ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 5, с. 538-544

= ФИЗИКОХИМИЯ РАСТВОРОВ —

УДК 542.6:548.737

ЭКСТРАКЦИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В СИСТЕМЕ 1,1,7-ТРИГИДРОДОДЕКАФТОРГЕПТАНОЛ–ВОДА ФОСФОРИЛПОДАНДАМИ, ПРОИЗВОДНЫМИ ДИФОСФОНОВЫХ КИСЛОТ

© 2019 г. И. С. Иванова^{1, 2, *}, Е. С. Криворотько², А. Б. Илюхин¹, С. В. Демин^{1, 2}, Е. Н. Пятова^{1, 2}, В. Е. Баулин^{2, 3}, А. Ю. Цивадзе²

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ²Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр-т, 31, Москва, 119991 Россия ³Институт физиологически активных веществ РАН, Северный пр-д, 1, Черноголовка, Московской обл., 142432 Россия *E-mail: isivanova@mail.ru

Поступила в редакцию 05.11.2018 г. После доработки 21.11.2018 г. Принята к публикации 23.11.2018 г.

Изучена экстракция редкоземельных элементов (РЗЭ) в системе 1,1,7-тригидрододекафторгептанол—вода с использованием фосфорилподандов, производных дифосфоновых кислот общей формулы 2-[(HO)(EtO)(O)P]-4-Et- C_6H_3 -(OCH₂CH₂)_n-OC₆H₃-4-Et-2-[P(O)(OEt)(OH)], n = 1-5. Изучено влияние кислотности среды на эффективность и селективность извлечения РЗЭ. Методом РСА установлена кристаллическая структура 1,5-*бис*[2-(оксиэтоксифосфорил)фенокси]-3-оксапентана.

Ключевые слова: фосфорилподанды, экстракция, 1,1,7-тригидрододекафторгептанол, РЗЭ, РСА **DOI:** 10.1134/S0044457X1905009X

введение

Известно [1-3], что редкоземельные элементы (РЗЭ) находят применение в различных областях химической и металлургической промышленности, ядерной энергетики, в производстве лазерных материалов и высокотемпературных сверхпроводников. Для этого требуется высокая чистота металлов. Поэтому большое значение имеют эффективность их разделения и очистка от примесей. Одним из методов, применяемым для разделения РЗЭ, является жидкостная экстракция [2–10]. Большое промышленное значение для извлечения трехвалентных *f*-элементов имеют липофильные фосфорорганические лиганды различного строения [2, 3]. Сравнительно недавние исследования [11-13] показали, что фосфорилподанды, производные дифосфоновых кислот, являются весьма перспективными соединениями для их использования в качестве избирательных экстрагентов для извлечения f-элементов. По своим характеристикам такие поданды существенно превосходят хорошо известный экстрагент ди-2-этилгексилфосфорную кислоту [14].

Изучена экстракция урана(VI), тория(IV) и лантана(III) в 1,2-дихлорэтан бинарными экстрагентами, полученными на основе стехиометрических смесей дифосфоновых кислот - 1,5-бис[о-(диоксифосфорил)фенокси]-3-оксапентана или 1,5бис[о-(диоксифосфорил)-п-этилфенокси]-3-оксапентана и триоктиламина [15]. Найдены условия регенерации экстрагентов после реэкстракции, что допускает их повторное применение. Авторами [16, 17] исследована экстракционная способность органической соли поданда 1,5-бис[о-(гидроксиэтоксифосфорил)фенокси]-3-оксапентана и триоктиламина по отношению к цезию в азотнокислых и карбонатных средах. Показана более высокая экстракционная способность данного экстрагента при экстракции цезия из этих сред по сравнению с дибензо-18-краун-6 и ди-трет-бутилдициклогексано-18-краун-6. Кроме того. фосфорилподанды могут использоваться как компоненты неподвижной фазы сорбентов импрегнированного типа для экстракционно-хроматографического извлечения ⁹⁹Мо [18], ¹⁴⁷Рm [19], разделения U(VI), Th(IV), Np(IV) и Pu(IV)

[20, 21] из растворов, полученных при переработке отработанного ядерного топлива.

