_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 548.31

КООРДИНАЦИОННЫЕ ПОЛИЭДРЫ AIC, В СТРУКТУРАХ КРИСТАЛЛОВ

© 2019 г. М. О. Карасев^{1, *}, И. Н. Карасева¹, Д. В. Пушкин¹

¹Самарский национальный исследовательский университет им. академика С.П. Королева, Россия, 443086 Самара, Московское шоссе, 34

> **E-mail: maxkarasev@inbox.ru* Поступила в редакцию 12.12.2018 г. После доработки 12.12.2018 г. Принята к публикации 17.12.2018 г.

С помощью метода пересекающихся секторов и полиэдров Вороного–Дирихле (ПВД) проведен кристаллохимический анализ соединений, структура которых содержит координационные полиэдры AlC_n. Установлено, что атомы алюминия в углеродном окружении проявляют координационные числа (КЧ) 1–7 и 10, при этом наиболее характерным КЧ атома алюминия является 4. Установлено существование единой линейной зависимости телесных углов граней ПВД, соответствующих валентным и невалентным контактам Al–C, от соответствующих межъядерных расстояний. Показано, что длина химических связей Al–C изменяется в диапазоне 1.90–2.77 Å, однако объем ПВД атома алюминия практически не зависит от его КЧ и составляет 11.4(7) Å³. Предложены критерии оценки существования кластерной связи Al–Al в структуре алюминийорганических соединений, а также проанализированы агостические взаимодействия Al—C.

Ключевые слова: полиэдры Вороного–Дирихле, кристаллохимический анализ, алюминий, кластеры, агостические взаимодействия

DOI: 10.1134/S0044457X19070092

введение

Алюминийорганические соединения имеют широкое применение в органическом синтезе благодаря высокой регио- и стереоселективности карбо- и гидроалюминирования [1]. Алюминийсодержащие металлорганические каркасы используются в качестве катализаторов при синтезе спиртов и карбонильных соединений [2]. К настоящему времени установлена структура более 7500 соединений, одновременно содержащих атомы алюминия и углерода [3]. Несмотря на это, кристаллохимический анализ соединений, содержащих в своем составе координационные полиэдры (**КП**) AlC_n , не проводился. Настоящая работа предпринята с целью установления основных закономерностей стереохимии алюминия в кристаллах, содержащих КП AlC_".

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллохимический анализ проводили с помощью комплекса структурно-топологических программ TOPOS [4]. Во внимание принимались лишь те структуры, которые удовлетворяли следующим критериям: структура решена с ненулевым фактором недостоверности $R \le 0.1$, в ней определены координаты всех атомов, включая атомы водорода, а также отсутствует статистиче-

ское разупорядочение каких-либо атомов. С учетом указанных критериев объектами анализа, проводившегося с помощью полиэдров Вороного-Дирихле (**ПВД**), явились 224 структуры, содержащие 348 кристаллографически неэквивалентных атомов Al(II), 13 атомов Al(II) и 21 атом Al(I). Следует отметить, что нехарактерные для алюминия низшие степени окисления представлены исключительно кластерами, содержащими связи Al-Al. Полный перечень всех изученных соединений можно получить у авторов по адресу: maxkarasev@inbox.ru.

Как известно [5], ПВД атома является выпуклый многогранник, образованный в результате пересечения плоскостей, проходящих перпендикулярно через середины отрезков, соединяющих данный атом со всем его окружением. В общем случае состав ПВД некоторого атома А можно представить в виде АХ_iZ_i, где Х – атомы, химически связанные с атомом А, *i* – его координационное число, Z – атомы, ПВД которых имеют общие грани с ПВД атома А, но не образующие с последним химических связей, ј – количество атомов Z. Сумма (*i* + *j*) определяет число граней (N_f) ПВД атома А. В качестве примера рассмотрим ПВД атома алюминия в структуре Na[AlMe₄] {CUVMAH} [6] (рис. 16, табл. 1). Здесь и далее в фигурных скобках, стоящих за формулой соеди-

КООРДИНАЦИОННЫЕ ПОЛИЭДРЫ AIC_n

Характер	оистики ПВД а	атома Аl*	Величина	перекрывани Al и X с ра	я (Å ³) двух сф диусами**	ер атомов	Тип
атомы окружения Х	d(Al-X), Å	Ω(Al–X), %	$r_s \times r_s$	$r_s imes R_{CД}$	$R_{\rm CJ} imes r_s$	$R_{\rm CД} \times R_{\rm CД}$	Al–X
]	Na[Al(CH ₃) ₄]	{CUVMAH} [6	j]	L	•
		Цен	птральный ато	$M - Al(1) c K^{U}$	I = 4		
$C(2) \times 2$	1.991	16.56	0	0.0589	0.0105	0.1658	Π ₃
$C(1) \times 2$	2.023	15.75	0	0.0443	0.0041	0.1409	Π ₃
#H(3) × 2	2.381	4.57	0	0.1494	0	0.3316	Π_0
$#H(1) \times 2$	2.426	4.80	0	0.1728	0	0.3693	Π ₀
$#H(4) \times 4$	2.583	2.09	0	0.0089	0	0.0785	Π ₀
#H(2) × 4	2.605	1.94	0	0.0008	0	0.0454	Π ₀
Na(1)	3.356	0.53	0	0	0	0	П ₀
		[AlM	$e(C_6F_5)(\mu-Me$)] ₂ {MURQUI	.} [28]	•	
		Центр	ральный атом	$- \operatorname{Al}(1) \operatorname{c} \operatorname{KY} =$	= 4 + 1	1	
C(16)	1.934	15.81	0.0004	0.4654	0	0.3635	Π ₃
C(6)	1.993	19.93	0	0.6006	0.0005	0.7499	Π ₃
C(3)	2.096	10.68	0	0.3009	0	0.2985	Π ₂
C(3)	2.100	9.92	0	0.2850	0	0.2725	Π ₂
H(2)	2.156	10.33	0	0.3650	0	0.5501	Π ₂
H(4)	2.177	10.03	0	0.3132	0	0.4626	П2
#H(3)	2.377	3.41	0	0.1997	0	0.5460	Π_0
#H(5)	2.448	3.54	0	0.2712	0	1.0223	Π_0
#H(11)	2.490	2.64	0	0.2281	0	0.9684	Π_0
#H(8)	2.571	2.20	0	0.1229	0	0.7061	Π_0
#H(8)	2.573	2.03	0	0.1143	0	0.6669	Π_0
Al (1)	2.593	5.49	0	0.0408	0.0408	0.3101	Π ₃
#F(3)	3.097	2.21	0	0	0	0.1086	Π ₀
#F(1)	3.237	1.21	0	0	0	0.1923	П ₀
#F(1)	3.620	0.51	0	0	0	0.0313	Π ₀
#F(9)	3.889	0.04	0	0	0	0.0029	Π ₀

Таблица 1. Анализ координации атомов алюминия в некоторых структурах

* d(AI-X) — расстояния между атомами, $\Omega(AI-X)$ — телесный угол, выраженный в процентах от 4π стерадиан, под которым общая грань ПВД атомов AI и X видна из ядра любого из них. Число симметрично равных контактов AI-X указано как (×*n*). Символом # отмечены атомы Z, для которых отрезок AI···Z не пересекает соответствующую ему грань ПВД и представляющие собой неосновные или непрямые соседи [22].

** Во всех случаях первым указан радиус сферы атома Al, вторым — атома X. Нулевое значение указывает на отсутствие пересечения соответствующих сфер.

