СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.185

СИНТЕЗ, СТРУКТУРНЫЕ ХАРАКТЕРИСТИКИ И ТЕПЛОВОЕ РАСШИРЕНИЕ ФОСФАТОВ $Zn_xMg_{0.5+x}E_{2-x}(PO_4)_3$ (E = Ti, Zr)

© 2019 г. В. И. Петьков^{1,} *, Д. А. Лавренов¹, М. В. Суханов¹, А. М. Ковальский², Е. Ю. Боровикова³

¹Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Россия, 603950 Нижний Новгород, пр-т Гагарина, 23

²Национальный исследовательский технологический университет "МИСиС",

Россия, 119049 Москва, Ленинский пр-т, 4

³Московский государственный университет им. М.В. Ломоносова, Россия, 119991 Москва, Ленинские горы, 1

*E-mail: petkov@inbox.ru

Поступила в редакцию 14.01.2019 г. После доработки 12.02.2019 г. Принята к публикации 15.03.2019 г.

Фосфаты $Zn_xMg_{0.5+x}E_{2-x}(PO_4)_3$ (E = Ti, Zr) синтезированы золь-гель методом с последующей термообработкой и исследованы с помощью рентгенографии, электронного микрозондового анализа и ИК-спектроскопии. Установлено, что твердый раствор $Zn_xMg_{0.5+x}Ti_{2-x}(PO_4)_3$ ($0 \le x \le 0.5$, пр. гр. $R\overline{3}$) кристаллизуется в структурном типе NaZr₂(PO₄)₃ и устойчив до 1050°C. Уточнена структура $Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO_4)_3$. Ее основу составляет каркас из соединенных общими вершинами тетраэдров PO₄ и октаэдров (Mg,Ti)O₆. В полостях каркаса располагаются катионы Mg²⁺ и Zn²⁺, имеющие октаэдрическую кислородную координацию. Твердый раствор $Zn_xMg_{0.5+x}Zr_{2-x}(PO_4)_3$ ($0 \le x \le 0.5$, пр. гр. $P2_1/n$), кристаллизующийся в структурном типе $Sc_2(WO_4)_3$, термически нестоек выше 1000°C. Число полос валентных и деформационных колебаний иона PO_4^{3-} в ИК-спектрах ортофосфатов находится в согласии с фактор-групповым анализом для пр. гр. $R\overline{3}$ и $P2_1/n$. Изучено тепловое расширение твердых растворов $Zn_xMg_{0.5+x}E_{2-x}(PO_4)_3$ в интервале температур 25–800°C. Регулирование состава этих средне- и высокорасширяющихся материалов позволяет изменять характеристики теплового расширения в желаемом направлении.

Ключевые слова: цинк, магний, титан, цирконий, структуры NZP и SW, фазообразование **DOI:** 10.1134/S0044457X19080099

введение

В плане моделирования новых соединений вызывает интерес структурный тип трифосфата натрия-дициркония (NZP, NASICON) [1]. К этому структурному типу относится природный минерал коснарит KZr₂(PO₄)₃ [2]. Семейство NZP включает соединения и твердые растворы, описываемые кристаллохимической формулой $(M1)_{0 \to 1}(M2)_{0 \to 3}\{[L_2(PO_4)_3]^{p-}\}_{3\infty},$ где ${[L_2(PO_4)_3]^{p-}}_{3\infty}$ — каркас структуры (p — заряд каркаса), а $(M1)_{0 \rightarrow 1}$, $(M2)_{0 \rightarrow 3}$ – типы внекаркасных катионных позиций с обозначением заполнения позиций в каждом типе [3]. Заселение одних и тех же кристаллографических позиций атомами в степенях окисления от +1 до +5, а также широкие вариации изо- и гетеровалентного изоморфизма определяют уникальные свойства этих материалов — способность противостоять тепловым ударам, суперионную проводимость и каталитическую активность [3–9].

