ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123.3:543.572.3

РАЗБИЕНИЕ ЧЕТЫРЕХКОМПОНЕНТНОЙ ВЗАИМНОЙ СИСТЕМЫ Na,Rb||F,I,CrO₄ И ИССЛЕДОВАНИЕ СТАБИЛЬНОГО ТЕТРАЭДРА NaF-RbI-RbF-Rb₂CrO₄

© 2019 г. А. В. Бабенко^{1, *}, Е. М. Егорова¹, И. К. Гаркушин¹

¹Самарский государственный технический университет, Россия, 443100 Самара, ул. Молодогвардейская, 244

**E-mail: anastasya.babenko2010@yandex.ru* Поступила в редакцию 06.12.2018 г. После доработки 07.01.2019 г. Принята к публикации 15.01.2019 г.

Исследована четырехкомпонентная взаимная система Na, Rb $\|F,I,CrO_4$, низкоплавкие смеси на основе которой перспективны в качестве расплавляемых электролитов для химических источников тока, теплоаккумулирующих материалов, сред для выращивания монокристаллов. С использованием теории графов проведено разбиение и построено древо фаз системы, которое является линейным и включает в себя четыре стабильных тетраэдра, связанных между собой стабильными секущими треугольниками. Методом дифференциального термического анализа исследован объединенный стабильный тетраэдр NaF-RbI-RbF-Rb_CrO₄, поверхность кристаллизации которого представлена объемами фторида натрия, иодида рубидия, фторида рубидия, хромата рубидия и соединения Rb₃CrO₄F. Линии моновариантных равновесий сходятся в двух четырехкомпонентных нонвариантных точках: эвтектике $E^{\Box}491$ и перитектике $P^{\Box}508$.

Ключевые слова: фазовые равновесия, дифференциальный термический анализ, нонвариантное равновесие, эвтектика, перитектика

DOI: 10.1134/S0044457X1907002X

введение

В настоящее время расширяется область практического использования функциональных материалов из солей s¹-элементов [1, 2], которые в большинстве случаев представляют собой многокомпонентные системы. Системы из неорганических солей находят применение в качестве теплоаккумулирующих материалов [3], теплоносителей для отопительного оборудования жилых зданий [4]. Из-за относительно высокой теплопроводности и достаточно низкой вязкости расплавленные соли используются для теплообмена или охлаждения во многих системах, включая солнечные электростанции, а также при термообработке сталей [5].

Объектом исследования является четырехкомпонентная взаимная система Na,Rb||F,I,CrO₄, схема развертки и призма составов которой представлена на рис. 1. Треугольная призма системы Na,Rb||F,I,CrO₄ включает две трехкомпонентные системы и три трехкомпонентные взаимные системы.

По данным [6], в системе NaF–NaI–Na₂CrO₄ кристаллизуется трехкомпонентная эвтектика.

По данным [7], в системе $RbF-RbI-Rb_2CrO_4$ кристаллизуются тройная эвтектика и перитектика. Трехкомпонентные взаимные системы, ограняющие исследуемый объект, изучены ранее: в системе Na, Rb||F,I образуются две эвтектики [8], в системах Na, Rb||I,CrO₄ [9] и Na, Rb||F,CrO₄ [10] – две и три эвтектики соответственно. Данные по двухкомпонентным системам NaF–NaI, NaF– Na₂CrO₄, RbF–Rb₂CrO₄ и NaF–RbF представлены в [11], RbF–RbI – в [12], RbI–Rb₂CrO₄ – в [13], NaI–Na₂CrO₄ – в [14], по Na₂CrO₄–Rb₂CrO₄ и NaI–RbI – в [15].

С использованием теории графов [16] проведено разбиение системы Na,Rb||F,I,CrO₄ на симплексы. Матрица смежности четырехкомпонентной взаимной системы Na,Rb||F,I,CrO₄ приведена в табл. 1.

На основании данных таблицы составлено логическое выражение, представляющее собой произведение сумм индексов несмежных вершин:

$$(X_2 + X_4)(X_2 + X_6)(X_2 + X_{46}) \times (X_3 + X_4)(X_3 + X_{46})(X_4 + X_6).$$

Рис. 1. Схема развертки и призма составов четырехкомпонентной взаимной системы Na, Rb ||F, I, CrO₄.

