ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 8, с. 874-880

_____ ФИЗИЧЕСКИЕ МЕТОДЫ _ ИССЛЕДОВАНИЯ _

УДК 544.31

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА МОНОКЛИННОЙ МОДИФИКАЦИИ ОРТОТАНТАЛАТА НЕОДИМА *М*-NdTaO₄

© 2019 г. В. Н. Гуськов^{1, *}, Е. Г. Сазонов², А. В. Тюрин¹, А. В. Гуськов¹, М. А. Рюмин¹, К. С. Гавричев¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119991 Москва, Ленинский пр-т, 31 ²ООО "Технологические системы защитных покрытий", Россия, 142172 Москва, Симферопольское шоссе, 19 *E-mail: guskov@igic.ras.ru Поступила в редакцию 25.01.2019 г. После доработки 04.02.2019 г. Принята к публикации 15.03.2019 г.

Методом адиабатической калориметрии измерена изобарная теплоемкость ортотанталата неодима M-NdTaO₄ в интервале температур 7–342 К. По сглаженным значениям теплоемкости рассчитаны термодинамические функции (энтропия, приращение энтальпии и приведенная энергия Гиббса) в области 0–345 К без учета вклада низкотемпературного (<8 К) магнитного превращения.

Ключевые слова: ортотанталат неодима, теплоемкость, термодинамические функции **DOI:** 10.1134/S0044457X19080051

ВВЕДЕНИЕ

Ортотанталаты редкоземельных элементов двойные высокотемпературные оксиды состава RETaO₄ – характеризуются высокой плотностью, химической стабильностью, радиационной устойчивостью; проявляют интересные фотокаталитические и диэлектрические свойства, высокотемпературную ионную проводимость [1-8]. Низкая теплопроводность позволяет рассматривать ортотанталаты, в частности ортотанталат неодима, в качестве термобарьерных [9] или лазерных [10] материалов. Кристаллическая структура ортотанталатов определяется ионным радиусом редкоземельного элемента, и в ряду лантаноидов ортотанталат неодима является первым представителем, кристаллизующимся в моноклинной сингонии М (пр. гр. I2/а) типа фергюсонита, содержащей 4 формульные единицы (Z = 4) в ячейке. Это единственная низкотемпературная модификация NdTaO₄, в отличие от ортотанталатов более тяжелых лантаноидов, которые в обычных условиях существуют также и в моноклинной модификации M (пр. гр. P2/a) с Z = 2 [1]. При температурах выше ~1600 К (1330°С) М-ортотанталат неодима претерпевает обратимое фазовое превращение в тетрагональную модификацию T (пр. гр. $I4_1/a, Z = 4$), структурный тип шеелита [11]. Хотя фазовый переход $M \leftrightarrow T$ происходит без скачкообразного изменения параметров кристаллической решетки (и его следует отнести к фазовым превращениям 2-го рода), монокристаллический M-NdTaO₄ ($T_{\pi\pi}$ = = 2098 К), выращенный по методу Чохральского в работе [10], несмотря на медленное охлаждение, треснул вдоль плоскости [010], что, возможно, объясняется анизотропией термического расширения. При кристаллизации тонких пленок зольгель методом на оксиде алюминия с последуюшим отжигом при ~1000°С было обнаружено одновременное существование двух моноклинных $(M \, \mathrm{u} \, M')$ и тетрагональной (T') модификаций ортотанталата неодима [12]. В работе [13] показано, что при керамическом методе синтеза однофазные образцы ортотанталата неодима могут быть получены лишь при отжиге при температурах выше 1473 К (1200°С), в противном случае наблюдается неполное взаимодействие оксидов с образованием в том числе метастабильной тетрагональной фазы T'.

Получение однофазного и равновесного ортотанталата неодима связано с необходимостью проведения высокотемпературных обработок, а практическое использование в виде пленок, монокристаллов или компонентов, например, термобарьерных материалов требует тщательного изучения устойчивости и возможности взаимодействия с подложками или окружающей средой. Оптимальным способом предварительного анализа является термодинамическое моделирование равновесных процессов при наличии извест-

Рис. 1. ДСК/ТГ-анализ прекурсора NdTaO₄.