Двойные фосфаты $M_{0.5}Ti_2(PO_4)_3$ (М – катион в степени окисления +2) относятся к структурному типу NZP, кристаллизуются в ромбоэдрической системе, катионы М заселяют половину внекаркасных (М1)-полостей [10]. Фосфаты $M_{0.5}Zr_2(PO_4)_3$ с каркасными катионами циркония бо́льшего размера по сравнению с титаном и крупными ионами M (Cd, Pb, Sr, Ba) в полостях кристаллизуются в структуре NZP, с ионами M меньшего размера – в структуре Sc₂(WO₄)₃ (SW) [10]. Соединение $Mn_{0.5}Zr_2(PO_4)_3$ существует в виде модификаций SW и NZP [10].

Анализ литературных данных о фосфатах структурных типов NZP и SW, содержащих кати-

оны M только в каркасе: $[M_{1/3}Nb_{5/3}(PO_4)_3]$ (M = = Mg, Mn, Co, Ni, Cu, Zn) [11], Na_{1+2x}[Mg_xZr_{2-x}(PO₄)₃] ($0 \le x \le 1$) [12], Na₃[MZr(PO₄)₃] (M = Mn, Mg) [13], показал, что часть позиций каркаса может быть занята сравнительно небольшими катионами Mg, Mn, Co, Ni, Cu или Zn. Попытка синтеза соединения Na₃[ZnZr(PO₄)₃] не увенчалась успехом [13].

Сведения о фосфатах, содержащих элементы в степени окисления +2 одновременно в позициях каркаса и в полостях структуры, ограничены твердыми растворами $M_{0.5 + x}M'_{x}E_{2 - x}(PO_{4})_{3}$ (M, M' = Mg, Co, Mn, Cd, Ca, Sr, Pb, Ba; E = Ti, Zr) [14]. На устойчивость и смену структурного типа таких фосфатов влияют природа и размеры катионов, сочетающихся в каркасе и в полостях. Можно предположить, что структурный тип NZP устойчив, если каркасные позиции заселены катионами Е⁴⁺ и М²⁺, радиус которых меньше, чем у Cd²⁺, а позиции полостей – катионами с радиусом, равным или бо́льшим, чем у кадмия. Структурный тип SW предпочтителен для фосфатов, содержащих в полостях небольшие катионы, незначительно отличающиеся по размеру от каркасообразующих катионов.

На изоморфные замещения атомов в описываемых фосфатах определенный отпечаток накладывает стереохимия переходных элементов. Так, в числе потенциальных кристаллохимических родственников титана, лишенного в состоянии Ті⁴⁺ *d*-электронов, может быть представлен цинк. Химические связи Zn-O в кристаллических структурах имеют ковалентный характер, прежде всего за счет *d*¹⁰-конфигурации цинка сферической формы, не вносящей специфику, присущую остальным *d*-состояниям. Однако катион Zn^{2+} , имея относительно большой радиус (0.74 Å), проявляет тенденцию к тетраэдрической координации, в отличие от октаэдрической координации Ті⁴⁺ (для которого практически не существует альтернативы), имеющего широкие изоморфные отношения с Zr⁴⁺ [15].

Цель настоящей работы заключалась в экспериментальной проверке возможности включения цинка в каркасные и внекаркасные кристаллографические позиции фосфатов, описываемых общей формулой $Zn_xMg_{0.5 + x}E_{2 - x}(PO_4)_3$ (E = Ti, Zr), изучении их фазообразования, выявлении поля концентрационно-температурной стабильности ожидаемых твердых растворов и определении параметров теплового расширения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы $Zn_xMg_{0.5 + x}E_{2 - x}(PO_4)_3$ (E = Ti, Zr) с x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 получали золь-гель методом с последующей термообработкой. Исходными реагентами для синтеза служили реактивы квалификации "х. ч.": MgO, ZnO, TiOCl₂ (получен из TiCl₃ путем окисления на воздухе смесью соляной и азотной кислот), $ZrOCl_2 \cdot 8H_2O$ и H_3PO_4 . Стехиометрические количества растворенных в соляной кислоте оксилов цинка и магния и 1М водного раствора оксихлорида титана или циркония смешивали при комнатной температуре. Затем при перемешивании добавляли раствор ортофосфорной кислоты, взятый также в соответствии со стехиометрией. Реакционные смеси высушивали при 90°С и подвергали термообработке на воздухе при 600-1100°С в течение 24 ч на каждой стадии. Поэтапное нагревание чередовали с диспергированием для обеспечения гомогенизации смесей. Синтезированные образцы представляли собой поликристаллические порошки белого цвета.