Рис. 1. Полиэдры Вороного–Дирихле атомов алюминия в структурах Al(CH(SiMe₃)₂)₂(C=CPh) {SOMCAZ} (a), Na[Al(CH₃)₄] {CUVMAH} (б), Al(Cp)₃ {RIVNUF} (атом Al(1)) (в), Al(Np)₂(PPh₃-C = CH–Ph) {ANAJUV} (г), Al(Cp)₃ {RIVNUF} (атом Al(2)) (д), [Al(Me₃C₆H₂)₂C₆H₃][B(C₆F₅)₄] {AXUVAQ} (e), Al(CpMe₃)₃ {RIVPAN} (ж), [BMe(C₆F₅)₃][Al(CpMe₅)₂] · CH₂Cl₂ {YAQDUP} (3), (C₆F₅)₃AlAl(C₅Me₅) {GUHWIP} (и), Al₂Me₃(C₆F₅)₃ {QEMWIO} (к), Al₈Me₈(CH₂Ph)₆ {QEHPAU} (атом Al(3)) (д), Al₈Me₈(CH₂Ph)₆ (м) (атом Al(1)) {QEHPAU}, (AlEt)₇(CCH₂Ph)₄(C=C–Ph)H {CUGJET} (H), [Li(C₂H₄N₂Me₂)₂][Al₂(CH(SiMe₃)₂)₈Br] 2C₅H₁₀ {WEZRAU} (o), [Li((Me₂N)₂C₂H₄)₂][Al₂(C(SiMe₃)₂)₃(CH₂SiMe₂CHSiMe₃)] {LEDYAU} (п), [Al₄(C(SiMe₃)₃)₄] · 2Me₂CHOH {GASDIN} (р), (CMe₃)₃AlAl(C₅Me₅) {SEPWOA} (с), Al₄(CpMe₄)₄ {SIXGUC} (т). Символом Np обозначен неопентил-радикал C₅H₁₁, а символом Cp – циклопентадиенид-анион. Показаны только атомы, образующие химические связи с атомами Al. Черные кружки – атомы алюминия, белые – атомы углерода.

(б)

(к)

(л)

нения, указан буквенный код, под которым кристаллоструктурные и библиографические данные для вещества зарегистрированы в базе данных [3]. В структуре Na[AlMe₄] атом алюминия имеет KЧ = 4, образуя химические связи с атомами углерода, длина которых лежит в диапазоне 1.991–2.023 Å. Однако помимо четырех сравнительно коротких связей атом алюминия образует 13 дополнительных более длинных невалентных контактов с атомами водорода ($d(Al\cdots H) =$ = 2.381–2.605 Å) и атомом натрия ($d(Al\cdots Na) =$ = 3.356 Å). Таким образом, ПВД атома Al(1) в обсуждаемой структуре имеет 17 граней.

Для определения КЧ атомов алюминия был использован метод пересекающихся секторов [7], который однозначно и точно позволяет разделить все парные взаимодействия на сильные, соответствующие химическим связям (A–X), и слабые невалентные (A···Z) контакты. Согласно [7], типы пересечений Π_0 и Π_1 следует интерпретировать как невалентные взаимодействия A···Z, химическим связям A–X отвечают типы перекрываний Π_2 , Π_3 и Π_4 . Примеры расчета КЧ атомов Al по методу [7] представлены в табл. 1.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно полученным данным, по отношению к атомам углерода атомы Al(III) в структурах кристаллов проявляют KЧ 3–7 и 10, атомы Al(II) – 2 и 3, атомы Al(I) – 1 и 5 (табл. 2). Следует отметить, что атомы алюминия, находящиеся в низших, нехарактерных степенях окисления, а также 28 атомов Al(III) с KЧ = 3 и 4 образуют 1, 2 или 3 дополнительные связи Al–Al. Состав КП таких атомов можно охарактеризовать формулой AlC_nAl_m, поэтому условимся далее записывать КЧ атомов алюминия, входящих в состав подобных кластеров, в виде суммы (n + m), например, KЧ атома алюминия, входящего в состав комплекса AlC₄Al₂, равно 4 + 2.

Для определения формы КП атомов алюминия с КЧ > 3 использовали метод поиска изоморфизма графов реберных сеток соответствующих ПВД [8, 9]. При отнесении КП к определенному геометрическому типу в соответствии с [8, 9] рассматривали "упрощенные" ПВД, число граней которых совпадает с КЧ атомов алюминия, рассчитанным по методу пересекающихся секторов [7]. В обсуждаемых соединениях "упрощенные" ПВД атомов алюминия относятся к 10 различным комбинаторно-топологическим типам (**КТТ**).

На долю КП AlC_3Al_m (m = 0 и 1) приходится 12.6% от рассматриваемой выборки (табл. 2). Атомы алюминия, входящие в состав комплексов AlC_3 , имеют КП в виде тригональной пирамиды (рис. 1а). Атом алюминия выходит из плоскости, образованной тремя координированными атомами углерода, на величину $\delta = 0-0.45$ Å. Единственным примером комплекса, содержащего атом алюминия с $\delta = 0$, является структура (фенилэтинил)-*бис(бис*(триметилсилил)метил)алюминия Al(CH(SiMe₃)₂)₂(C=CPh) {SOMCAZ} [10], в которой атомы Al(1) занимают позиции с сайтсимметрией C_2 . В случае оставшегося 41 комплекса AlC₃ атомы алюминия имеют сайт-симметрию C_1 (39 комплексов) и C_3 (2 комплекса). Подобное окружение атомов алюминия наблюдается и в случае реализации КП состава AlC₂Al (рис. 10).

Как видно из табл. 2, атомы Al(III) чаще всего координируют 4 атома углерода, образуя КП состава AlC_4Al_m (*m* = 0-3), на долю которых приходится 73.0% от исследованной выборки. Отметим, что координация четырех атомов углерода характерна исключительно для атомов Al(III) и не наблюдается для Al(II) и Al(I). Атомы алюминия, образующие тетраэдрические комплексы AlC₄, занимают позиции с сайт-симметрией C₁ (256 комплексов), C_2 , C_3 и $C_{2\nu}$ (по одному комплексу). КП атомов алюминия, входящих в комплексные группировки AlC_4Al_m (m = 1-3), можно описать в виде образованных атомами углерода тетраэдров, на поворотных осях С2 которых располагаются дополнительные атомы алюминия (рис. 1к, 1л, 1м). Атомы Al в обсуждаемых комплексах AlC_4Al_m (m == 1-3) занимают позиции с сайт-симметрией C_1 (27 комплексов) и С_s (1 комплекс). Отметим, что тетраэдрическое строение имеют также комплексы алюминия с КЧ = 3+1 и 1+3 (сайт-симметрия позиций C_1), в которых одна или три вершины тетраэдра заняты атомами Al (рис. 1и, 1р).

Пента- и гексакоординированные состояния атомов алюминия реализуются за счет координации π -лигандов. Так, в структуре циклопентадиенида алюминия Al(Cp)₃ {RIVNUF} [11] атомы Al(1) координируют два η^2 - и один η^1 -циклопентадиенид-ион, реализуя КЧ = 5, в то время как атомы Al(2) координируют три η^2 -циклопентадиенид-иона, увеличивая тем самым свое КЧ до 6 (рис. 1в, 1д). Атомы Al в комплексах AlC₅ и AlC₆ занимают позиции с сайт-симметрией С₁. Координация η⁵-циклопентадиенид-аниона осуществляется в комплексах AlC₇, AlC₁₀ и в кластерах AlC₅Al_m (m == 1 или 5), изображенных на рис. 1ж, 1з. Например, гептакоординированный атом алюминия в структуре 1,2,4-триметилциклопентадиенида алюминия Al(1,2,4-Me₃Cp) {RIVPAN} [11] координирует один η⁵- и два η¹-1,2,4-триметилциклопентадиенид-аниона, образуя координационный полиэдр в виде пентагональной пирамиды с расщепленной вершиной (рис. 1ж). КП AlC₁₀ наблюдаются в "сэндвичевых" структурах, в которых атомы Al координируют два η^5 -пентаметилциклопентадиенид-иона, располагающихся в затор-

