_ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 541.8

СТЕКЛО СОСТАВА $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O - ПРЕКУРСОР$ ДЛЯ СИНТЕЗА КРИСТАЛЛИЧЕСКОГО $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$

© 2019 г. И. А. Кириленко^{1,} *, Г. П. Панасюк¹, Л. А. Азарова¹, Л. И. Демина², И. В. Козерожец¹, М. Г. Васильев¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119991 Москва, Ленинский пр-т, 31

²Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Россия, 119071 Москва, Ленинский пр-т, 31, корп. 4

**E-mail: iakirilenko@mail.ru* Поступила в редакцию 12.12.2018 г. После доработки 25.12.2018 г. Принята к публикации 09.01.2019 г.

Синтезировано новое соединение состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$ из стекла состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$, которое прямым синтезом получить невозможно. Соединение идентифицировано методом рентгенофазового анализа. На основании ИК-спектров сделан вывод о смешанной координации иона Al^{3+} с молекулами диметилсульфоксида, связь между лигандами осуществляется через атомы S и O.

Ключевые слова: стекло, координация иона Al³⁺, диметилсульфоксид **DOI:** 10.1134/S0044457X19070109

введение

В настоящее время актуальной задачей является поиск новых экономически целесообразных методов получения чистых и/или особо чистых веществ [1-8]. Так, активно развивающимся современным направлением является использование стекол в качестве прекурсоров для получения новых чистых и/или особо чистых веществ или веществ с улучшенными характеристиками. Использование в качестве прекурсоров соединений металлов, содержащих легко уходящие молекулы диметилсульфоксида (ДМСО, $(CH_3)_2SO$) во внутренней координационной сфере и кластерные анионы бора в качестве противоионов, позволяет их применять в твердофазном синтезе новых веществ и материалов [4, 5] или, например, при низкотемпературном синтезе боридов металлов [6]. Получение материалов на основе стекол открывает широкие возможности варьирования их свойств. В настоящее время развивается перспективное направление по созданию материалов на основе жидкого натриевого стекла и солей кластерных анионов бора, которые могут использоваться в качестве защитных покрытий от нейтронного излучения [7, 8].

В настоящее время актуальной задачей остается получение электролизом особо чистого алюминия из его солей. Основную трудность представляет наличие молекул воды в первой координационной сфере иона Al³⁺, которая препятствует процессу его получения. Замена их на органическое соединение может способствовать решению этой проблемы [9]. С этой целью в работе [10] была предпринята попытка замены молекул воды в первой координационной сфере иона Al³⁺ на молекулы ацетона в системе AlCl₃-(CH₃)₂CO-H₂O. Исслелование растворов этой системы методом ИКспектроскопии показало, что ацетон в первую координационную сферу иона алюминия не входит. Кроме того, из данных квантово-химического расчета [11, 12] следует, что энергия образования комплекса Al³⁺ с шестью молекулами ацетона в 1.2 раза больше соответствующей энергии образования гидратного комплекса. Однако, несмотря на указанное преимущество в энергии, а также на то, что в изученных растворах молекул ацетона было достаточно для полного замещения первой координационной сферы иона Al³⁺, вытеснения молекул воды не происходило.

ДМСО и вода — универсальные растворители, которые образуют между собой очень сильные водородные связи. Силы взаимодействия между молекулами (CH₃)₂SO и H₂O в 1.5 раза больше, чем между молекулами воды [13].

Согласно приведенным в литературе [14–16] данным, конкурирующими лигандами за вхожде-

Рис. 1. Дифрактограмма безводного соединения состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$.

ние в первую координационную сферу иона Al^{3+} являются (CH₃)₂SO и H₂O. В работе [14] методом ЯМР исследована система $AlCl_3-(CH_3)_2SO-H_2O$ и установлено, что ионы Al^{3+} в первой координационной сфере предпочтительнее сольватируются молекулами воды. Сделано заключение, что полная замена молекул воды в первой координационной сфере Al^{3+} на (CH₃)₂SO невозможна из-за стерического фактора, определяемого ионом Cl⁻.