Рентгенограммы образцов записывали на дифрактометре Shimadzu XRD-6000 (Си K_{α} -излучение, $\lambda = 1.54178$ Å, диапазон углов $2\theta = 10^{\circ}-60^{\circ}$). Рентгенофазовый анализ (РФА) использовали для установления фазового состава образцов в процессе их получения после каждого этапа изотермического обжига. Индицирование рентгенограмм проводили методом структурной аналогии с использованием кристаллографических данных описанных в литературе соединений. Параметры элементарных ячеек полученных фосфатов уточняли методом наименьших квадратов. Погрешности в определении параметров не превышали $\Delta a = \pm 0.006$, $\Delta b = \pm 0.004$, $\Delta c = \pm 0.006$ Å, $\Delta \beta = = \pm 0.04^{\circ}$.

Контроль химического состава и однородности образцов осуществляли с помощью сканирующего электронного микроскопа JEOL JSM-7600F, оснащенного термополевой электронной пушкой (катод Шоттки), с пространственным разрешением до 1 нм. Микроскоп оснащен системой микроанализа — энергодисперсионным спектрометром OXFORD X-Max 80 (Premium) с полупроводниковым кремний-дрейфовым детектором с безазотным охлаждением.

Рентгенодифракционный спектр $Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO_4)_3$ (x = 0.2) для структурного исследования записывали в интервале углов $2\theta = 10^{\circ}-110^{\circ}$ с шагом сканирования 0.02° и экспозицией в точке 15 с. Обработку рентгенограммы и уточнение структуры фосфата проводили методом Ритвельда [16] с использованием программы RIETAN-97 [17]. Аппроксимирование профилей пиков осуществляли согласно модифицированной функции псевдо-Войта (Mod-TCH pV [18]). В качестве базовой модели для уточнения кристаллической структуры фосфата использовали координаты атомов NaGeTi(PO₄)₃ [19].

Функциональный состав образцов подтверждали методом ИК-спектроскопии. ИК-спектры поглощения записывали на ИК-Фурье-спектро-

Phc. 1. Pehrrehorpambi ϕ oc ϕ arob $Zn_xMg_{0.5+x}Ti_{2-x}(PO_4)_3$: x = 0 (1), 0.1 (2), 0.3 (3), 0.4 (4), 0.5 (5).

метре Shimadzu FTIR-8400S в диапазоне волновых чисел 400-1400 см⁻¹.

Высокотемпературную съемку осуществляли в температурном интервале 25–800°С с использованием приставки НА-1001 фирмы Shimadzu. Скорость нагревания составляла 10 град/мин. Перед началом съемки образец выдерживали при заданной температуре в течение 10 мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При изучении процессов фазообразования в системах $Zn_xMg_{0.5 + x}E_{2 - x}(PO_4)_3$ образцы в процессе синтеза подвергали изотермическому обжигу при 600, 800, 900, 1000, 1050 и 1100°С. Время выдержки при каждой температуре составляло 24 ч. В конце каждой стадии обжига часть образца подвергали воздушной закалке и анализировали. Оставшуюся часть продолжали нагревать, так поступали на протяжении всего ступенчатого обжига.

В системе $Zn_xMg_{0.5 + x}Ti_{2-x}(PO_4)_3$ образуется ограниченный твердый раствор в области составов $0 \le x \le 0.5$. Однофазные продукты со структурой NZP кристаллизуются при 800°С.