-				•								
Степень кисления	КЧ	КП	КТТ ПВД	ТТВ ПВД	Число атомов Аl	N_{f}	N_{nb}	$V_{\Pi { m B} { m A}}, { m \AA}^3$	$R_{ m CII}, m \AA$	G_3	$D_A, m \AA$	Рис. ПВД**
	ю	Треугольник	Ι	Ι	42	21(4)	9	12.7(6)	1.448(22)	0.089(2)	0.07(5)	la
	4	Тетраэдр	34	{3/4}	259	20(4)	4	11.2(4)	1.387(18)	0.0087(1)	0.05(3)	16
	5	Прямоугольная пирамида	3 ² 4 ³	{3/6}	2	25(1)	4	12.1(1)	1.423(3)	0.090(1)	0.06(3)	1 _B
		Одношапочный тетраэдр	3 ² 4 ³	{3/6}	4	18(4)	2.6	12.2(9)	1.427(36)	0.087(1)	0.05(2)	1r
	9	Искаженный октаэдр	46	{3/8}	1	23	2.8	13.3	1.471	0.091	0.05	1д
		Искаженная тригональная призма	3 ² 4 ² 5 ²	{3/8}	1	29	3.8	12.7	1.446	0.092	0.02	le
	7	Одношапочная пентагональная пирамида	3 ¹ 4 ³ 5 ³	{3/10}	1	21	2	12.0	1.421	0.087	0.062	1ж
III			3 ² 4 ² 5 ² 6	{3/10}	2	23(1)	2.3	12.5(1)	1.441(1)	0.091(1)	0.14(6)	
	10	Пентагональная антипризма	$4^{4}5^{4}6^{2}$	{3/16}	8	22(3)	1.2	10.91(7)	1.379(3)	0.090(1)	0.01(1)	13
	Bce				320	20(4)	1	11.4(7)	1.397(29)	0.087(2)	0.05(3)	
	3 + 1	Тетраэдр	34	{3/4}	2	21(14)	4.3	13.5(5)	1.477(18)	0.088(3)	0.13(5)	1и
	4 + 1	Искаженная тригональная бипирамида	3 ² 4 ³	{3/6}	16	19(3)	2.8	11.3(6)	1.393(26)	0.089(1)	0.07(5)	lк
	4 + 2	Искаженная пентагональная пирамида	3 ² 4 ² 5 ²	{3/8}	2	21(1)	2.5	12.1(6)	1.422(24)	0.089(1)	0.06(5)	1л
	4 + 3	Трехшапочный тетраэдр	$3^{3}5^{3}6^{1}$	{3/10}	9	19(2)	1.7	11.9(4)	1.417(14)	0.089(1)	0.09(4)	lм
			$3^{2}4^{3}6^{2}$	{3/10}	2	23(1)	2.1	12.3(1)	1.434(4)	0.090(1)	0.14(1)	lн
=	2 + 1	Треугольник	Ι	Ι	6	19(3)	5.3	15.9(9)	1.561(32)	0.088(2)	0.24(5)	10
Π	3 + 1	Тетраэдр	34	{3/4}	4	19(1)	3.8	14.2(4)	1.502(13)	0.089(1)	0.24(6)	lп
	1 + 3	Тетраэдр	34	{3/4}	4	20(1)	4	18.5(1)	1.639(4)	0.084(1)	0.07(1)	1p
Ι	5 + 1	Пентагональная пирамида	3 ² 4 ² 5 ²	{3/8}	2	24(3)	3	18.1(1.5)	1.628(44)	0.090(3)	0.29(6)	1c
	5 + 3	Призма	4 ⁴ 5 ⁴	{3/12}	15	21(1)	1.6	18.8(5)	1.649(16)	0.090(1)	0.18(2)	1_{T}
* КЧ – коор) зывают числ вершин); <i>N_f</i> сферы, объел гяжести его]	цинацио о верши – средне и которо ПВД. **F	нное число; КП – координационный полиэдр; І н у грани, надстрочные – общее число граней); ее число граней ПВД; N_{nb} – среднее число нева ой равен объему ПВД; G_3 – безразмерная величи Номер рисунка с изображением соответствующе	ХТТ – ком ТТВ – то лентных на второг го ПВД.	ибинаторн пологичес контактов о момент	но-тополо ский тип в 3, приходя а инерции	гический ершин ПІ щихся на ПВД; D _A	гип упр 3Д (пер одну хи – смеш	ощенного Г вая цифра у амическую с цение ядра а	ІВД, дуалы казывает Г квязь; И _{ПВ} тома метал	ного КП (с ранг вершил д – объем I гла из геоме	трочные чи ны, вторая ТВД; $R_{\rm CL}$ стрическог	асла ука- – число – радиус о центра

Таблица 2. Характеристики ПВД атомов алюминия в окружении атомов углерода *

718

КАРАСЕВ и др.

№ 7 ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64

²⁰¹⁹

Рис. 2. Зависимость телесных углов Ω (% от 4 π стерадиан) 2193 граней ПВД 348 атомов Al от межатомных расстояний Al–C и рангов, соответствующих этим граням.

моженной конформации по отношению друг к другу. Гептакоординированные атомы алюминия, а также атомы алюминия, входящие в кластеры AlC_5Al_m (m = 1 или 5), занимают позиции с сайт-симметрией C_1 , в то время как декакоординированные – C_1 и C_i (по 4 комплекса на каждый тип сайт-симметрии).

В табл. 3 приведена краткая характеристика всех валентных и невалентных взаимодействий между атомами алюминия и углерода. Наглядно охарактеризовать такие взаимодействия позволяет график зависимости телесных углов (Ω), выраженных в процентах от полного телесного угла 4π стерадиан, под которыми грани ПВД "видны" из ядер атома алюминия или углерода, от соответствующих расстояний Al-C и Al-C (рис. 2). Точки на графике (рис. 2) образуют непрерывную последовательность, так что на основании значений $\Omega(Al-C)$ и d(Al-C) невозможно разделить валентные и невалентные контакты. В структуре 224 исследованных соединений ПВД всех сортов атомов алюминия в сумме образуют 7670 граней. Проведенный анализ показал, что химическим взаимодействиям Al-X отвечают 1652 грани, в том числе 1534 типа Al-C и 118 типа Al-Al. Роль атомов Z, образующих невалентные контакты с атомами Al, чаще всего играют атомы H, C и F, образуя 4856, 659 и 149 граней соответственно. Химическим связям Al-C и Al-Al отвечают грани с рангом грани (**РГ**) $P\Gamma = 1$. Под рангом грани понимается минимальное число химических связей в структуре вещества, соединяющих два атома, ПВД которых имеют общую грань [12]. Нулевой ранг грани характеризует межмолекулярные взаимодействия. В обсуждаемой выборке ранг граней ПВД атомов Al изменяется в диапазоне от 0 до 12, за исключением $P\Gamma = 11$. Химические связи Al—C в обсуждаемых соединениях лежат в диапазоне 1.90–2.77 Å, а телесные углы, отвечающие этим граням, располагаются в области от 23.4 до 3.9%. Дополнительный анализ показал, что длина связи Al—C не зависит от гибридного состояния атома углерода и составляет в среднем 2.04(9) Å. Отметим, что средняя длина связи углерод–углерод фрагмента Al—C—C закономерно изменяется в зависимости от гибридизации атома C. Так, в ряду Al—C—C, Al—C=C и Al—C=C средние величины d(C—C) принимают значения 1.49(6), 1.36(6) и 1.20(1) Å соответственно. В то же время химическим контактам Al—Al отвечает диапазон длин связей 2.56–2.85 Å и телесных углов 16.3–2.9%.