После всех преобразований с учетом закона поглощения получен набор однородных несвязных графов:

 $\{1, X_2X_3X_6; 2, X_2X_3X_4; 3, X_2X_4X_{46}; 4, X_4X_6X_{46}\}.$

Путем выписывания недостающих вершин для несвязных графов получим набор стабильных ячеек и отвечающие им соли:

I) $X_1X_{46}X_4X_5$ NaF-d₁-RbF-RbI, II) $X_1X_6X_{46}X_5$ NaF-Rb₂CrO₄-d₁-RbI, III) $X_3X_1X_6X_5$ Na₂CrO₄-NaF-Rb₂CrO₄-RbI, IV) $X_2X_1X_3X_5$ NaI-NaF-Na₂CrO₄-RbI.

Общие элементы каждой пары смежных симплексов образуют секущие элементы (стабильные треугольники): NaF-d₁-RbI, NaF-Rb₂CrO₄-RbI и NaF-Na₂CrO₄-RbI. Наличие соединения Rb₃CrO₄F (d₁) в тетраэдрах NaF-d₁-RbF-RbI и NaF-Rb₂CrO₄-d₁-RbI и связывающем их секущем треугольнике NaF-d₁-RbI приводит к тому,

Таблица 1. Матрица смежности четырехкомпонентной взаимной системы Na, Rb||F,I,CrO₄

Соединение	Индекс	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₄₆
NaF	X ₁	1	1	1	1	1	1	1
NaI	X_2	1	1	0	1	0	0	
Na ₂ CrO ₄	X ₃	1	0	1	1	0		
RbF	X_4	1	1	0	1			
RbI	X_5	1	1	1				
Rb_2CrO_4	X ₆	1	1					
Rb_3CrO_4F	X ₄₆	1						

что эти элементы объединяются в один стабильный тетраэдр NaF–RbI–RbF–Rb₂CrO₄. Это происходит вследствие того, что в системе RbF–RbI– Rb₂CrO₄ соединение Rb₃CrO₄F с конгруэнтным типом плавления переходит в инконгруэнтное, поэтому один из симплексов, а именно NaF– Rb₂CrO₄–d₁–RbI, не будет содержать четырехкомпонентных нонвариантных точек и его исследование нецелесообразно. В результате проведенного разбиения системы Na,Rb||F,I,CrO₄ построено древо фаз (рис. 2).

Химическое взаимодействие в системе Na,Rb $||F,I,CrO_4$ описывается двумя линиями конверсии: К₂—К₁ и К₁—К₃, которые сходятся в точке полной конверсии К₁. Фигура конверсии системы Na,Rb $||F,I,CrO_4$ представлена на рис. 1.

В трехкомпонентных взаимных системах протекают реакции обмена в точках полной конверсии (табл. 2). Суммируя реакции (2) и (1) для составов точек полной конверсии K₂ и K₁, получаем реакцию обмена, протекающую в составе, отвечающем центральной точке линии конверсии K₂-K₁:

$$RbF + Rb_2CrO_4 + 3NaI \rightleftharpoons$$
$$\rightleftharpoons 3RbI + NaF + Na_2CrO_4.$$

Выражая содержание компонентов в точке K_2 через x, в точке K_1 через (1 - x), получаем уравнение реакции обмена для любой точки линии конверсии K_2 – K_1 :

$$(1 - x)RbF + xRb_2CrO_4 + NaI \rightleftharpoons$$
$$\rightleftharpoons RbI + (1 - x)NaF + xNa_2CrO_4.$$

Присутствующие фазы для линии конверсии K_2-K_1 : NaF, RbI, Na₂CrO₄.

Рис. 2. Древо фаз четырехкомпонентной взаимной системы Na, Rb F, I, CrO₄.