О влиянии строения фосфорсодержащих подандов кислотного типа или природы разбавителя на экстракционное разделение многокомпонентных растворов редкоземельных элементов известно немного. В основном такие исследования были проведены для подандов с этиленгликолевой цепочкой, не превышающей трех звеньев. В работах [11, 14] в качестве экстрагентов выборочно взятых РЗЭ были проверены поданды с различными заместителями при атоме фосфора или бензольного кольца. Однако длина этиленгликолевой цепочки подандов также была ограничена (n = 3). Тем не менее экстракционно-хроматографические исследования, проведенные в [18], показали, что фосфорилподанд с числом этиленгликолевых звеньев n = 4 обладает лучшими характеристиками в качестве основного компонента неподвижной фазы сорбента импрегнированного типа. Авторы [11] также отмечали, что эффективность экстракции лантана заметно возрастает с ростом числа звеньев в этиленгликолевой цепочке поданда ($n = 1 \rightarrow 3$).

Представляло интерес проверить экстракционные свойства подандов кислотного типа с более длинной полиэфирной цепью по отношению к целому ряду редкоземельных элементов и в других условиях. В настоящей работе изучена экстракция РЗЭ фосфорилподандами L^n (n = 1-5) и L^0 в системе 1,1,7-тригидрододекафторгептанол вода. Применение подобного разбавителя имеет ряд преимуществ перед хлорпроизводными углеводородов, а именно: он обладает высокой радиационной устойчивостью, не горючий, малотоксичный, достаточно хорошо растворяет краунэфиры и их производные.

Установлена зависимость экстракционной способности от длины L^n и жесткости L^0 полиэфирной цепи. Методом РСА определена кристаллическая структура 1,5-*бис*(2-оксиэтоксифосфорилфенокси)-3-оксапентана (Lig (I)).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез 1,2-бис(2-оксиэтоксифосфорил-4-этилфенокси)-3-оксапентана (L¹). К раствору 2.58 г (10.0 ммоль) 2-диэтоксифосфорил-4-этилфенола в 25 мл сухого диоксана добавляли 3.26 г (10.0 ммоль) свежепрокаленного карбоната цезия и нагревали до кипения. После 0.5 ч перемешивания добавляли 1.85 г (5.0 ммоль) дитозилата этиленгликоля и перемешивали еще в течение 7 ч. После охлаждения смесь выливали в 100 мл воды, подкисляли HCl_{конц} до pH 1 и экстрагировали CHCl₃ (3 × 25 мл). Экстракт промывали водой (3 × 25 мл), упаривали растворитель в вакууме. Остаток растворяли в 10 мл этилового спирта и добавляли 5 мл 40%-ного раствора гидроксида натрия. Смесь кипятили в течение 5 ч, затем $HCl_{конц}$ подкисляли до рН 1 и экстрагировали CHCl₃ (3 × 25 мл). Полученный экстракт упаривали в вакууме, остаток затирали с диэтиловым эфиром. Выход L¹ составил 3.20 г (65.8%), $t_{пл} =$ = 189–191°C (этанол).

Спектр ПМР (CDCl₃, δ , м. д.): 1.19 т (6H, ³J_{н-н} = = 7.0 Гц 2C<u>H</u>₃CH₂-Ar), 1.25 т (6H, ³J_{н-н} = 7.0 Гц 2C<u>H</u>₃CH₂O), 2.61 м (4H, Ar-C<u>H</u>₂CH₃), 4.18 м (4H, 2OC<u>H</u>₂CH₃ + 4H, 2OC<u>H</u>₂C<u>H</u>₂O), 6.81 м (2H, Ar–H), 7.22 м (2H, Ar–H), 7.54 м (2H, Ar–H). Спектр ЯМР ³¹Р (CDCl₃, δ, м. д.): 19.32.