Независимо от КЧ и степени окисления атомов алюминия, а также от формы и симметрии их ПВД валентные и невалентные взаимодействия между атомами Al и C описываются единой линейной зависимостью значений телесных углов граней ПВД от соответствующих межатомных расстояний (рис. 2):

$$\Omega(AI-C) = 42.00(33) - 13.04(13) d(AI-C)$$
(1)

с коэффициентом корреляции $\rho = -0.899$ для 2193 граней Al-C. Как известно, наличие подобной линейной зависимости является критерием существования ближнего порядка, обусловленного химическим взаимодействием между атомами, и дает основание полагать, что взаимодействия Al-C в структуре изученных кристаллов подчиняются общей закономерности, не зависящей от валентного состояния атомов Al. Как следует из рис. 2, реализующиеся в структурах кристаллов значения d(Al-C) образуют практически непрерывную область в диапазоне 1.90–4.86 Å, при этом с ростом межатомного расстояния значения $\Omega(Al-C)$ уменьшаются от ~2% практически до нуля.

Согласно данным табл. 3, в рассмотренных соединениях длина связи Al-C в КП AlC, изменяется более чем на 0.8 Å, однако такая вариация межатомного расстояния Al-C практически не сказывается на величине объема ПВД атома Al, который в пределах $3\sigma(V_{\Pi B \pi})$ является константой, практически не зависящей от значения КЧ. Напротив, изменение степени окисления атома Al неминуемо сказывается на величине $V_{\Pi B \Pi}$. Как видно из табл. 2, уменьшение степени окисления атома Al сопровождается закономерным увеличением V_{ПВД} атома алюминия, средние значения которого составляют 11.4(7), 15.4(1.2) и 18.7(6) Å³ для атомов Al(III), Al(II) и Al(I) соответственно. Факт постоянства величин $V_{\Pi B A}$ и $R_{C A}$ в пределах одной и той же степени окисления атома Al свидетельствует в пользу модели атома как "мягкой", обладающей способностью легко деформиро-