Суммируя уравнения (1) и (3) для составов точек полной конверсии K_1 и K_3 , получаем реакцию обмена, протекающую в составе, отвечающем центральной точке линии конверсии K_1-K_3 :

$$NaI + Na_2CrO_4 + 3RbF \rightleftharpoons$$
$$\rightleftharpoons 3NaF + Rb_2CrO_4 + RbI.$$

Выражая содержание компонентов в точке K_1 через *y*, в точке K_3 через (1 - y), получаем уравнение реакции обмена для составов любой точки линии конверсии K_1 – K_3 :

$$y$$
NaI + $(1 - y)$ Na₂CrO₄ + RbF \rightleftharpoons
 \rightleftharpoons NaF + $(1 - y)$ Rb₂CrO₄ + y RbI.

Таким образом, стабильными продуктами реакции для составов линии конверсии K_1-K_3 являются NaF, RbI и Rb₂CrO₄.

Образованная линиями конверсии K_2-K_1 и K_1-K_3 треугольная плоскость отражает взаимодействие трех пар солей в четверной взаимной системе Na,Rb $||F,I,CrO_4$.

Некоторые стабильные элементы четырехкомпонентной взаимной системы Na,Rb||F,I,CrO₄ были изучены авторами ранее: стабильный треугольник RbI–Na₂CrO₄–NaF, в котором образуется трехкомпонентная эвтектика при 502°C (состав: 37% RbI, 54% Na₂CrO₄, 9% NaF), стабильный треугольник NaF–Rb₂CrO₄–RbI, в котором выявлена трехкомпонентная эвтектика при 576°С (состав: 7.5% NaF, 30% Rb₂CrO₄, 62.5% RbI), стабильный тетраэдр Na₂CrO₄–NaF–Rb₂CrO₄–RbI, в котором кристаллизуются непрерывные ряды твердых растворов.

Экспериментальное исследование стабильного объединенного тетраэдра NaF-Rb₂CrO₄-RbI-RbF проведено методом дифференциального термического анализа. Исходные реактивы квалификации "ч. д. а." (NaF), "ч." (Rb₂CrO₄, RbF) и "х. ч." (RbI) были предварительно обезвожены. Температуры плавления, полиморфного превращения ($t_{\alpha \neq \beta}$ (Rb₂CrO₄) = 730°C) индивидуальных солей соответствовали справочным данным [17, 18]. Все составы выражены в экв. %.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Развертка стабильного тетраэдра NaF–RbI– RbF–Rb₂CrO₄ представлена на рис. 3. Анализ элементов огранения позволил предположить образование четверных эвтектики и перитектики.

Для получения полной картины о фазовых взаимодействиях в системе рассмотрено политермическое сечение a[34% NaF + 66% RbI] - b[34% NaF +

Таблица 2. Реакции обмена в точках полной конверсии в трехкомпонентных взаимных системах

Система	Реакция	$\Delta_r H_{298}^\circ$	$\Delta_r G_{298}^\circ$		
		кДж			
Na,Rb F,I	$2RbF + 2NaI \rightleftharpoons 2NaF + 2RbI (1)$	-121.9	-118.1		
Na,Rb I,CrO ₄	$2\text{NaI} + \text{Rb}_2\text{CrO}_4 \rightleftharpoons 2\text{RbI} + \text{Na}_2\text{CrO}_4$ (2)	-19.9	-19.7		
$Na, Rb \ F, CrO_4$	$2\text{RbF} + \text{Na}_2\text{CrO}_4 \rightleftarrows 2\text{NaF} + \text{Rb}_2\text{CrO}_4 (3)$	-102.1	-98.4		

Рис. 3. Развертка стабильного тетраэдра NaF-RbI-RbF-Rb₂CrO₄.

Рис. 4. Политермическое сечение четырехкомпонентной взаимной системы Na, Rb||F, I, CrO₄.

+ 66% Rb_2CrO_4]-c[34% NaF + 66% RbF] в поле кристаллизации компонента фторида натрия (рис. 4). Из *T*-*x*-диаграммы политермического разреза G[34.0% NaF + 46.2% RbI + 19.8% RbF]-F[34.0% NaF + 46.2% RbI + 19.8% Rb₂CrO₄] установлены направления на проекции четырехкомпонентных эвтектики и перитектики (рис. 5).