На рис. 1 представлено влияние температуры на формирование фазы состава $Zn_{0.5}Mg_{1.0}Ti_{1.5}(PO_4)_3$ (x = 0.5). При 600°С методом РФА фиксируется смесь фаз: целевого продукта, $Mg_2P_2O_7$, ZnP_4O_{11} и $Mg_3(PO_4)_2$. С повышением температуры доля примесных фаз уменьшается, а кристалличность целевой фазы возрастает. Тройной фосфат устойчив до 1050°С, последующее повышение температуры ведет к его разложению.

Рис. 2. Зависимость интенсивности максимальных рефлексов отражения фаз, образующихся при синтезе фосфата $Zn_{0.5}Mg_{1.0}Ti_{1.5}P_3O_{12}$, от температуры. Обозначения фаз: $1 - Zn_{0.5}Mg_{1.0}Ti_{1.5}(PO_4)_3$ ($2\theta = 24.5^{\circ}$), $2 - Mg_2P_2O_7$ ($2\theta = 30.1^{\circ}$), $3 - ZnP_4O_{11}$ ($2\theta = 27^{\circ}$), $4 - Mg_3(PO_4)_2$ ($2\theta = 25.6^{\circ}$).

На рентгенограммах образцов твердого раствора $Zn_xMg_{0.5+x}Ti_{2-x}(PO_4)_3$ присутствуют интенсивные рефлексы фаз NZP-строения (рис. 2). По данным электронной микроскопии, образцы гомогенные, химический состав, по результатам микрозондового анализа, соответствует теоретическим значениям. Параметры элементарных ячеек образцов твердого раствора монотонно изменяются с ростом *x* (рис. 3). При *x* > 0.5 образцы системы $Zn_xMg_{0.5+x}Ti_{2-x}P_3O_{12}$ представляют собой смесь фаз (рис. 1).

ИК-спектры изученных образцов $Zn_xMg_{0.5+x}Ti_{2-x}$ (PO₄)₃ ($0 \le x \le 0.5$) имеют вид, типичный для ортофосфатов NZP-строения с пр. гр. $R\overline{3}$ (рис. 4a).

Рис. 3. Зависимость параметров элементарных ячеек фосфатов $Zn_xMg_{0.5+x}Ti_{2-x}(PO_4)_3$ от состава.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 8 2019

Рис. 4. ИК-спектры фосфатов $Zn_xMg_{0.5+x}E_{2-x}(PO_4)_3$: E = Ti (a), Zr (б), x = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6).

В ИК-спектрах фосфатов с пр. гр. R3 правилами отбора разрешено по шесть полос асимметричных валентных v_{as} и асимметричных деформационных δ_{as} колебаний иона PO_4^{3-} , а также четыре полосы симметричных деформационных δ_s колебаний и две полосы симметричных валентных v_s колебаний этого иона. Полосы в области 1270-1040 см⁻¹ отнесены к валентным асимметричным колебаниям v_{as} иона PO_4^{3-} . Весьма большие значения волновых чисел (1270-1240 см⁻¹) объясняются тем, что при большом значении угла РОТі в структурах электронная плотность поляризованного иона Ti⁴⁺, имеющего малый размер и большой заряд, частично локализуется в связи Р-О; это приводит к более высоким значениям силовых постоянных связи Р-О. К валентным симметричным v_s колебаниям относятся полосы

в области 990-880 см⁻¹. Полосы при 680-540 см⁻¹ соответствуют деформационным асимметричным δ_{as} , а при 460-440 см⁻¹ – деформационным

симметричным δ_s колебаниям иона PO_4^{3-} .

Для подтверждения строения твердого раствора $Zn_xMg_{0.5 + x}Ti_{2 - x}(PO_4)_3$ проведено уточнение его структуры (x = 0.2) при комнатной температуре методом Ритвельда. Условия съемки, параметры ячейки и основные данные по уточнению структуры приведены в табл. 1. На рис. 5 показаны экспериментальная, вычисленная, штрих- и разностная рентгенограммы $Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO_4)_3$. Координаты, параметры атомных смещений и заселенности базисных атомов фосфатов приведены в табл. 2.