$ \begin{array}{ $	ица	1 3. Xa	рактер	истик	и взаимс	действи	ій АІ−Е и	AIE (E	C NJI	A AI) B CT	pykrype :	алюмин	ийорган	ических	соедине	ний			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r		:		Связ	и Al-C		Нева	лентные к	онтакты АІ-	ç		Связи	N-AI		HeB	алентные к	онтакты АІ-	IV
		КЧ	число атомов Аl	число	d(Al−i	C),Å	диапазон	число	d(Al…	C),Å	Ω(Al…C),	число	d(Al-,	AI), Å	диапазон	ЧИСЛО	<i>d</i> (Al…,	Al), Å	Ω(Al…Al),
3 42 10 10-10 104-10 <			į	связей	диапазон	среднее	22(AI-C), I	COHTAKTOB	диапазон	среднее	%	связей	диапазон	среднее	22(AI-AU), %	TOB TOB	диапазон	среднее	%
	T	3	42	126	1.90-2.05	1.97(2)	14.4–23.4	166	2.61-4.10	3.11(32)	<7.4	I	I	I	I	7	2.94–3.38	3.20(19)	<2.0
		4	252	1036	1.90-2.46	2.03(6)	3.9-22.8	353	2.60-4.34	3.02(27)	<5.8	I	I	I	I	33	2.81-3.46	3.16(20)	<3.5
		5	9	30	1.94-2.77	2.20(28)	4.9–21.1	28	2.55-4.00	3.08(42)	<5.1	I	I	I	I	I	I	I	I
		6	2	12	1.94-2.62	2.26(25)	7.4-20.8	22	2.63—4.86	3.38(61)	<2.7	I	I	I	I	I	I	I	I
10 8 0 111-28 2.15(2) 8.5-9.7		7	3	21	1.97-2.41	2.22(14)	5.5-18.8	~	2.70-3.08	2.88(13)	<3.5	I	I	I	I	I	Ι	I	I
Be 30 100-277 0040 39-234 535-486 305(3) 774 - - - - - 100 231-364 317(20) 731 31+1 2 198-204 201(2) 181-22.5 9 291-299 296(3) <13		10	8	80	2.11-2.18	2.15(12)	8.5-9.7	I	I	I	I	I	I	I	I	I	I	I	I
3+1 2 6 $198-204$ 2007 $81-223$ 9 $291-239$ 29043 $201-230$ 20647 $81-203$ $26-647$ $81-203$ $26-310$ $2-387$ $2-36$ $2-36-310$ $2-367-310$ $2-387$ $2-36-310$ $2-367-31$ $2-367-31$ $2-367-31$ $2-367-31$ $2-367-31$ $2-367-310$ $2-367-31$ $2-367-310$ $2-367-31$		Bce	320	1305	1.90-2.77	2.04(9)	3.9-23.4	563	2.55-4.86	3.05(32)	<7.4	I	I	I	I	40	2.81-3.46	3.17(20)	<3.5
4+1 16 64 $192-27$ 20463 $8.3-216$ $205-305$ $303(33)$ $(13$ 16 $41-59$ 5 $267-310$ $283(18)$ <336 $4+2$ 2 $194-2.44$ $208(16)$ $129-186$ 8 $295-395$ $343(43)$ <33 4 $2.95-285$ $27(13)$ $2.95-375$ $315(52)$ <2.8 $4+3$ 8 32 $194-2.44$ $208(10)$ $133-185$ 26 $334(43)$ <33 4 $2.95-285$ $27(13)$ $2.95-375$ $315(52)$ <2.8 $4+3$ 8 32 $193-285$ 72 $2.96-4.30$ $3.30(37)$ <2.4 24 $2.9-5.5$ 1 2 $2.967-375$ $2.85-375$ $2.86(3)$ <2.35 $4+3$ 8 10 $192-2.44$ $2.967-375$ $3.26(4)$ $2.95-375$ $2.96(34)$ <2.35 $2.64(7)$ $2.967-375$ $2.96(34)$ 2.35 $4+3$ 19 19 $192-$		3 + 1	2	9	1.98-2.04	2.01(2)	18.1–22.5	6	2.91-2.99	2.96(3)	< 0.1	2	2.59-2.69	2.64(7)	12.8–16.3	I	I	I	I
4+2 2 $194-2.44$ $2.08(16)$ $129-18.6$ 8 $2.95-3.95$ $3.43(43)$ < 3.3 4 $2.59-2.85$ $2.71(13)$ $2.9-5.2$ 3 $2.85-3.75$ $3.15(53)$ < 2.8 $4+3$ 8 32 $193-2.38$ $207(10)$ $13.3-18.5$ 26 $2.96-4.01$ $3.50(37)$ < 2.4 $2.9-5.85$ $2.9-5.37$ $3.15(53)$ < 2.85 Be 28 110 $192-2.44$ $2.05(9)$ $8.3-22.5$ 72 $2.69-4.26$ $3.23(41)$ < 3.3 46 $2.57-2.85$ $2.64(7)$ $2.9-16.3$ 9 $2.67-3.75$ $2.96(34)$ < 3.36 $2+1$ 9 18 $198-2.05$ $2.01(2)$ $5.5-201$ 15 $2.39-3.52$ $3.15(30)$ < 7.6 9 $2.56-2.75$ $2.64(7)$ $2.9-16.3$ 9 $2.67-3.75$ $2.96(34)$ < 3.65 $3+1$ 4 12 $199-2.32$ $2.08(10)$ $7.8-195$ $5.5-201$ 15 $2.39-3.57$ $3.16(30)$ < 7.6 9 $2.56-2.75$ $2.65(8)$ 1216.3 9 $2.67-3.75$ $2.96(34)$ < 3.66 $3+1$ 4 12 $197-2.32$ $2.08(10)$ $7.8-201$ 15 $2.39-3.57$ $3.16(30)$ < 7.6 9 $2.56-2.75$ $2.65(8)$ 1216.3 9 $2.67-3.75$ $2.96(34)$ $2.67-3.75$ $2.96(34)$ $2.56-3.75$ 10 $197-2.32$ $2.08(10)$ $7.8-201$ 20 $2.9-3.57$ $3.16(3)$ < 7.6 12 $2.9-16.3$ 12 $10-16.3$ <		4 + 1	16	64	1.92-2.27	2.04(8)	8.3-21.6	29	2.69-4.26	3.03(33)	<1.3	16	2.57-2.78	2.64(6)	4.1-5.9	5	2.67-3.10	2.85(18)	<3.6
4+3 8 32 $193-2.38$ $207(10)$ $133-18.5$ 26 $296-4.01$ $3.30(37)$ < 2.4 2.4 $2.8-2.85$ $2.64(7)$ $2.9-5.6$ 1 $ 3.75$ $-$ Bce 28 110 $192-2.44$ $205(9)$ $8.3-22.5$ 72 $2.69-4.26$ $3.32(41)$ < 3.3 46 $2.57-2.85$ $2.64(7)$ $2.9-16.3$ 9 $2.67-3.75$ $2.96(34)$ $< 3.36(3)$ $2+1$ 9 18 $1.98-2.05$ $2.0(2)$ $8.3-20.1$ 15 $2.39-3.57$ $3.15(30)$ < 7.6 9 $2.56-2.75$ $2.65(6)$ $12.3-16.3$ $ 3+1$ 4 12 $1.99-2.32$ $2.01(2)$ $5.5-20.1$ 15 $2.56-2.75$ $2.65(6)$ $12.3-16.3$ $ 3+1$ 4 12 $1.97-2.32$ $2.08(10)$ $7.8-19.5$ 5 $2.39-3.57$ $3.16(3)$ <3.1 4 $2.56-2.75$ $2.65(6)$ $12.3-16.3$ $ -$		4+2	2	8	1.94-2.44	2.08(16)	12.9-18.6	∞	2.95-3.95	3.43(43)	<3.3	4	2.59–2.85	2.71(13)	2.9–5.2	3	2.85-3.75	3.15(52)	<2.8
Bcc 28 110 192-2.44 2.05(9) 8.3-22.5 72 2.69-4.26 3.23(41) <3.3 46 2.57-2.85 2.64(7) 2.9-16.3 9 2.67-3.75 2.96(34) <3.3 2+1 9 18 198-2.05 201(2) 15.5-201 15 2.39-3.52 3.15(30) <76		4+3	8	32	1.93-2.38	2.07(10)	13.3-18.5	26	2.96-4.01	3.50(37)	<2.4	24	2.58-2.85	2.64(9)	2.9–5.6	1	I	3.75	I
J+1 9 18 198-2.05 2.01(2) 15.5-201 15 2.39-3.52 3.15(30) <76 9 2.56-2.75 2.65(5) 12.3-16.3 - </td <td></td> <td>Bce</td> <td>28</td> <td>110</td> <td>1.92-2.44</td> <td>2.05(9)</td> <td>8.3-22.5</td> <td>72</td> <td>2.69-4.26</td> <td>3.23(41)</td> <td><3.3</td> <td>46</td> <td>2.57-2.85</td> <td>2.64(7)</td> <td>2.9–16.3</td> <td>6</td> <td>2.67-3.75</td> <td>2.96(34)</td> <td><3.6</td>		Bce	28	110	1.92-2.44	2.05(9)	8.3-22.5	72	2.69-4.26	3.23(41)	<3.3	46	2.57-2.85	2.64(7)	2.9–16.3	6	2.67-3.75	2.96(34)	<3.6
3+1 4 12 1.97-2.32 2.08(10) 7.8-19.5 5 2.79-3.57 3.19(34) <3.1 4 2.56-2.75 2.65(8) 12.3-14.4 -		2 + 1	6	18	1.98-2.05	2.01(2)	15.5-20.1	15	2.39–3.52	3.15(30)	<7.6	6	2.56–2.75	2.65(5)	12.3–16.3	I	I	Ι	I
Bce 13 30 1.97-2.32 2.04(7) 7.8-20.1 20 2.39-3.57 3.16(3) <7.6 13 2.56-2.75 2.65(6) 12.3-16.3 -		3 + 1	4	12	1.97-2.32	2.08(10)	7.8–19.5	5	2.79–3.57	3.19(34)	<3.1	4	2.56–2.75	2.65(8)	12.3–14.4	I	I	Ι	I
1+3 4 4 2.02-2.03 2.03(1) 21.0-21.3 - - - 12 2.73-2.75 2.74(1) 11.0-11.9 -		Bce	13	30	1.97-2.32	2.04(7)	7.8-20.1	20	2.39–3.57	3.16(3)	<7.6	13	2.56–2.75	2.65(6)	12.3-16.3	I	I	Ι	I
5+1 2 10 2.16-2.22 2.20(2) 8.8-9.6 4 3.63-3.91 3.77(12) <1.6		1 + 3	4	4	2.02-2.03	2.03(1)	21.0-21.3	I	I	I	I	12	2.73-2.75	2.74(1)	11.0-11.9	I	I	I	I
5+3 15 75 2.28-2.38 2.33(2) 7.1-9.0 - - - 45 2.63-2.78 2.74(4) 12.5-13.3 -		5 + 1	2	10	2.16-2.22	2.20(2)	8.8-9.6	4	3.63-3.91	3.77(12)	<1.6	2	2.59–2.69	2.64(7)	12.8–16.3	I	I	Ι	I
Bcc 21 89 2.02-2.38 2.30(8) 7.1-21.3 4 3.63-3.91 3.77(12) <16 59 2.59-2.78 2.74(4) 11.0-16.3 - - -		5 + 3	15	75	2.28-2.38	2.33(2)	7.1–9.0	I	I	I	I	45	2.63–2.78	2.74(4)	12.5–13.3	I	I	I	I
		Bce	21	89	2.02-2.38	2.30(8)	7.1–21.3	4	3.63-3.91	3.77(12)	<1.6	59	2.59-2.78	2.74(4)	11.0-16.3	I	Ι	Ι	I

720

КАРАСЕВ и др.

ваться сферы [13—15], объем которой фиксирован и зависит исключительно от степени окисления атома Al и химической природы атомов, непосредственно связанных с ним. Как было отмечено выше, в случае 28 атомов Al(III) метод пересекающихся секторов выявил помимо химических связей Al—C связи Al—Al. Из табл. 2 видно, что, несмотря на наличие таких дополнительных связей Al—Al, характеристики ПВД атомов алюминия в КП AlC_nAl_m в пределах погрешности совпадают с характеристиками ПВД атомов Al, установленных для КП состава AlC_n.

Нецентросимметричность окружения атомов алюминия можно охарактеризовать, используя величину вектора смещения ядра атома из центра тяжести его ПВД (D_A) [14]. Из приведенных в табл. 2 данных видно, что величина D_A в подавляющем большинстве случаев равна нулю в пределах $2\sigma(D_A)$. В пределах утроенной погрешности ненулевые значения параметр D_A принимает только в случае субвалентных соединений алюминия, что, по всей видимости, вызвано наличием дополнительной связи Al-Al. В то же время комплексы Al(III) имеют ненулевое среднее значение D_A только в случае КП AlC₄Al₃, что, вероятно, обусловлено образованием атомами Al многоцентровых двухэлектронных связей [16, 17]. В случае комплексов AlC_nAl_m (m = 0-3) величина вектора D_A лежит в диапазоне 0—0.333 Å. Нулевые значения D_A наблюдаются для четырех комплексов AlC₁₀, в которых атомы Al имеет сайт-симметрию C_i , координируют два η^5 -пентаметилциклопентадиенид-аниона в $[BMe(C_6F_5)_3][Al(CpMe_5)_2]$ · · CH₂Cl₂ {YAQDUP} [18] и [Al(CpMe₅)₂][AlCpMe₅Cl₃] {HASPOG} [19]. Максимальное значение $D_A =$ = 0.333 Å имеет атом Al⁺(2) в структуре (C₆F₅)₃AlAl(C₅(CH₃)₅) [20], подробно обсуждаемой ниже.