В работе [17] исследована система $Al_2(SO_4)_3$ - $(CH_3)_2SO-H_2O$ и обнаружено явление стеклообразования. Стеклообразующие составы этой системы по фактуре весьма разнообразны: это и водные растворы разной степени вязкости, и твердые вещества с той или иной степенью прозрачности. Наибольший интерес представляет стекло состава $Al_2(SO_4)_3 \cdot 8 (CH_3)_2SO \cdot 3H_2O$ прозрачное, твердое, с характерным раковистым изломом. Из результатов исследования его ИКспектров следует, что молекулы (CH₃)₂SO полностью замещают молекулы воды в первой координационной сфере иона Al³⁺. Высказано предположение о возможности смешанной координации молекулами (CH₃)₂SO (через атомы S и O) иона Al³⁺ при вхождении в его первую координационную сферу.

Представляется интересным, сохранится ли комплекс $[Al\{(CH_3)_2SO\}_6]^{3+}$, присутствующий в стекле состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$, или произойдет его распад на составляющие после обезвоживания стекла. При сохранении комплекса можно предположить возможность получения нового безводного соединения состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$ из стекла. Получить прямым синтезом соединение этого состава из-за не-

растворимости сульфата алюминия в $(CH_3)_2SO$, по данным Gaylord Cemical Company LLC USA, невозможно [18].

Цель исследования — выявление возможности получения безводного соединения $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$ из водного стекла состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$ через дегидратацию с сохранением (CH₃)₂SO в первой координационной сфере иона Al^{3+} .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали $Al_2(SO_4)_3 \cdot 16.5H_2O$ марки "ч. д. а." и $(CH_3)_2SO$ фирмы Aldrich (99.9 мас. %). Синтез стекла проводили методом испарения воды в открытых контейнерах при температуре не выше 105°C (для $(CH_3)_2SO t_{KUII} = 189°C$) по методике, описанной в работе [19]. Полученное стекло состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$ исследовали методом ИК-спектроскопии.

Обезвоживание стекла проводили нагреванием его в открытом контейнере, контролируя потерю массы и состав полученного продукта вплоть до полной кристаллизации образца. Расчет химической формулы сделан исходя из потери массы во время нагрева. Полученное соединение устойчиво на воздухе и отвечает составу A1₂(SO₄)₃ · · 8(CH₃)₂SO, его идентифицировали методами РФА и ИК-спектроскопии.

Дифрактограммы соединения регистрировали на дифрактометре Bruker D8 Advance (Cu*K*). ИКспектры образцов записывали в интервале 4000— 550 см⁻¹ методом нарушенного полного внутреннего отражения на ИК-Фурье-спектрометре NEXUS фирмы NICOLET с использованием приставки MIRacle фирмы PIKETechnologies с алмазным кристаллом.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлена дифрактограмма полученного кристаллического соединения состава $A1_2(SO_4)_3 \cdot 8(CH_3)_2SO$. Данные РФА свидетельствуют об индивидуальности полученного из стекла $A1_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$ соединения состава $A1_2(SO_4)_3 \cdot 8(CH_3)_2SO$.

Для изучения строения $A1_2(SO_4)_3 \cdot 8(CH_3)_2SO$ исследованы его ИК-спектры (рис. 2). Многообразие полос поглощения в спектре нового соединения свидетельствует об участии в образовании комплекса не только донорных атомов (CH₃)₂SO,

но и ионов SO_4^{2-} , с помощью которых образуются кислородные связи сульфоксидных цепочек. Реализация активности атомов О и S в (CH₃)₂SO, а

также участие групп SO_4^{2-} в образовании комплекса приводят к появлению многочисленных

Рис. 2. ИК-спектры поглощения образцов: 1 -стекло состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$, $2 - (CH_3)_2SO$, 3 -безводное соединение состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$.