 Φ рагмент структуры фосфата $Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO_4)_3$, кристаллизующегося в

структурном типе NZP, приведен на рис. 6. Ее основу формирует каркас $\{Mg_{0,2}Ti_{1,8}(PO_4)_3\}_{3\infty}$, образованный сочленением изолированных октаэдров (Mg, Ti)O₆ и тетраэдров PO₄. Каждый из октаэдров связан вершинами с шестью тетраэдрами РО₄, которые, в свою очередь, соединены с четырьмя разными октаэдрами. Два (Mg, Ti)-октаэлра и три заселенных атомами фосфора тетраэлра, объединяясь через вершины, образуют характерный фрагмент каркаса – "фонарик". Эти группировки связаны в трехмерную решетку. В полостях каркаса между ребрами двух октаэдров располагаются катионы Zn²⁺ и Mg²⁺, имеющие октаэдрическую кислородную координацию (рис. 6). Межатомные расстояния Mg(Ti)-О в лвух независимых октаэлрах смешанного типа (Mg,Ti)O₆ распределены в интервалах 1.87-1.99 и 1.85-1.99 Å, средние расстояния Mg(Ti)-О в координационных полиэдрах составляют 1.93 и 1.92 Å. Соотношение длин связей и валентных углов в тетраэдрах РО₄ типично для этого аниона. Тетраэдры деформированы, длины связей Р-О в полиэдрах РО₄ изменяются в пределах 1.49–1.72 Å. Во внекаркасных позициях расстояния Zn-O и Mg-O до шести ближайших атомов О равны 2.32 и 2.42 Å соответственно. В твердом растворе $Zn_xMg_{0.5+x}Ti_{2-x}(PO_4)_3$ с ростом x происходит заселение внекаркасных полостей катионами цинка. Кроме того, в координационных полиэдрах каркаса (Mg,Ti)O₆ увеличивается содержание бо́льших по размеру ионов магния. Расположение координационных полиэдров ZnO₆ и (Mg,Ti)O₆ вдоль направления оси с элементарной ячейки (рис. 6) приводит к расширению структуры вдоль этой оси и увеличению параметра с ячейки с ростом x (рис. 3). При этом происходит деформация РО₄-тетраэдров. Внутренний угол ОРО увеличивается вдоль оси с, что сокращает расстояние

Рис. 5. Экспериментальная (1), вычисленная (2), разностная (3) и штрих- (4) рентгенограммы фосфата $Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO_4)_3$.

Таблица 1. Условия съемки, параметры ячейки и основные данные по уточнению структуры фосфата $Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO_4)_3$

Параметр	Zn _{0.2} Mg _{0.7} Ti _{1.8} (PO ₄) ₃		
Пр. гр., Z	$R\overline{3}, 6$		
<i>a</i> , Å	8.4885(4)		
<i>c</i> , Å	21.191(1)		
<i>V</i> , Å ³	1322.3(1)		
$ ho_{pehtf}$, г/см ³	2.973(1)		
Интервал углов 20, град	10.00-110.00		
Шаг сканирования	0.02		
Число рефлексов отражения	187		
Число уточняемых параметров	Структурные – 11 Прочие – 18		
Факторы достоверности:			
$R_{wp}, \%$	5.9		
<i>R</i> _{<i>P</i>} , %	3.96		
S	2.03		

между параллельными колонками и приводит к уменьшению параметра *а*.

Как следует из приведенных данных, кристаллохимическая формула твердого раствора – $Mg_{0.5}Zn_x[Mg_xTi_{2-x}(PO_4)_3]_{3\infty}$, где $[Mg_xTi_{2-x}(PO_4)_3]_{3\infty}$ – каркас структуры, в котором Mg и Ti заселяют позиции с KЧ = 6, а внекаркасные позиции частично заполнены Zn_x и Mg_{0.5} (KЧ = 6).