Помимо вектора D_A искажение ПВД описывается величиной второго момента инерции (G_3) — безразмерного параметра, характеризующего степень сферичности полиэдра [21]. Для комплексов AlC_nAl_m (m = 0-3) величина G_3 изменяется в диапазоне 0.0844—0.0925, что, согласно [21], соответствует образованию преимущественно ковалентных связей.

Наглядно охарактеризовать особенность окружения атомов алюминия в исследованных структурах позволяет (r, φ)-распределение [14], график которого для ПВД атомов Al представлен на рис. 3. На приведенных графиках ядра всех атомов Al расположены в полюсе (точка 0) полярной системы координат. Вектор D_A совмещен с полярной осью абсцисс, а в случае $D_A = 0$ с полярной осью совмещена ось z кристаллографической системы координат. В результате центр тяжести каждого

ПВД лежит на горизонтальной оси справа от точки 0 или совпадает с ней. Каждой грани ПВД соответствует точка, положение которой однозначно определяется полярным радиусом r, равным по величине соответствующему межъядерному расстоянию, и полярным углом φ (угол между векторами D_A и r).

Независимо от степени окисления атомов Al на (r, ϕ)-распределении наблюдаются две контактные кривые, соответствующие двум координационным сферам атомов алюминия. На рис. За изображено (r, ϕ)-распределение для контактов Al–C и Al–Al в комплексах Al^{III}C_nAl_m (m = 0-3). Первая координационная сфера атомов Al³⁺ включает в себя валентные взаимодействия Al–C и Al–Al, которым соответствуют контактные кривые с радиусами ~2.03(7) и 2.64(7) Å соответственно. Вторая координационная сфера представляет собой невалентные взаимодействия Al/C и Al/Al, которым отвечают контактные кривые с радиусами ~3.08(33) и 3.24(19) Å соответственно.

Несколько иной вид имеет (r, ϕ)-распределение для комплексов Al^{2+} и Al^+ , изображенное на рис. Зб и Зв соответственно. В данном случае контактные кривые, отвечающие взаимодействиям Al-С и Al-Al, представлены дугами. При этом точки, характеризующие контакты Al-C, располагаются преимущественно при значениях угла $\phi > 90^{\circ}$, в то время как точки, характеризующие контакты Al–Al, лежат при значениях угла $\phi <$ < 90°. Данное обстоятельство можно объяснить исходя из направленности ковалентных связей Al-X (X = C, Al), обратившись к рис. 1с, на котором видно, что КП субвалентных атомов алюминия характеризуются асимметрией в расположении лигандов. Например, в комплексе $(C_6F_5)_3$ AlAl (C_5Me_5) {GUHWIP} [20] атом Al⁺(2) с одной стороны окружен атомами C-донорного лиганда (η^5 -C₅Me₅), а с диаметрально противоположной стороны - атомом Al³⁺(1). В комплексах Al²⁺ радиус С-координационной сферы равен ~2.04(7) Å, а Аl-координационной сферы – ~2.65(6) Å. В случае комплексов одновалентного алюминия первая контактная кривая располагается на более удаленном расстоянии (2.30(8) Å), чем для комплексов Al³⁺ и Al²⁺. Вторая координационная сфера на рис. Зв характеризует кластерные связи Al-Al и имеет радиус ~2.74(4) Å.

На (r, ϕ)-распределении для атомов Al²⁺ и Al⁺ (рис. 36 и 3в) наблюдается четко выраженный диффузный слой, за существование которого преимущественно отвечают внутримолекулярные контакты Al/H и Al/Si, РГ которых изменяется от 2 до 7 в случае атомов Al²⁺ и от 2 до 5 для атомов Al⁺. Следует отметить, что на рис. 3в практически полностью отсутствуют точки, соответ-

Рис. 3. Распределение (r, φ) для ПВД атомов Al, входящих в состав 348 комплексов Al^{III}C_nAl_m (a), 13 комплексов Al^{III}C_nAl (б), 21 комплекса Al^IC_nAl_m (в), 51 комплекса, в которых проявляются агостические взаимодействия Al^{...}H–C (r). Во всех случаях черные кружки отвечают атомам C, белые кружки – атомам Al, белые квадраты – атомам H, черные ромбы – атомам Si, черные треугольники – атомам Br (б) и F (в), белыми треугольниками обозначены атомы H, участвующие в агостических взаимодействиях Al^{...}H–C.

ствующие невалентным взаимодействиям Al/C, что связано со строением кластерных группировок, представленных в случае атомов Al⁺ тетраэдрами Al₄, полностью экранированными от невалентных взаимодействий Al/C атомами лигандов, в роли которых выступают объемные группировки – η^5 -пентаметилциклопентадиенид-анионы и *трис*(триметилсилил)метил-анионы. Как видно из данных табл. 3, только в случае комплексов AlC₅Al ПВД атомов Al⁺ имеют грани, отвечающие невалентным взаимодействиям Al/C. Данный факт связан исключительно с особенностями строения соединений. Комплексы AlC₅Al не образуют компактных тетраэдрических кластеров, как в случае других производных Al⁺, в результате чего ПВД атомов Al⁺ приобретают грани, соответствующие невалентным взаимодействиям Al/C.

Интересной особенностью координационно ненасыщенных металлов в структурах кристаллов является возможность существования агостических взаимодействий М…Н–С. В работах [7, 22] приведены критерии существования агостических взаимодействий, согласно которым подоб-

ные взаимодействия между атомом металла и атомом водорода, связанного с атомом углерола. реализуются если: атомы водорода имеют достаточно короткий контакт с атомом металла и являются прямыми соседями; контактам М--Н-С отвечают существенно ненулевые телесные углы $\Omega > 5\%$; значения характеристик ПВД атомов М, участвующих в агостических взаимодействиях, рассчитанных с учетом и без учета атомов водорода, существенно изменяются. В изученной выборке наблюдается значительное количество "прямых" контактов Al-H (893 из 4856), которые могут соответствовать агостическим взаимодействиям АІ---Н-С, обусловленным ненасыщенностью валентных возможностей атомов алюминия. Среди основных граней типа Al-Н встречаются 64 грани, которым соответствуют типы пересечения П₂. Эти грани, согласно [7, 22], необходимо интерпретировать как агостические взаимодействия Al···H–C, соответствующие внутри- ($P\Gamma =$ = 2-6, 8 и 9) и межмолекулярным контактам $(P\Gamma = 0)$, которые можно охарактеризовать значениями d(Al-H) = 2.06-2.70 Å и $\Omega(Al-H) = 5.3-$ 15.4%. В обсуждаемой выборке присутствуют 32

Рис. 4. Молекула $\delta uc(\mu-t-бутилэтенилиден)$ -тетраэтил-диалюминия $Al_2Et_4(t-Bu-CH=CH)_2$. Большие черные кружки – атомы алюминия, белые – атомы углерода, маленькие черные кружки – атомы водорода.

структуры, содержащие 51 атом алюминия, которые образуют агостические взаимодействия с атомами водорода. Последние входят в состав группировок, содержащих как *sp*³- (метильные и метиленовые группировки), так и *sp*²-гибридные атомы углерода (фенильные, винильные и аллильные фрагменты). Примером может служить структура соединения (μ_4 -карбидо)(μ -триизопропилфосфинимид-N,N')(μ -метил)(η^5 -инденил)гексаметилтри-алюминий-титан (Al₃TiC)Me₇(NP(*i*-Pr)₃)(C₉H₇) {QORTOG} [23], в которой между атомами H(46) метильной группировки и Al(2) реализуется агостическое взаимодействие с характеристиками d(Al-H) = 2.21 Å, $\Omega(Al-H) = 15.4\%$.