полос поглощения в ИК-спектрах. Поскольку полоса v(S=O) при 1042 см⁻¹ [20] в спектре свободного (CH₃)₂SO отсутствует, как и в спектре стекла состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$ [17], можно сделать вывод, что все донорные атомы молекулы (CH₃)₂SO, а также S и O участвуют в образовании связей. Если координация молекул (CH₃)₂SO осуществляется через атом О, то это приводит к уменьшению частоты v(S=O) [21]. a если через атом S – к увеличению этой частоты [22]. Появление новых полос поглощения как в низкочастотной (1029, 991, 946, 881 см⁻¹), так и в высокочастотной (1098, 1158, 1222, 1234, 1268 см⁻¹) области относительно v(S=O) свободного (CH₃)₂SO свидетельствует о том, что комплексообразование происходит с участием как атомов S, так и атомов О. Расщепление полосы симметричных валентных колебаний иона SO_4^{2-} в спектрах стекла состава $Al_2(SO_4)_3\cdot 8(CH_3)_2SO\cdot 3H_2O$ и нового соединения состава $A1_2(SO_4)_3 \cdot 8(CH_3)_2SO$ позволяет сделать вывод о вхождении иона SO₄²⁻ в первую координационную сферу алюминия.

Большое число полос в спектре соединения (как и в спектре стекла [17]) в интервале 1300–850 см⁻¹ (рис. 2), не относящихся ни к v(S=O) свободного (CH₃)₂SO, ни к SO₄²⁻ в составе Al₂SO₄ · 18H₂O, свидетельствует о разнообразии связей S–O. Образование прочных связей с участием атомов О и S молекул (CH₃)₂SO приводит к смещению электронной плотности в молекуле (CH₃)₂SO и усилению связей С–Н в метильных группах. В ИК-спектрах это выражается в высокочастотных сдвигах полос CH₃-групп (3015, 2921 см⁻¹) в Al₂(SO₄)₃ · 8(CH₃)₂SO по сравнению с (CH₃)₂SO (2997, 2912 см⁻¹). Изменения наблюдаются и в области деформационных колебаний CH₃-групп, что выражается появлением новой полосы при 1423 см⁻¹.

В спектре соединения $A1_2(SO_4)_3 \cdot 8(CH_3)_2SO$ отсутствуют полосы поглощения при 2700, 2400 см⁻¹, отвечающие колебаниям ОН-групп, и при 1649 см⁻¹, связанные с деформационными колебаниями v(HOH), которые фиксировались в спектрах кристаллогидрата Al₂SO₄ · 16.5H₂O и стекла Al₂(SO₄)₃ · 8(CH₃)₂SO · 3H₂O (3300-2910 см⁻¹ и v(HOH) при 1655 см⁻¹). Появляются лишь слабые полосы при 3482 см⁻¹ и ν (HOH) при 1649 см⁻¹, как и в спектре (CH₃)₂SO, что соответствует образованию водородных связей с координированным (CH₃)₂SO или SO₄²⁻. На основании вышесказанного можно сделать вывод о том, что молекулы воды полностью вытесняются из первой координационной сферы иона алюминия в соединении состава $A1_2(SO_4)_3 \cdot 8(CH_3)_2SO$.

Рис. 3. Схема строения комплекса, определяющего структуру безводного соединения состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$.

При анализе ИК-спектров обращает на себя внимание идентичность основных полос поглощения v(S=O) молекул (CH₃)₂SO, расщепление полосы симметричных валентных колебаний иона SO₄²⁻ в стекле Al₂(SO₄)₃ · 8(CH₃)₂SO · 3H₂O и в соединении Al₂(SO₄)₃ · 8(CH₃)₂SO и, как следствие, вхождение молекул (CH₃)₂SO в первую координационную сферу иона Al³⁺ через атомы S и O.