Рис. 6. Фрагмент структуры Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO₄)₃.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 8 2019

Таблица 2. Координаты, параметры атомных смещений и заселенности (q) базисных атомов в структуре фосфата $Zn_{0.2}Mg_{0.7}Ti_{1.8}(PO_4)_3$

Атом	x	У	Z,	Визо	q
Mg(1)	0.0	0.0	0.5	1.2(1)	1.0
Zn	0.0	0.0	0.0	1.2(1)	0.2
Mg(2)	0.0	0.0	0.1377(6)	1.2(1)	0.1
Ti(1)	0.0	0.0	0.1377(6)	1.2(1)	0.9
Mg(3)	0.0	0.0	0.6476(5)	1.2(1)	0.1
Ti(2)	0.0	0.0	0.6476(5)	1.2(1)	0.9
Р	0.279(1)	-0.005(2)	0.2556(6)	1.2(1)	1.0
O (1)	0.163(2)	-0.035(3)	0.1971(8)	1.2(1)	1.0
O(2)	0.037(3)	0.799(2)	0.6817(8)	1.2(1)	1.0
O(3)	0.201(3)	0.172(3)	0.0831(8)	1.2(1)	1.0
O(4)	0.851(3)	0.820(3)	0.5913(8)	1.2(1)	1.0

В ряду фосфатов $Zn_xMg_{0.5 + x}Zr_{2 - x}(PO_4)_3$ при 900°С образуется ограниченный твердый раствор. Анализ рентгенограмм образцов $Zn_xMg_{0.5 + x}Zr_{2 - x}(PO_4)_3$ в области составов $0 \le x \le \le 0.5$ позволил установить их однофазность и кристаллизацию в структурном типе $Sc_2(WO_4)_3$ (SW) (рис. 7).

Влияние температуры на формирование твердого раствора $Zn_{0.5}Mg_{1.0}Zr_{1.5}(PO_4)_3$ представлено

Рис. 7. Рентгенограммы образцов $Zn_xMg_{0.5+x}Zr_{2-x}(PO_4)_3$: x = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6).

на рис. 8. При 600°С методом РФА фиксируется смесь фаз: целевого продукта, ZrP_2O_7 и $Zn_2Mg(PO_4)_2$. С повышением температуры доля примесных фаз уменьшается, а кристалличность целевой фазы возрастает. Целевой продукт устойчив до 1000°С.

В твердом растворе $Zn_xMg_{0.5 + x}Zr_{2 - x}(PO_4)_3$ в каркасе структуры $[Mg_xZr_{2 - x}(PO_4)_3]_{3\infty}$ магний и цирконий заселяют позиции с KU = 6, внекаркасные позиции заняты Zn и Mg с KU = 4. Рассчитанные параметры элементарных ячеек монотонно изменяются с увеличением содержания катиона в степени окисления +2 в составе твердого раствора (рис. 9).

ИК-спектры $Zn_xMg_{0.5+x}Zr_{2-x}(PO_4)_3$ (0 $\leq x \leq 0.5$) имеют вид, типичный для ортофосфатов SWстроения с пр. гр. $P2_1/n$ (рис. 46). В ИК-спектрах фосфатов с пр. гр. $P2_1/n$ правилами отбора разрешено по девять полос асимметричных валентных v_{as} и асимметричных деформационных δ_{as} колебаний иона РО4³⁻, а также шесть полос симметричных деформационных δ_s колебаний и три полосы симметричных валентных V, колебаний этого иона. Полосы в области 1250-1025 см⁻¹ соответствуют валентным асимметричным колебаниям v_{as} иона PO_4^{3-} . К валентным симметричным v_s колебаниям относятся полосы в интервале 990-930 см⁻¹. Полосы при 660-540 см⁻¹ соответствуют деформационным асимметричным δ_{as} , а при ~450 см⁻¹ – деформационным симметричным δ_s колебаниям иона PO_4^{3-} .

Результаты исследования твердых растворов $Zn_xMg_{0.5 + x}Ti_{2 - x}(PO_4)_3$ и $Zn_xMg_{0.5 + x}Zr_{2 - x}(PO_4)_3$ расширяют картину фазообразования известных фосфатов с октаэдро-тетраэдрическими каркасами { $[L_2(PO_4)_3]^{p-1}_{3\infty}$: с одной стороны, они харак-

Рис. 8. Зависимость интенсивности максимальных рефлексов отражения фаз, образующихся при синтезе фосфата $Zn_{0.5}Mg_{1.0}Zr_{1.5}P_3O_{12}$, от температуры. Обозначения фаз: $1 - Zn_{0.5}Mg_{1.0}Zr_{1.5}(PO_4)_3$ (2 $\theta = 20.0^\circ$), $2 - ZrP_2O_7$ (2 $\theta = 21.4^\circ$), $3 - Zn_2Mg(PO_4)_2$ (2 $\theta = 25.7^\circ$).