На рис. Зг представлено (r, ϕ)-распределение для контактов атомов алюминия, участвующих в агостических взаимодействиях Al····H–C. Из рис. Зг видно, что подавляющая часть атомов H, вовлеченная в реализацию контактов Al····H–C, располагается между полуокружностями, отвечающими взаимодействиям Al–C и Al/H. Радиус контактной кривой, отвечающей агостическим взаимодействиям Al····H, составляет ~2.36(21) Å.

Приведенные в табл. 3 данные свидетельствуют о неравнозначности связей Al—Al, образованных атомами алюминия в различных степенях окисления. Например, комплексы Al³⁺C₃Al, входящие в состав двух структур, представлены биядерными кластерами (η^5 -пентаметилциклопентадиенил)-*трис*(пентафторфенил)диалюминий (C₆F₅)₃AlAl(C₅Me₅) {GUHWIP} [20] и (η^5 -пентаметилциклопентадиенил)-три-*t*-бутилдиалюминий (CMe₃)₃AlAl(C₅Me₅) {SEPWOA} [24]. Кластерная связь в обсуждаемых структурах представляет собой двухэлектронную двухцентровую

связь (2е2с-связь), образованную за счет неподеленной электронной пары атома Al(I) и вакантной орбитали атома Al(III) [20, 24]. Помимо кластерной связи атомы Al(III) в соединении (CMe₃)₃AlAl(C₅Me₅) образуют три связи с атомами углерода трех трет-бутильных групп, в то время как в $(C_6F_5)_3$ AlAl (C_5Me_5) такие связи реализуются с атомами углерода трех пентафторфенильных групп. В обеих структурах атом Al(I) образует связь с η^5 -пентаметилциклопентадиенид-анионом. Телесные углы, отвечающие взаимодействиям Al—Al в комплексах AlC₃Al, лежат в диапазоне 12.8-16.3%. В то же время связям в комплексах AlC_4Al_m (*m* = 1-3), включающим в свой состав исключительно атомы Al³⁺, отвечают довольно низкие величины телесного угла, лежащего в диапазоне 2.9-5.9%, тогда как в комплексах, содержащих субвалентный атом алюминия, значениям Ω (Al-Al) соответствует диапазон 11.0–16.3%.

Комплексы AlC_4Al_m , где m = 2 или 3, входят в состав двух структур – $(AlMe)_8(CCH_2Ph)_5(C\equiv C-Ph)$ [16] {QEHPAU} и $(AlEt)_7(CCH_2Ph)_4(C\equiv C-Ph)H$ [17] {CUGJET}. В первой структуре атомы алюминия образуют кубический кластер Al_8 , в то время как во второй структуре кластер Al_7 можно представить в виде одношапочной треугольной призмы. Образование кластеров Al_8 и Al_7 объясняется авторами [16, 17] возникновением многоцентровых двухэлектронных связей, подобных связям B–B в молекулах бороводородов.

В то же время вопрос о существовании кластерных связей A–A, где A = Al^{3+} , в биядерных комплексах остается открытым. Согласно [1], биядерные комплексы Al^{3+} можно описать двумя способами, используя два типа связывания. Первый вариант предполагает наличие в обсуждаемых соединениях двух 2*e*3*c*-связей, реализующихся между атомами алюминия и мостиковыми атомами углерода. В таком случае кластерная связь Al–Al отсутствует. Второй вариант связывания подразумевает комбинацию одной 2*e*2*c*-связи Al–Al и одной 2*e*4*c*-связи между атомами входящих в состав 1,3-диалюминациклобутанового фрагмента.

Согласно методу пересекающихся секторов [7], комплексам AlC₄Al отвечают биядерные кластеры, в которых каждый атом Al образует четыре связи с атомами углерода, при этом две связи являются концевыми и две — мостиковыми. В целом, в таком кластере два атома алюминия координируют шесть атомов углерода. На рис. 4 представлен пример такого биядерного кластера. В структуре *бис*(μ -*t*-бутилэтенилиден)тетраэтилдиалюминия [25] {UHICAQ} атомы Al образуют кластерную связь Al—Al и координируют два *t*-бутилэтенилиденовых монодентатных мостиковых лиганда (тип координации M^2) и четыре этильных

RefCode	Атомы Al	d(Al–Al), Å	d(Al–C), Å	∠CAlC, град	∠AlCAl, град	$\begin{array}{c} \Omega(\text{Al-Al}),\\ \% \end{array}$	Мостиковый лиганд	Тип перекр. Al—Al
BOFNOA	Al(1)	2.669	2.042 2.180	97.7	81.7	4.1	CH ₂	П2
2011(011	Al(2)	2.009	2.039 2.174	98.0	75.6			3
DIHLAI	Al(1)	2.784	2.045	99.8	80.2	4.1	Ср	Π ₃
EMALIN	Al(1)	2.664	2.167	102.8	77.2	4.6	Ph	П3
ΜΟνζαζ	Al(2)	2 627	2.016 2.219	102.2	79.2	5.4	СН	П.
	Al(3)	2.027	2.104 2.095	103.6	74.9	5.4		113
MUROUI	Al(1)	2.593	2.096	103.6	76.4	5.5	CH ₃	Π ₃
monque	Al(2)	2.587	2.098	104.2	75.8	5.9	CH ₃	Π ₃
QACLUD	Al(1)	2.641	2.135	103.3	76.7	5.4	Ph-CH=C-SiMe ₃	Π ₃
OFMWIO	Al(1)	2 572	2.145 2.127	101.5	75.3	5.8	CH ₃	Па
QLIIIII0	Al(2)	2.572	2.067 2.083	105.7	75.3	5.0		113
TPHNAL10	Al(1)	2.701	2.178	103.5	76.5	5.1	Ph	Π ₃
UHICAO	Al(1)	2.663	2.104 2.104	101.6	78.5 78.3	4.5	CH ₂	Π_3
	Al(2)		2.105 2.117	101.2	78.3		2	5
BOCYAT	Al(1)	2.818	2.129	98.1	81.9	2.7	Tol	Π_1
FIMHIU	Al(1)	2.845	2.037	93.1	86.9	1.2	C≡C	Π_1
HALWEX	Al(1)	3.030	2.224	88.3	91.7	—	C≡C-Ph	-
HEWDAP	Al(1)	2.833	2.031	99.5	80.6	3.1	CH ₂	Π_1
OEWZUO	Al(2)	2.807	2.449 2.019	89.2	79.8	3.4	Cn	П
	Al(3)		2.042 2.164	97.0	84.2		-r	1
RAOXIR	Al(2)	2.906	1.995 2.777	80.5	72.7	3.2	Ср	Π
	Al(3)		2.155 2.015	97.7	88.8		-r	1
VAHJIZ	Al(1)	2.879	2.032 2.129	90.7	87.3	1.1	C≡C	П
	Al(2)	2.0/9	2.141 2.040	90.2	87.2		- ~	••1
VIIIIIG	Al(2)	2 845	2.539 2.018	87.6	76.0	3.1	Cn	П.
	Al(3)	2.012	2.037 2.192	97.2	84.9	2.1	~r	1

Таблица 4. Некоторые характеристики комплексов $Al(III)_2C_6^*$

* d(Al–Al) – расстояние между атомами алюминия, ∠CAlC – угол между мостиковыми атомами углерода и атомом алюминия, ∠AlCAl – угол между атомами алюминия и мостиковым атомом углерода, Ω(Al–Al) – телесный угол общей грани ПВД двух атомов алюминия, Cp – циклопентадиенил, Ph – фенил, Tol – толил, КХФ – кристаллохимическая формула.