Следует отметить, что, согласно [13], ионы металлов с завершенной 18-электронной оболочкой координируются сульфоксидами через атом S, а с незавершенной электронной оболочкой, как, например, у атома Al $\{2,8,3\}$, должны координироваться через атом O. Таким образом, полученные нами данные вносят существенный вклад в представление о возможной смешанной координации атома Al сульфоксидами, и конкретно (CH₃)₂SO, через атомы S и O.

Подобная смешанная координация молекулами (CH₃)₂SO отмечается в работе [23], где говорится о том, что в комплексах платиновых металлов возможна координация (CH₃)₂SO как через атом S, так и через атом O. Интересна работа [24], в которой на основании фундаментальных исследований методами ИК-спектрометрии, ЯМР и РСА доказано, что в бромодиметилсульфоксидных комплексах осмия существует смешанная координация иона Os молекулами (CH₃)₂SO через атомы S и O.

Стекло состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO \cdot 3H_2O$ синтезировано по методике синтеза стекла состава Al₂(SO₄)₃ · 12H₂O [19]. В работе [17] отмечается подобие по способу получения и внешним признакам стекол $Al_2(SO_4)_3 \cdot 12H_2O$ и $Al_2(SO_4)_3 \cdot$ · 8(CH₃)₂SO · 3H₂O. Целью работы [17] было "выяснение возможности замены молекул волы в первой координационной сфере иона алюминия в соединении Al₂(SO₄)₃ · 12H₂O" на молекулы (CH₃)₂SO с сохранением стеклообразного состояния. В результате исследования стекол $Al_2(SO_4)_3$. \cdot 10H₂O-Al₂(SO₄)₃ \cdot 12H₂O методом дифракции рентгеновских лучей и спектроскопии КР впервые для водно-электролитных стекол выделена структурная единица стекол Al₂(SO₄)₃ · 10H₂O- $Al_2(SO_4)_3 \cdot 12H_2O_3$, выявлена полимерная природа явления стеклообразования, оценена длина поньев и их размер [25]. Согласно полученным результатам, ближнее окружение иона $A1^{3+}$ состоит из четырех молекул H_2O и двух ионов SO_4^{2-} . Один ион SO_4^{2-} является мостиковым, соединяющим два иона $A1^{3+}$, два других иона SO_4^{2-} – концевые. Выводы, сделанные ранее относительно строения стекол $Al_2(SO_4)_3 \cdot 10H_2O - Al_2(SO_4)_3 \cdot 12H_2O$, по результатам рентгенодифракционного эксперимента, отработанного на растворах, спустя восемь лет были подтверждены немецкими исследователями при изучении структуры монокристалла состава $Al_2(SO_4)_2 \cdot 10.5H_2O$ методом РФА [26].

лимерной цепи, количество элементарных зве-

ЗАКЛЮЧЕНИЕ

На основании вышеизложенного строение комплексов, определяющих структуру безводного соединения состава $Al_2(SO_4)_3 \cdot 8(CH_3)_2SO$, можно представить в виде схемы, приведенной на рис. 3.

Можно предположить, что при определенных технических усовершенствованиях процесса получения алюминия из его солей это соединение можно использовать вместо солей галогенидов для получения алюминия.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований (проект № 01201353364). Исследование выполнено на оборудовании ЦКП ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Panasyuk G.P., Semenov E.A., Kozerozhets I.V. et al.* // Dokl. Chemistry. 2018. V. 483. № 1. P. 272. https://doi.org/10.1134/S0012500818110022
- Panasyuk G.P., Azarova L.A., Belan V.N. et al. // Theor. Found. Chem. Eng. 2018. V. 52. № 5. P. 879. https://doi.org/10.1134/S0040579518050202
- Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. Р. 1303. [Панасюк Г.П., Козерожец И.В., Семенов Е.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1286.] https://doi.org/10.1134/S0036023618100157

- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1673. https://doi.org/10.1134/S0036023617130022
- Goeva L.V., Avdeeva V.V., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 8. Р. 1050. [Гоева Л.В., Авдеева В.В., Малинина Е.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 8. С. 1015.] https://doi.org/10.1134/S0036023618080089
- Avdeeva V.V., Polyakova I.N., Vologzhanina A.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 9. Р. 112. [Авдеева В. В., Полякова И.Н., Вологжанина А.В. и др. // Журн. неорган. химии. 2016. Т. 61. № 9. С. 1182. doi 10.7868/S0044457X16090026] https://doi.org/10.1134/S0036023616090023
- Малинина Е.А., Скачкова В.К., Козерожец И.В. и др. // Доклады Академии наук. 2019. Т. 404. № 1. С. 41.
- Skachkova V.K., Goeva L.V., Grachev A.V. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 1. Р. 84. [Скачкова В.К., Гоева Л.В., Грачев А.В. и др. // Журн. неорган. химии. 2017. Т. 62. № 1. С. 81. doi 10.7868/S0044457X17010214] https://doi.org/10.1134/S0036023617010211
- Каблов В.Ф., Быкадоров Н.У., Жохова О.К. и др. // Журн. Вестник Казанского технол. ун-та. 2013. Т. 16. № 1. С. 61.
- Panasyuk G.P., Lyashchenko A.K., Azarova L.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 6. Р. 843. [Панасюк Г.П., Лященко А.К., Азарова Л.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 796. doi 10.7868/S0044457X18060211] https://doi.org/10.1134/S0036023618060190
- Frisch M.I., Truck G.W., Schlegel H.B. et al. Gaussian 09, Revision A.02/Gaueeian, Jnc., Wallingford CT, 2009.
- Тараканова Е.Г., Юхневич И.Б., Либрович Н.Б. // Журн. хим. физика. 2005. Т. 24. № 6. С. 44.

- 13. *Кукушкин Ю.Н.* // Соросовский образовательный журнал. 1997. № 9. С. 54.
- Рындаревич С.Б. Комплексообразование A1(III) в неводных растворах. Дис. ... канд. хим. наук. М., 1984.
- 15. Fratello A. et al. // J. Chem. Phys. 1968. V. 48. № 8. P. 3705.
- Thovas S., Reynolds W.N. // Inorga. Chem. 1970. V. 9. № 1. P. 78.
- Kirilenko I.A., Demina L.I. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. Р. 1368. [Кириленко И.А., Демина Л.А. // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1349.] https://doi.org/10.1134/S0036023618100108
- Goylord Chemical Company L.L.C Your Global Leader for DMSO solutions kk 102.
- Kirilenko I.A. // Russ. J. Inorg. Chem. 2017. V. 62. № 14. P. 1819. https://doi.org/10.1134/S0036023617140042
- 20. Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds. N.Y.: Wiley, 1963.
- 21. Cotton F.A., Francis R., Horrocks W.D. // J. Phys. Chem. 1960. V. 64. P. 1534.
- 22. Wayland B.B., Shramm R.F. // Inorg. Chem.1969.V. 8. P. 971.
- 23. Alessio E. // Chem. Rev. 2004. V. 104. № 9. P. 4203.
- Rudnitskaya O.V., Kultyshkina E.K., Dobrokhotova E.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 9. Р. 935. [Рудницкая О.В., Култышкина Е.К., Доброхотова E.B. и др. // Журн. неорган. химии. 2014. Т. 59 № 9. C. 1166. doi 10.7868/S0044457X14090153] https://doi.org/10.1134/S003602361409014
- 25. *Кириленко И.А.* Водно-электролитные стеклообразующие системы. Красанд, 2016.
- 26. *Fischer T., Eisenmann B.* // Z. Kristallogr. 1996. V. 211. № 7. P. 475.