Рис. 9. Зависимость параметров элементарных ячеек фосфатов $Zn_xMg_{0.5+x}Zr_{2-x}(PO_4)_3$ от состава.

теризуют общие тенденции зависимости строения фосфатов от размерного фактора, описанные во введении, а с другой — отражают стереохимические возможности цинка, накладывающие отпечаток на характер изоморфных замещений атомов. Близкие значения радиусов катионов Ti^{4+} , Zr^{4+} и Mg^{2+} с часто наблюдаемой в фосфатах октаэдрической координацией способствуют их изоморфному замещению в кристаллических постройках. Для Zn^{2+} в кислородных соединениях

Рис. 10. Температурная зависимость параметров элементарной ячейки фосфата $Zn_{0.3}Mg_{0.8}Zr_{1.7}(PO_4)_3$.

характерна прежде всего тетраэдрическая координация, значительно реже — октаэдрическая.

Поскольку практически важной характеристикой материалов является тепловое расширение [20], методом высокотемпературной рентгенографии исследованы образцы твердых растворов $Zn_xMg_{0.5+x}E_{2-x}(PO_4)_3$. Температурные зависимости параметров ячейки фосфатов описываются линейными функциями (рис. 10). Значения коэффициентов теплового расширения, представленные в табл. 3, позволяют отнести фосфаты к средне- ($\alpha_V = (4-6) \times 10^{-6} \text{ K}^{-1}$) и сильно расширяющимся ($\alpha_V = (9-10) \times 10^{-6} \text{ K}^{-1}$) веществам. За счет изменения состава твердых растворов можно регулировать характеристики теплового расширения материалов в требуемом направлении.

ЗАКЛЮЧЕНИЕ

Исследовано фазообразование в системах $Zn_xMg_{0.5+x}E_{2-x}(PO_4)_3$ (E = Ti, Zr). Синтезирова-

Фосфат	Коэффициенты теплового расширения (α × 10 ⁶ , K ⁻¹)					
	α _a	α_b	α_c	α_{β}	α_V	
Mg _{0.5} Ti ₂ (PO ₄) ₃	5.9		7.3		6.4	
$Zn_{0.3}Mg_{0.8}Ti_{1.7}(PO_4)_3$	3.9		7.4		5.1	
$Zn_{0.5}MgTi_{1.5}(PO_4)_3$	4.7		4.8		4.7	
$Mg_{0.5}Zr_2(PO_4)_3$	-2.3	7.8	0.1	-0.2	5.7	
$Zn_{0.3}Mg_{0.8}Zr_{1.7}(PO_4)_3$	5.9	3.4	1.4	0.8	9.5	
$Zn_{0.5}MgZr_{1.5}(PO_4)_3$	6.4	2.6	2.2	4.5	10.0	

Таблица 3. Коэффициенты теплового расширения фосфатов $Zn_xMg_{0.5+x}E_{2-x}(PO_4)_3$ (E = Ti, Zr)

ны твердые растворы $Mg_{0.5}Zn_x[Mg_xE_{2-x}(PO_4)_3]$ ($0 \le x \le 0.5$) с кристаллическими структурами NZP и SW. Показано, что их основой является трехмерный каркас из соединяющихся общими вершинами тетраэдров PO₄ и октаэдров (Mg, E)O₆, атомы цинка заселяют внекаркасные позиции, а атомы магния — каркасные и внекаркасные позиции. Изменение состава твердых растворов Zn_xMg_{0.5+x}E_{2-x}(PO₄)₃ позволяет регулировать в желаемом направлении значения их коэффициентов теплового расширения (α_v) от 1 × 10⁻⁵ до 5 × 10⁻⁶ K⁻¹.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 18-29-12063.