радикала, являющихся монодентатными концевыми лигандами (тип координации M^1). Обозначение типов координации дано в соответствии с [26]. Согласно [26], такому комплексу соответствует кристаллохимическая формула (**КХФ**) $A_2M_2^2M_4^1$, где A = Al. Поскольку в подобных кластерах атомы алюминия координируют лишь С-донорные лиганды, условимся далее обозначать такие комплексы формулой Al_2C_6 .

На основании кристаллохимического анализа было установлено, что из 18 комплексов Al(III)₂C₆, в состав 17 входят атомы Al, ПВД которых имеют общую грань, отвечающую контактам Al—Al (табл. 4). Из 17 указанных контактов Al—Al лишь 10 характеризуются типом перекрывания Π_3 [22], что следует рассматривать как существование химического взаимодействия между атомами алюминия. Согласно данным табл. 4, наличие или отсутствие химической связи между атомами Al(III) определяется геометрическими характери-

стиками четырехчленного цикла $Al_2^{III}C_2$. Согласно полученным данным, кластерная связь образуется межлу атомами алюминия, если расстояния d(Al-Al) и d(Al-C) не превышают 2.78 и 2.22 Å соответственно. При этом величины валентных углов ∠CAIC лежат в диапазоне 97.7°-105.7°, ∠AlCAl – в диапазоне 74.9°-81.7°. Отклонение значений угла ∠CAlC в меньшую или угла ∠AlCAl в большую сторону приводит к росту расстояния d(Al-Al) и, соответственно, к невозможности образования кластера. Так, в случае структуры *бис*(µ₂-фенилэтинилиден)-тетраметилдиалюминия $Al_2Me_4(C \equiv CC_6H_5)_2$ [27] {HALWEX} значения параметров d(Al-Al) = 3.03 Å, $\angle CAlC =$ = 88.3° и \angle AlCAl = 91.7° приводят к отсутствию общей грани ПВД у двух атомов Al, входящих в состав одного комплекса. Величина Ω(Al-Al) в кластерах Al_2C_6 лежит в диапазоне 4.1–5.9%. На наш взгляд, рассматриваемые в [1] модели элек-

тронного строения комплексов $Al_2^{III}C_6$, следует использовать не как комбинацию, а как два самостоятельных способа описания кластерных и некластерных структур $Al_2^{III}C_6$.

ЗАКЛЮЧЕНИЕ

Использование метода разбиения кристаллического пространства с помощью ПВД атомов позволяет выявлять абсолютно все контакты между атомами в структурах кристаллов, а не только наиболее значимые, что, в частности, дало возможность охарактеризовать кластерные связи Al—Al, не характерные для трехвалентного атома алюминия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Эльшенбройх К. Металлоорганическая химия. М.: БИНОМ. Лаборатория знаний, 2011. 746 с. [*Elschenbroich C.* Organometallchemie. Teubner Verlag, 2008.]
- Aguirre-Diaz L.M., Reinares-Fisac D., Iglesias M. et al. // Coord. Chem. Rev. 2017. V. 335. № 1. P. 1. https://doi.org/10.1016/j.ccr.2016.12.003
- 3. *Cambridge Structural Database System*, Version 5.32 (Crystallographic Data Centre, Cambridge, 2017).
- 4. Blatov V.A., Shevchenko A.P., Serezhkin V.N. // Russ. J. Coord. Chem. 1999. Т. 25. № 7. С. 453. [Блатов В.А., Шевченко А.П., Сережкин В.Н. // Коорд. химия. 1999. Т. 25. № 7. С. 483.]
- 5. Вайнштейн Б.К., Фридкин В.М., Инденмоб В.Л. Современная кристаллография в 4-х томах. Т. 1. М.: Наука, 1979. С. 161.
- Medley J.H., Fronczek F.R., Ahmad N. et al. // J. Crystallogr. Spectrosc. Res. 1985. V. 15. № 2. P. 99.
- 7. Blatova O.A., Blatov V.A., Serezhkin V.N. // Russ. J. Coord. Chem. 2000. V. 26. № 12. Р. 847. [Блатова О.А., Блатов В.А., Сережкин В.Н. // Коорд. химия. 2000. T. 26. № 12. С. 903.]
- Wolf R., Hoppe R. // Z. Anorg. Allg. Chem. 1985. V. 528. № 9. P. 129. https://doi.org/10.1002/zaac.19855280914
- 9. *Блатов В.А., Сережкин В.Н. //* Коорд. химия. 1997. Т. 23. № 3. С. 192.
- Uhl W., Er E., Hübner O., Himmel H.J. // Z. Anorg. Allg. Chem. 2008. V. 634. № 12. P. 2133. https://doi.org/10.1002/zaac.200800156
- Fisher J.D., Budzelaar P.H.M., Shapiro P.J. et al. // Organometallics. 1997. V. 16. № 5. P. 871. https://doi.org/10.1021/om9610049
- 12. Shevchenko A.P., Serezhkin V.N. // Russ. J. Phys. Chem. 2004. V. 78. № 10. Р. 1598. [Шевченко А.П., Сережкин В.Н. // Журн. физ. химии. 2004. Т. 78. № 10. С. 1817.]
- Сережкин В.Н., Блатов В.А., Шевченко А.П. // Коорд. химия. 1995. Т. 21. № 3. С. 163.
- Serezhkin V.N., Byslaev Yu.A. // Russ. J. Inorg. Chem. 1997.
 V. 42. № 7. Р. 1064. [Сережкин В.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 7. С. 1180.]
- 15. *Сережкин В.Н., Сережкина Л.Б. //* Коорд. химия. 1999. Т. 25. № 3. С. 182.
- Gorden J.D., Macdonald C.L.B., Cowley A.H. // Chem. Commun. 2001. V. 37 № 1. P. 75. https://doi.org/10.1039/B007341P
- 17. Schulz S., Kuczkowski A., Schuchmann D. et al. // Organometallics. 2006. V. 25. № 22. P. 5487. https://doi.org/10.1021/om0606760
- Burns C.T., Shapiro P.J., Budzelaar P.H.M. et al. // Organometallics. 2000. V. 19. № 17. P. 3361. https://doi.org/10.1021/om000173x
- Dohmeier C., Schnöckel H., Schneider U. et al. // Angew. Chem. Int. Ed. 1993. V. 32. № 11. P. 1655. https://doi.org/10.1002/anie.199316551
- 20. Блатов В.А., Полькин В.А., Сережкин В.Н. // Кристаллография. 1994. Т. 39. № 3. С. 457.

- Serezhkin V.N., Mikhailov Yu.N., Byslaev Yu.A. // Russ. J. Inorg. Chem. 1997. V. 42. № 12. Р. 1871. [Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.]
- 22. *Kickham J.E., Guerin F., Stewart J.C. et al.* // Organometallics. 2001. V. 20. № 6. P. 1175. https://doi.org/10.1021/om001047w
- Uhl W., Breher F. // Organometallics. 2000. V. 19. № 22. P. 4536. https://doi.org/10.1021/om000244s
- 24. *Uhl W., Breher F., Lützen A., Saak W. //* Angew. Chem. Int. Ed. 2000. V. 39. № 2. P. 406.
- 25. *Uhl W., Er E., Hepp A. et al.* // Eur. J. Inorg. Chem. 2009. V. 2009. № 22. P. 3307. https://doi.org/10.1002/ejic.200900264
- 26. Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Crystallogr. 2009. V. 65B. № 1. P. 45. https://doi.org/10.1107/S0108768108038846
- 27. *Uhl W., Breher F., Haddadpour S. et al.* // Z. Anorg. Allg. Chem. 2004. V. 630. № 15. P. 1839. https://doi.org/10.1002/zaac.200400150
- 28. *Hair G.S., Cowley A.H., Gorden J.D. et al.* // Chem. Commun. 2003. № 3. P. 424. https://doi.org/10.1039/B210024J