1,5-Бис(2-оксиэтоксифосфорил-4-этилфенокси)-3-оксапентан (L²) получен аналогично L¹ из 2.58 г (10.0 ммоль) 2-диэтоксифосфорил-4-этилфенола в 25 мл сухого диоксана, 3.26 г (10.0 ммоль) свежепрокаленного карбоната цезия и 2.07 г (5.0 ммоль) дитозилата диэтиленгликоля. Выход L² составил 3.98 г (75%), $t_{пл} = 143-145^{\circ}$ С (этанол-вода).

С Н Р Найдено, %: 54.15, 54.12; 6.71, 6.87; 11.37, 11.55. Для С₂₄Н₃₆О₉Р₂

вычислено, %: 54.34; 6.84; 11.68.

Спектр ПМР (CDCl₃, δ , м. д.): 1.16 т (6H, ³J_{H-H} = 7.0 Гц 2C<u>H</u>₃CH₂-Ar), 1.37 т (6H, ³J_{H-H} = 7.0 Гц 2C<u>H</u>₃CH₂O), 2.68 м (4H, Ar-C<u>H</u>₂CH₃), 4.13 м (12H, 2OC<u>H</u>₂CH₃ + 8H, 2OC<u>H</u>₂C<u>H</u>₂O), 6.84 м (2H, Ar-H), 7.26 м (2H, Ar-H), 7.57 м (2H, Ar-H). Спектр ЯМР ³¹Р (CDCl₃, δ , м. д.): 19.22.

1,8-Бис(2-оксиэтоксифосфорил-4-этилфенокси)-3,6-диоксаоктан (L³) получен аналогично L¹ из 3.82 г (15.0 ммоль) 2-диэтоксифосфорил-4этилфенола в 25 мл сухого диоксана, 4.86 г (15.0 ммоль) свежепрокаленного карбоната цезия и 3.44 г (7.5 ммоль) дитозилата диэтиленгликоля. Выход L³ составил 3.10 г (72%), $t_{пл} = 153-155^{\circ}$ С (этанол-вода).

С Н Р Найдено, %: 54.31, 54.48; 6.93, 6.89; 10.43, 10.63. Для С₂₆Н₄₀О₁₀Р₂ вычислено, %: 54.35; 7.02; 10.78.

Спектр ПМР (CDCl₃, δ , м. д.): 1.18 т (6H, ³J_{H-H} = 7.0 Гц 2C<u>H</u>₃CH₂-Ar), 1.31 т (6H, ³J_{H-H} = 7.0 Гц 2C<u>H</u>₃CH₂O), 2.61 м (4H, Ar-C<u>H</u>₂CH₃), 4.13 м (16H, 2OC<u>H</u>₂CH₃ + 12H, 3OC<u>H</u>₂C<u>H</u>₂O), 6.87 м (2H, Ar-H), 7.30 м (2H, Ar-H), 7.55 м (2H, Ar-H). Спектр ЯМР ³¹Р (CDCl₃, δ , м. д.): 29.80.

1,11-Бис(2-оксиэтоксифосфорил-4-этилфенокси)-3,6,9-триоксаундекан (L⁴) получен аналогично L¹ из 3.58 г (14.0 ммоль) 2-диэтоксифосфорил-4этилфенола в 25 мл сухого диоксана, 4.56 г (14.0 ммоль) свежепрокаленного карбоната цезия и 1.73 г (7.5 ммоль) 1.11-бис-дихлор-3,6,9-триоксаундекана. Выход L⁴ составил 3.15 г (68%), $t_{пл} =$ = 120–122°C (этанол–вода).

СHРНайдено, %:54.21, 54.38;7.09, 7.19;9.67, 9.93.Для $C_{28}H_{44}O_{11}P_2$ вычислено, %:54.37;7.17;10.01.

Спектр ПМР (CDCl₃, δ , м. д.): 1.19 т (6H, ³J_{H-H} = = 7.0 Гц 2C<u>H</u>₃CH₂-Ar), 1.33 т (6H, ³J_{H-H} = 7.0 Гц 2C<u>H</u>₃CH₂O), 2.61 м (4H, Ar-C<u>H</u>₂CH₃), 4.13 м (20H, 2OC<u>H</u>₂CH₃ + 16H, 2OC<u>H</u>₂C<u>H</u>₂O), 6.89 м (2H, Ar-H), 7.34 м (2H, Ar-H), 7.56 м (2H, Ar-H). Спектр ЯМР ³¹Р (CDCl₃, δ , м. д.): 28.82.