ных термодинамических характеристик участвующих веществ, в том числе изобарной теплоемкости.

Целью настоящей работы является измерение изобарной теплоемкости M-NdTaO₄ и определение термодинамических функций в интервале температур 0–345 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ортотанталат неодима получали методом обратного осаждения из пентахлорида тантала (99.99%) и сексвиоксида неодима (99.99%). TaCl₅ растворяли в этаноле, а Nd₂O₃ – в соляной кислоте. Методика синтеза подробно описана в [14, 15]. Окончательный отжиг полученного ортотанталата осуществляли при температуре 1773 К (1500°С). Дифракционные исследования фазового состава и кристаллической структуры порошка проводили на дифрактометре Bruker D8 Advance (Cu K_{α} , $\lambda = 1.5418$ Å, Ni-фильтр, LYNXEYE детектор, геометрия на отражение) в интервале углов $2\theta = 10^{\circ} - 80^{\circ}$. Теплоемкость измеряли автоматическим низкотемпературным калориметром АОЗТ "Термис", описание которого приведено в работе [16]. Условия измерений описаны нами ранее в [15]. Термический анализ проведен с помощью установки синхронного термического анализа STA 449F1 Jupiter® фирмы Netzsch в атмосфере газообразного аргона высокой чистоты (99.9995%). Морфологию образцов изучали с помощью электронного микроскопа Cross Beam Zeiss NVision 40.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

-Для синтеза ортотанталата неодима был применен метод обратного осаждения, который позволяет не только снизить температуру взаимодействия компонентов, но и избежать возможных загрязнений [3].

Для определения характерных температур взаимодействия компонентов осажденного и высушенного прекурсора ортотанталата неодима был выполнен его ДСК/ТГ-анализ (рис. 1). Нагревание сопровождается экзотермической потерей ~3 молей волы на каждый моль ортотанталата в интервале температур 300-700 К; в области ~850-1225 К начинается постепенное взаимодействие компонентов с удалением еще ~1 моля H₂O, приводящее к полной потере гидроксильных групп. После этого масса образца стабилизируется и наблюдается интенсивное взаимодействие компонентов, сопровождаемое экзотермическим эффектом с максимумом при 1237 К. Судя по тому, что ДСК-кривая имеет выраженный положительный наклон, взаимодействие компонентов не является полным и продолжается вплоть до температуры 1400 К (максимум на кривой ДСК). Дифракционные исследования образцов прекурсора, отожженных при 1073, 1273, 1473 К, показали, что полученные образцы не являются однофазными и содержат помимо основного компонента -M-NdTaO₄ - также Nd₃TaO₇ и Ta₂O₅. Соединение Nd₃TaO₇ имеет структуру дефектного флюорита (веберита) с пр. гр. Стст [1], и его образование обусловлено, с одной стороны, высокой гомогенностью распределения исходных компонентов, а с другой - тем, что оно более устойчиво, чем ортотанталат, так как имеет большую температуру плавления (~2250 и 2100 К соответственно) [17]. Таким образом, существующее предположение [3] о том, что синтез ортотанталата неодима происхо-

Рис. 2. Дифрактограмма *M*-NdTaO₄.

Рис. 3. Морфология образца *M*-NdTaO₄.

дит через промежуточное образование Nd_3TaO_7 , можно считать вполне вероятным.