При исследовании разрезов, выходящих из вершины a[34% NaF + 66% RbI] и проходящих через направления \overline{P}^{\Box} 508 (рис. 6) и $\overline{\overline{E}}^{\Box}$ 491 (рис. 7),

Рис. 5. *Т*-*х*-диаграмма политермического разреза GF четырехкомпонентной взаимной системы Na, Rb||F,I,CrO₄.

найдены проекции на четверные перитектику $\overline{P}^{\Box}508$ и эвтектику $\overline{E}^{\Box}491$. Содержание фторида натрия в четырехкомпонентных нонвариантных точках определено в ходе изучения разрезов NaF $\rightarrow P^{\Box}508$ (рис. 8) и NaF $\rightarrow E^{\Box}491$ (рис. 9).

ЗАКЛЮЧЕНИЕ

Проведено разбиение четырехкомпонентной взаимной системы Na, Rb||F,I,CrO₄, которое представлено линейным древом фаз, включающим

Рис. 6. Политермический разрез $a[34\% \text{ NaF} + 66\% \text{ RbI}] \rightarrow \overline{P}^{\Box}508.$

четыре стабильных тетраэдра, разделенных тремя стабильными секущими треугольниками. Аналогичный вариант разбиения приведен в работах [19, 20].

Исследован стабильный тетраэдр NaF-RbI-RbF-Rb₂CrO₄, поверхность кристаллизации ко-

Рис. 7. Политермический разрез $a[34\% \text{ NaF} + 66\% \text{ RbI}] \rightarrow \overline{E}^{\Box}$ 491.

а

торого представлена объемами фторида натрия, иодида рубидия, фторида рубидия, хромата рубидия и соединения Rb_3CrO_4F . Линии моновариантных равновесий сходятся в двух четырехкомпонентных нонвариантных точках: эвтектике $E^{\Box}491$ и перитектике $P^{\Box}508$.

Рис. 8. Политермический разрез NaF $\rightarrow P^{\Box}$ 508.

экв. %

20

6

40

NaF 80

60

БАБЕНКО и др.

Таблица 3. Характеристики точек нонвариантного равновесия в тетраэдре NaF-RbI-RbF-Rb₂CrO₄

Система	Характер точки	Co	t °C			
		1	2	3	4	, _{пл} , с
NaF–RbF–RbI–Rb ₂ CrO ₄	P^{\Box} E^{\Box}	6 6	26.79 31.02	56.40 54.52	10.81 8.46	508 491

Рис. 9. Политермический разрез NaF $\rightarrow E^{\Box}$ 491.

Таблица 4. Фазовые реакции, протекающие в тетраэдре NaF-RbI-RbF-Rb₂CrO₄

Элемент диаграммы	Фазовая реакция
Точка Е□	$x \rightleftharpoons NaF + RbI + RbF + Rb_3CrO_4F$
Точка Р□	
Монова-	
риантные	
линии:	
$E_3 - E^{\Box}$	$\mathbf{x} \rightleftharpoons \mathbf{RbF} + \mathbf{NaF} + \mathbf{Rb}_{3}\mathbf{CrO}_{4}\mathbf{F}$
$E_4 - E^{\Box}$	$x \rightleftharpoons RbF + RbI + NaF$
$E_5 - E^{\Box}$	$x \rightleftharpoons RbF + RbI + Rb_3CrO_4F$
$E^{\Box} - P^{\Box}$	$\mathfrak{K} \rightleftharpoons \mathrm{NaF} + \mathrm{RbI} + \mathrm{Rb}_3\mathrm{CrO}_4\mathrm{F}$
$E_1 - P^{\Box}$	$x \rightleftharpoons \text{RbI} + \text{NaF} + \alpha - \text{Rb}_2\text{CrO}_4$
$E_2 - P^{\Box}$	$x \rightleftharpoons NaF + \alpha - Rb_2CrO_4 + Rb_3CrO_4F$
$P_1 - P^{\Box}$	$x \rightleftharpoons RbI + \alpha - Rb_2 CrO_4 + Rb_3 CrO_4 F$

Характеристики точек нонвариантного равновесия экспериментально исследованного тетраэдра NaF-RbI-RbF-Rb₂CrO₄ приведены в табл. 3.