1,14-*Бис*(**2**-оксиэтоксифосфорил-4-этилфенокси)-**3,6,9,12**-тетраоксатетрадекан (L⁵) получен аналогично L⁴ из 3.78 г (14.8 ммоль) 2-диэтоксифосфорил-4-этилфенола в 25 мл сухого диоксана, 4.82 г (14.8 ммоль) свежепрокаленного карбоната цезия и 1.73 г (7.4 ммоль) 1.14-*бис*-дихлор-**3**,6,9,11тетраоксаундекана. Выход L⁵ составил 3.15 г (64%), $t_{nn} = 82-84^{\circ}$ С (этанол-вода).

С Н Р Найдено, %: 54.25, 54.12; 7.11, 7.27; 9.27, 9.14. Для С₃₀Н₄₈О₁₂Р₂ вычислено, %: 54.38; 7.30; 9.35.

Спектр ПМР (CDCl₃, δ , м. д.): 1.16 т (6H, ³J_{H-H} = = 7.0 Гц 2C<u>H</u>₃CH₂-Ar), 1.35 т (6H, ³J_{H-H} = 7.0 Гц 2C<u>H</u>₃CH₂O), 2.66 м (4H, Ar-C<u>H</u>₂CH₃), 4.17 м (24H, 2OC<u>H</u>₂CH₃ + 20H, 2OC<u>H</u>₂C<u>H</u>₂O), 6.86 м (2H, Ar-H), 7.33 м (2H, Ar-H), 7.58 м (2H, Ar-H). Спектр ЯМР ³¹Р (CDCl₃, δ , м. д.): 28.12.

1,2-Бис[2-(2-оксиэтоксифосфорил-4-фенокси)этокси]бензол (L⁰) получен аналогично L¹ из 2.75 г (10.6 ммоль) 2-диэтоксифосфорил-4-этилфенола в 25 мл сухого диоксана, 3.47 г (10.6 ммоль) свежепрокаленного карбоната цезия и 2.68 г (5.3 ммоль) дитозилата 2,2'-(1,2-фениленбис(окси)диэтанола. Выход L⁰ составил 2.14 г (65%), $t_{nл} = 116-118^{\circ}$ С (этанол-вода).

	С	Н	Р
Найдено, %:	57.45, 57.72;	6.41, 6.37;	9.67, 9.84.
Для $C_{30}H_{48}O_{12}P_2$			
вычислено, %:	57.88;	6.48;	9.95.

Спектр ЯМР ¹H, (CDCl₃, δ , м. д.): 1.25 м (12H, 2CH₃CH₂—Ar + 2OCH₂CH₃), 2.61 м (4H, 2CH₃CH₂—Ar), 4.14 м (4H, 2OCH₂CH₃), 4.34 м (8H, 4OCH₂), 6.93 м (6H, Ar–H), 7.26 м (2H, Ar–H), 7.65 м (2H, Ar–H), 8.23 с (2H, 2OH). Спектр ЯМР ³¹P, (CDCl₃, δ , м. д.): 28.36.

С Н Р Найдено, %: 57.75, 57.82; 6.41, 6.37; 9.97, 9.74. Для С₃₀Н₄₀О₁₀Р₂ вычислено, %: 57.88; 6.48; 9.95.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 5 2019