СПИСОК ЛИТЕРАТУРЫ

- Naqash S., Tietz F., Guillon O. // Solid State Ionics. 2018. V. 319. P. 13. https://doi.org/10.1016/j.ssi.2018.01.048
- Brownfield M.E., Foord E.E., Sutley S.J. et al. // Am. Mineral. 1993. V. 78. P. 653.
- 3. *Pet'kov V.I.* // Russ. Chem. Rev. 2012. V. 81. № 7. Р. 606. [*Петьков В.И.* // Успехи химии. 2012. Т. 81. № 7. С. 606.] https://doi.org/10.1070/RC2012v081n07ABEH004243
- Wang Y., Zhou Y., Song Y. et al. // Ceram. Int. 2018. V. 44. № 14. P. 16698. https://doi.org/10.1016/i.ceramint.2018.06.097
- Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: Изд-во СПбГУ, 2001. 616 с.
- 6. Lu X., Wang S., Xiao R. et al. // Nano Energy. 2017. V. 41. P. 626.
- https://doi.org/10.1016/j.nanoen.2017.09.044 7. *Lee W., Yamauchi S., Tamura S., Imanaka N. //* Mater.
- Lett. 2019. V. 234. P. 261. https://doi.org/10.1016/j.matlet.2018.09.095

- 8. Asabina E.A., Orekhova N.V., Ermilova M.M. et al. // Inorg. Mater. 2015. V. 51. № 8. Р. 793. [Асабина Е.А., Орехова Н.В., Ермилова М.М. и др. // Неорган. материалы. 2015. Т. 51. № 8. С. 864.] https://doi.org/10.1134/S002016851508004X
- Ilin A.B., Ermilova M.M., Orekhova N.V. et al. // J. Alloys Compd. 2018. V. 748. P. 583. https://doi.org/10.1016/j.jallcom.2018.03.099
- 10. Pet'kov V.I., Lavrenov D.A., Sukhanov M.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 2. Р. 137. [Петьков В.И., Лавренов Д.А., Суханов М.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 2. С. 137.] https://doi.org/10.1134/S0036023619020165
- 11. *Pet'kov V.I., Orlova A.I., Sukhanov M.V. et al.* // J. Mater. Sci. Lett. 2002. V. 21. № 6. P. 513. https://doi.org/10.1023/A:1015355228098
- Jaeger C., Barth S., Feltz A. et al. // Phys. Status Solidi A. 1987. V. 102. № 2. P. 791. https://doi.org/10.1002/pssa.2211020242
- Feltz A., Barth S. // Solid State Ionics. 1983. V. 9–10. P. 817. https://doi.org/10.1016/0167-2738(83)90094-2
- 14. Asabina E., Pet'kov V., Mayorov P. et al. // Pure Appl. Chem. 2017. V. 89. № 4. P. 523.
- https://doi.org/10.1515/pac-2016-1005
- 15. Пятенко Ю.А., Воронков А.А., Пудовкина З.В. Минералогическая кристаллохимия титана. М.: Наука, 1976. 155 с.
- 16. *Rietveld H.M.* // Acta Crystallogr. 1967. V. 22. № 1. P. 151. https://doi.org/10.1107/S0365110X67000234
- 17. Kim Y.I., Izumi F. // J. Ceram. Soc. Jpn. 1994. V. 102. P. 401. https://doi.org/10.2109/jcersj.102.401
- *Izumi F.* The Rietveld Method. N.Y.: Oxford Univ. Press, 1993. 298 p.
- Carrasco M.P., Guillem M.C., Alamo J. // Mater. Res. Bull. 1993. V. 28. P. 793. https://doi.org/10.1016/0025-5408(93)90020-E
- 20. Pet'kov V.I., Shipilov A.S., Dmitrienko A.S. et al. // J. Ind. Eng. Chem. 2018. V. 57. P. 236. https://doi.org/10.1016/j.jiec.2017.08.029