Однофазный образец *М*-ортотанталата неодима для дальнейших исследований был получен в результате отжига в течение 4 ч при температуре 1773 К. На дифрактограмме порошка *M*-NdTaO₄ (рис. 2) отсутствуют посторонние рефлексы, а расчет параметров кристаллической решетки дает следующие результаты: пр. гр. *I2/a*, *a* = = 5.514(1), *b* = 11.238(1), *c* = 5.116(1) Å, β = 95.71°, *V* = 315.46 Å³. Эти значения хорошо совпадают с данными, полученными для монокристаллического стехиометрического *M*-ортотанталата неодима (*a* = 5.5153(8), *b* = 11.2388(16), *c* = 5.1184(7) Å, β = 95.7731(3)°, *V* = 315.68(13) Å³) в работе [10], а также со справочными величинами [18]. Рентгенофлюоресцентный анализ (ОРТІМА-Х) подтвердил отсутствие посторонних примесей и показал, что соотношение Nd : Ta = 1 : 1.049, что в пределах точности метода соответствует стехиометрии. Чтобы убедиться, что полученный образец не является наноразмерным, т.е. пригодным для термодинамических исследований, с помощью электронной микроскопии изучили морфологию синтезированного вещества (рис. 3). Основная масса образца состоит из плотных кристаллических структур с линейными размерами ~2 мкм и не является наноразмерной. Наличие мелких фрагментов, по-видимому, свидетельствует о механических напряжениях, возникающих при охлаждении, хотя это явление не характерно для фазовых превращений второго рода. Как было отмечено выше, образования трещины в монокристаллическом образце авторам [10] избежать не удалось (несмотря на медленное охлаждение) вследствие анизотропии термического расширения и, возможно, фазового превращения. Наши исследования морфологии *M*-ортотанталатов самария и гадолиния, полученных в аналогичных условиях, показали, что для ортотанталата самария наблюдается минимальное число мелких фрагментов [19], а в случае ортотанталата гадолиния их вообще нет [15]. Таким образом, наблюдается прямая связь термических напряжений и образования мелких фрагментов с ионным радиусом катиона ортотанталата.

Синтезированный и охарактеризованный образец М-ортотанталата неодима был использован для измерений изобарной теплоемкости при температурах до 345 К. Для измерений низкотемпературной теплоемкости брали образец массой 4.27374 г. При расчетах использовали величину мольной массы NdTaO₄, равную 389.187 г/моль, которая была вычислена с помошью справочных ланных [20]. Низкотемпературная теплоемкость была измерена при температурах 7.37-341.61 К методом адиабатической калориметрии в 160 экспериментальных точках (табл. 1, рис. 4). Полученная экспериментальная зависимость $C_{n}(T)$ не имеет видимых аномалий. Температурная зависимость низкотемпературной теплоемкости *M*-NdTaO₄ сглажена полиномом согласно алгоритму, изложенному в [21]:

$$C_p^0(T) = \sum_{0}^{7} A_j U^j$$
, rge $U = \ln(T/400)$. (1)

Коэффициенты сглаживающего полинома приведены в табл. 2. Разброс экспериментальных точек относительно сглаженных значений показан на рис. 5. Теплоемкость NdTaO₄ экстраполирована к 0 К по уравнению Дебая ($C_p = AT^3$) без учета магнитного превращения в области 0-8 К и приведена в табл. 3 курсивом. Термодинамические функции М-ортотанталата неодима, приведенные в табл. 3, рассчитаны на основании уравнения (1) также без учета вклада магнитного превращения. Это превращение не может внести заметный вклад в теплоемкость и изменение энтальпии NdTaO₄, однако при расчете абсолютной энтропии влияние магнитных превращений желательно учесть. К сожалению, данные о прямых измерениях теплоемкости ортотанталата неодима ниже температуры 8 К в литературе отсутствуют, но можно ориентироваться на результаты, полученные для ортофосфата неодима, также имеющего моноклинную структуру, пр. гр. $P2_1/n$ [22]. Низкотемпературное магнитное превращение из антиферромагнитного в парамагнитное состояние в области температур, близких к 0 К, увеличивает энтропию ортофосфата неодима на величину $R\ln(2) = 5.76 \, \exists ж/(K \text{ моль})$. Стандартные термодинамические свойства М-ортотанталата

Таблица 1. Экспериментальная теплоемкость NdTaO₄, Дж/(К моль)

