. // Organometallics. 2012. V. 31. № 31. P. 7044. https://doi.org/10.1021/om300438x
- 99. Dimmer J.-A., Schubert H., Wesemann L. // Chem. Eur. J. 2009. V. 15. № 40. P. 10613. https://doi.org/10.1002/chem.200901308
- 100. *Dimmer J.-A., Wesemann L. //* Eur. J. Inorg. Chem. 2011. № 2. P. 235. https://doi.org/10.1002/ejic.201000857
- 101. Dimmer J.-A., Wesemann L. // Z. Anorg. Allg. Chem. 2011. V. 636. № 6. P. 643. https://doi.org/10.1002/zaac.201100054
- 102. *Grimes R.N.* // Carboranes. 3d Ed. London: Academic Press, 2016. P.711–903.
- 103. *Kester J.C., Keller D., Huffman J.C. et al.* // Inorg. Chem. 1994. V. 33. № 24. P. 5438. https://doi.org/10.1021/ic00102a015
- 104. Sullivan B.P., Leyden R.N., Hawthorne M.F. // J. Am. Chem. Soc. 1975. V. 97. № 2. P. 455. https://doi.org/10.1021/ja00835a058
- 105. Wu L., Dou J., Guo Q. et al. // J. Coord. Chem. 2006. V. 59. № 14. P. 1603. https://doi.org/10.1080/00958970600572834
- 106. Wu L.-B., Dou J.-M., Guo Q.-L. et al. // Acta Crystallogr. E. 2005. V. 61. № 12. P. m2585. https://doi.org/10.1107/S1600536805036470
- 107. Jasper S.A., Huffman J.C., Todd L.J. // Inorg. Chem. 1998. V. 37. № 23. P. 6060. https://doi.org/10.1021/ic980681n