Фазовые равновесия элементов стабильного тетраэдра представлены в табл. 4.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках базовой части государственного задания ФГБОУ ВО СамГТУ, проект № 4.5534.2017/8.9.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Mancini T.* Advantages of Using Molten Salt. Sandia National Laboratories. Internet resources. http://www.webcitation.org/60AE7heEZ
- 2. *Uhlíř J.* // J. Nucl. Mater. 2007. V. 360. № 1. P. 6. https://doi.org/10.1016/j.jnucmat.2006.08.008
- Dinker A., Agarwal M., Agarwal G.D. // J. Energy Institute. 2017. V. 90. № 1. P. 1. https://doi.org/10.1016/j.joei.2015.10.002
- 4. Zhihang Zh., Mohammad T.A., Amanullah M.T.O. // Energy Procedia. 2017. V. 110. P. 243. https://doi.org/10.1016/j.egypro.2017.03.134
- 5. *Rapp B.* // Materialstoday. 2015. V. 8. № 12. P. 6. https://doi.org/10.1016/S1369-7021(05)71195-0

- Garkushin I.K., Ignat'eva E.O., Dvoryanova E.M. // Russ. J. Inorg. Chem. 2012. V. 57. № 5. Р. 732. [Гаркушин И.К., Игнатьева Е.О., Дворянова Е.М. // Журн. неорган. химии. 2012. Т. 57. № 5. С. 800.] https://doi.org/10.1134/S0036023612050063
- Burchakov A.V., Dvoryanova E.M., Kondratyuk I.M. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. Р. 511. [Бурчаков А.В., Дворянова Е.М., Кондратюк И.М. // Журн. неорган. химии. 2015. Т. 60. № 4. С. 572.] https://doi.org/10.1134/S0036023615040038
- Трунин А.С., Гаркушин И.К., Воронин К.Ю. и др. А.с. 1089100 СССР, МК 44 С09К 5106. Теплоаккумулирующий состав. СССР // Бюл. изобр. 1984. № 16. 2 с.
- Саламаткина А.А., Бехтерева Е.М. // VI Всерос. конф. молодых ученых, аспирантов и студентов с междунар. участием "Менделеев-2012". СПб., 2012. С. 510.
- Саламаткина А.А. // Тез. докл. III Конф. молодых ученых по общей и неорган. химии. М., 2013. С. 107.
- Воскресенская Н.К., Евсеева Н.Н., Беруль С.И. и др. Справочник по плавкости систем из безводных неорганических солей. М.: Изд-во АН СССР. М., 1961. Т. 1. 845 с.

- Кондратюк И.М., Дворянова Е.М., Гаркушин И.К. // Изв. Самарск. научн. центра РАН. Химия и хим. технология. 2004. С. 12.
- 13. *Бурчаков А.В., Бехтерева Е.М., Кондратюк И.М. //* Бутлеровские сообщения. 2014. Т. 39. № 8. С. 40.
- Игнатьева Е.О., Дворянова Е.М., Гаркушин И.К. // Вестн. Иркутск. гос. техн. ун-та. 2011. Т. 57. № 10. С. 153.
- Посыпайко В.И., Алексеева Е.А. Диаграммы плавкости солевых систем. Ч. П. Двойные системы с общим анионом. М.: Металлургия, 1977. 304 с.
- 16. Оре О. Теория графов. М.: Наука, 1980.
- Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1981. Вып. Х. Ч. 1. 300 с.
- Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1981. Вып. Х. Ч. 2. 300 с.
- 19. Гаркушин И.К., Губанова Т.В., Петров А.С. и др. Фазовые равновесия в системах с участием метаванадатов некоторых щелочных металлов. М.: Машиностроение-1, 2005. 118 с.
- 20. Kosyakov V.I., Shestakov V.A., Grachev E.V. // Russ. J. Inorg. Chem. 2017. V. 63. № 3. Р. 318. [Косяков В.И., Шестаков В.А., Грачев Е.В. // Журн. неорган. химии. 2017. Т. 63. № 3. С. 314.] https://doi.org/10.7868/S0044457X17030102