, (II							
<i>T</i> , K	Cp	<i>Т</i> , К	C_p	<i>T</i> , K	C_p	<i>Т</i> , К	C_p
7.37	0.166	24.96	4.878	96.52	56.16	228.75	106.4
8.55	0.241	26.63	5.820	98.83	57.46	231.17	107.1
8.83	0.282	28.45	7.299	102.19	59.20	233.07	107.6
9.04	0.291	29.95	8.189	108.66	62.58	235.46	108.2
9.26	0.315	31.65	9.621	112.11	64.34	237.41	108.8
9.48	0.327	33.40	10.67	115.56	66.03	239.80	109.5
9.82	0.365	34.98	12.13	119.02	67.86	241.74	109.9
10.08	0.3854	36.64	13.26	121.17	68.52	244.15	110.6
10.50	0.4235	38.30	14.86	126.33	71.26	246.01	111.1
10.77	0.4544	39.98	15.84	128.22	71.61	252.66	112.4
11.26	0.5152	40.02	15.95	131.80	73.16	254.49	112.8
11.92	0.5829	41.63	17.46	133.27	74.13	256.89	113.5
12.01	0.5988	43.28	18.51	136.77	75.74	258.70	113.4
12.27	0.6174	44.94	20.15	138.69	76.50	261.09	114.7
12.63	0.6794	45.69	20.89	140.26	77.31	262.88	115.0
12.78	0.7070	46.59	21.19	143.76	78.53	265.28	115.3
13.05	0.7387	48.27	22.86	147.26	79.88	269.46	116.1
13.37	0.7801	49.91	23.93	150.75	81.51	271.16	116.5
13.57	0.8227	52.42	26.17	151.02	81.54	273.60	116.6
13.85	0.8439	53.20	26.54	154.27	82.73	277.72	117.8
14.15	0.9012	54.08	27.68	157.77	84.40	279.32	117.8
14.41	0.9511	59.07	30.88	161.27	85.60	283.35	118.6
14.69	0.9704	60.73	32.22	170.27	88.64	285.85	118.7
14.94	1.032	62.39	33.73	177.28	91.17	287.36	119.0
15.53	1.127	67.44	36.90	188.34	94.90	289.87	119.8
15.75	1.174	69.88	38.51	191.82	96.14	291.34	119.9
16.14	1.204	70.85	39.71	194.29	96.43	293.87	120.2
16.44	1.270	72.72	41.13	195.32	96.91	295.28	120.4
16.62	1.321	74.81	42.48	198.65	97.72	297.85	121.5
17.03	1.459	76.01	43.49	201.30	98.73	299.19	121.6
17.50	1.609	80.23	46.32	205.22	99.74	306.21	122.8
17.95	1.718	83.61	48.07	209.58	101.0	309.87	123.2
18.38	1.877	84.85	48.66	211.43	101.6	317.21	124.2
18.91	2.057	85.86	50.02	213.93	102.4	319.97	124.7
19.29	2.198	87.09	50.66	215.79	102.8	324.49	125.4
20.24	2.491	88.04	51.24	218.26	103.6	327.30	126.3
21.61	3.086	90.21	52.21	220.13	104.0	331.72	126.1
21.83	3.226	90.58	52.38	222.60	104.8	334.48	127.4
23.29	3.934	92.77	54.07	224.44	105.2	338.89	127.3
23.49	4.019	94.95	55.20	226.92	106.0	341.61	128.5

Рис. 4. Экспериментальная зависимость низкотемпературной теплоемкости M-NdTaO₄.

Рис. 5. Отклонения экспериментальных точек от сглаженных значений изобарной теплоемкости.

неодима при 298.15 К без учета низкотемпературных магнитных переходов составляют:

 $C_p^0(298.15 \text{ K}) = 121.4 \pm 0.6 \text{Дж/(К моль)},$ $S^0(298.15 \text{ K}) = 136.5 \pm 0.7 \text{Дж/(К моль)},$ $H^0(298.15 \text{ K}) - H^0(0 \text{ K}) =$ $= 21400 \pm 90 \text{Дж/моль},$ $\Phi^0(298.15 \text{ K}) =$ $= 64.72 \pm 0.32 \text{Дж/(К моль)}.$

ЗАКЛЮЧЕНИЕ

Изобарная теплоемкость M-NdTaO₄ впервые измерена методом адиабатической калориметрии в области температур 7.4—341.6 К и показано, что в области низких температур ортотанталат неодима не претерпевает структурных превращений. Полученные температурные зависимости изобарной теплоемкости и других термодинамических функций моноклинного M-ортотанталата неодима могут быть использованы при разработке новых материалов на его основе и термодинамическом моделировании систем с его участием.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда (проект № 18-13-00025) с использованием оборудования ЦКП ИОНХ РАН.

Таблица 2. Коэффициенты уравнения (1) $C_p = \sum_{0}^{7} A_j U^j$, где $U = \ln(T/400)$, описывающего теплоем-кость *M*-NdTaO₄

j	<i>А_j,</i> Дж/(К моль)
0	0.13352615×10^3
1	0.2615512×10^2
2	$-0.70250045 \times 10^{2}$
3	$-0.74650843 \times 10^{2}$
4	$-0.445731105 \times 10^{2}$
5	$-0.153991434 \times 10^{2}$
6	$-0.27121946 \times 10^{1}$
7	$-0.18730657 \times 10^{0}$

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

<i>Т</i> , К	C_p^0 , Дж/(К моль)	<i>S</i> ⁰ , Дж/(К моль)	$H^0(T) - H^0(0),$ Дж/моль	Φ^0 , Дж/(К моль)
1	0.000327	0.000109	0.0000817	0.0000272
2	0.00261	0.000871	0.00131	0.000218
3	0.00882	0.00294	0.00662	0.000735
4	0.0209	0.00697	0.0209	0.00174
5	0.0408	0.0136	0.0511	0.00340
6	0.0706	0.0235	0.106	0.00588
7	0.112	0.0374	0.196	0.00934
8	0.167	0.0558	0.335	0.0139
10	0.3770	0.1122	0.8512	0.02712
15	1.016	0.3795	4.255	0.09579
20	2.437	0.8395	12.43	0.2181
25	4.948	1.635	30.50	0.4151
30	8.251	2.820	63.25	0.7113
35	12.02	4.370	113.8	1.119
40	16.02	6.234	183.8	1.639
45	20.09	8.355	274.1	2.265
50	24.13	10.68	384.6	2.988
60	31.95	15.78	665.4	4.688
70	39.25	21.26	1022	6.661
80	46.00	26.95	1449	8.839
90	52.22	32.73	1940	11.17
100	57.96	38.53	2491	13.62
110	63.27	44.31	3098	16.15
120	68.21	50.03	3756	18.73
130	72.82	55.67	4461	21.36
140	77.14	61.23	5211	24.01
150	81.21	66.69	6003	26.67
160	85.03	72.06	6834	29.34
170	88.65	77.32	7703	32.01
180	92.07	82.49	8607	34.67
190	95.32	87.55	9544	37.32
200	98.39	92.52	10510	39.97
210	101.3	97.39	11510	42.58
220	104.1	102.2	12540	45.17
230	106.7	106.9	13590	47.76
240	109.2	111.5	14670	50.33
250	111.6	116.0	15780	52.84
260	113.9	120.4	16900	55.38
270	116.0	124.7	18050	57.87
280	118.0	129.0	19220	60.33
290	119.9	133.2	20410	62.77
298.15	121.4	136.5	21400	64.72
300	121.7	137.2	21620	65.17
310	123.4	141.3	22850	67.55
320	124.9	145.2	24090	69.92
330	126.4	149.1	25350	72.25
340	127.7	152.9	26620	74.57
345	128.3	154.7	27260	75.72

Таблица 3. Сглаженные значения термодинамических функций моноклинной модификации NdTaO₄

Примечание. Курсивом отмечены значения, рассчитанные по модели Дебая.

СПИСОК ЛИТЕРАТУРЫ

- 1. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
- Портной К.И., Тимофеева Н.И., Алибеков С.Е. и др. // Изв. АН СССР. Сер. Неорган. материалы. 1970. Т. 6. С. 289.
- Рождественский Ф.А., Зуев М.Г., Фотиев А.А. Танталаты трехвалентных металлов. М.: Наука, 1986. 168 с.
- Siqueira K.P., Carmo A P., Bell M.J.V. et al. // J. Lumin. 2016. V. 179. P. 146. https://doi.org/0.1016/j.jlumin.2016.06.054
- Dias A., Siqueira K.P., Moreira R.L. // J. Alloys Compd. 2017. V. 693. P. 1243. https://doi.org/10.1016/j.jallcom.2016.10.077
- Nyman M., Rodriguez M.A., Alam T.D. et al. // Chem. Mater. 2009. V. 21. P. 2201. https://doi.org/10.1021/cm9001509
- Brunskova H., Mudra E., Medvecky L. et al. // Mat. Des. 2017. V. 134. P. 455. https://dx.doi.org/10.1016/j.matdes.2017.08.068
- Fujita A., Matsushita H., Katsui A. // Mater. Sci. Forum. 2007. V. 534. P. 1069. https://doi.org/10.4028/www.scientific.net/MSF.534-536.1069
- Wang J., Chong X.Y., Zhou R., Feng J. // Scripta Mater. 2017. V. 126. P. 24. https://doi.org/10.1016/j.scriptamat.2016.08.019
- Ning K., Zhang Q., Zhang D. et al. // J. Cryst. Growth. Des. 2014. V. 388. P. 83. https://doi.org/10.1016/j.jcrysgro.2013.10.03
- 11. *Stubiĉan V.S.* // J. Am. Ceram. Soc. 1964. V. 47. P. 55. https://doi.org/10.1111/j.1151-2916.1964.tb15654.x

- Brunckova E., Kolev H., Kanuchova M. // Surf. Interface Anal. 2018. P. 1. https://doi.org/10.1002/sia.6583
- Siqueira K.P., Dias A. // Mater. Res. 2014. V. 17 (Suppl. 1). P. 167. https://doi.org/10.1590/S1516-14392013005000189
- 14. Ryumin M.A., Sazonov E.G., Guskov V.N. et al. // Inorg. Mater. 2016. V. 52. Р. 1149. [Рюмин М.А., Сазонов Е.Г., Гуськов В.Н. и др. // Неорган. материалы. 2016. Т. 52. С. 1223. https://doi.org/10.7868/S0002337X16110142] https://doi.org/10.1134/S0020168516110145
- Ryumin M.A., Sazonov E.G., Guskov V.N. et al. // Inorg. Mater. 2017. V. 53. Р. 728. [Рюмин М.А., Сазонов Е.Г., Гуськов В.Н. и др. // Неорган. материалы. 2017. Т. 53. С. 737. https://doi.org/10.7868/S0002337X17070120] https://doi.org/10.1134/S0020168517070147
- Малышев В.В., Мильнер Г.А., Соркин Э.Л., Шибакин В.Ф. // Приборы и техника эксперимента. 1985. № 6. С. 195.
- Yokogawa Y., Yoshimura M. // J. Am. Ceram. Soc. 1997. V. 80. P. 1965. https://doi.org/10.1111/j.1151-2916.1997.tb03079.x
- 18. JCPDS-ICCD PDF-2 Database #33-941.
- Tyurin A.V., Khoroshilov A.V., Gus'kov V.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1599. [Тюрин А.В., Хорошилов А.В., Гуськов В.Н. и др. // Журн. неорган. химин. 2018. Т. 63. С. 1583. https://doi.org/10.1134/S0044457X18120218] https://doi.org/10.1134/S0036023618120215
- 20. https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relativeatomic-masses
- 21. *Гуревич В.М., Хлюстов В.Г.* // Геохимия. 1979. № 6. С. 829.
- 22. *Popa K., Jutier F., Wastin F., Konings R.J.M.* // J. Chem. Thermodyn. 2006. V. 38. P. 1306. https://doi.org/10.1016/j.jct.2006.02.06