Соединение	Ι
Формула	$C_{20}H_{28}O_9P_2$
M	474.36
<i>Т</i> , К	295(2)
Излучение, λ, Å	0.71073
Сингония	Ромбическая
пр. гр., Z	<i>P</i> 2 ₁ 2 ₁ 2, 2
<i>a</i> , Å	15.360(2)
b, Å	15.633(2)
<i>c</i> , Å	4.8459(8)
$V, Å^3$	1163.6(3)
ρ, г/см ³	1.354
μ, мм ⁻¹	0.234
<i>F</i> (000)	500
Размер образца, мм	0.4 imes 0.02 imes 0.02
Интервал Ө, град	2.606, 25.371
Пределы h, k, l	$-18 \le h \le 18, -18 \le k \le 18,$
	$-5 \le l \le 5$
Число измеренных отра- жений	6168
Число независимых отра- жений, <i>R</i> _{int}	2067, 0.1491
Полнота до $\theta = 25.242^{\circ}$	97.7%
Max, min пропускание	1, 0.8159
Метод уточнения	МНК по F^2
Число параметров	145
S	0.941
<i>R</i> 1, <i>wR</i> 2 [$I > 2\sigma(I)$]	0.0681, 0.0877
<i>R</i> 1, <i>wR</i> 2 (все данные)	0.1624, 0.1064
$\Delta \rho_{max} / \Delta \rho_{min} \Im / \AA^3$	0.382, -0.289

Таблица 1. Основные кристаллографические данные и

результаты уточнения структуры I

Экстракционные исследования. Для наших исследований в качестве основного использовали водный раствор суммы РЗЭ (кроме Sc и Pm) в 1 М HNO₃ с содержанием каждого металла ~1 г/л, который готовили по навескам соответствующих нитратов металлов. Точное определение концентрации РЗЭ в этом растворе проводили методом ICP MS на приборе Agilent Technologies 7500 с использованием многоэлементных стандартов.

Исследование экстракции РЗЭ проводили следующим образом. В делительную воронку помещали по 0.5 мл базового раствора и 4.5 мл раствора азотной кислоты, концентрацию которой варьировали от 0 до 1 моль/л, и 5 мл раствора лиганда в 1,1,7-тригидрододекафторгептаноле. Раствор для экстракции с нулевой концентрацией

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 5 2019

азотной кислоты получали упариванием раствора с минимальной концентрацией 0.1 моль/л HNO₃ досуха. После перемешивания в течение 15–20 мин отстаивали 2–3 ч для разделения фаз ($t = 20^{\circ}$ C). Затем проводили реэкстракцию 10 мл 1 моль/л раствором HNO₃ в аналогичных условиях. Для определения полноты реэкстракции к 1 мл органической фазы добавляли по 1 мл концентрированных азотной (ос. ч.) и хлорной (х. ч.) кислот и кипятили до полного разложения органических веществ, проводили так называемое "мокрое сжигание". Остаток разбавляли бидистиллированной водой и анализировали на содержание РЗЭ. Концентрацию всех РЗЭ определяли методом ICP MS на приборе Agilent Technologies 7500.

Для каждой концентрации проводили не менее трех независимых опытов. Все эксперименты выполняли при температуре $20 \pm 1^{\circ}$ C.

Коэффициенты распределения ($K_d = [M]_o/[M]_B$) определяли при постоянных концентрациях экстрагента и металлов.

Характеристика погрешности определения концентрации металлов при доверительной вероятности P = 0.95 в экстракционных исследованиях составляет 0.33, доверительные границы погрешности определения концентрации металла — 8.25 мкг/мл (или 0.00825 г/л).

РСА. Экспериментальные данные для соединения I получены на дифрактометре Bruker SMART APEX2 [22]. Поглощение учтено полуэмпирическим методом по эквивалентам (SADABS) [23]. Структура І определена комбинацией прямого метода и Фурье-синтезов. Атом H(1) фосфорильной группы локализован из разностного синтеза Фурье, остальные атомы Н рассчитаны из геометрических соображений. Структура I уточнена полноматричным анизотропным МНК, для атома H(1) уточняли координаты, остальные атомы водорода учитывали в модели "наездника". Качество кристалла не позволило определить абсолютную конфигурацию: уточнение структуры как рацемического двойника привело к величине BASF 0.2(3). Все расчеты выполнены по программам SHELXS-2018 и SHELXL-2018 [24]. Кристаллографические данные и параметры уточнения структуры I приведены в табл. 1. Экспериментальные данные для структуры I депонированы в Кембриджском банке структурных данных данных (ССDС № 1843476).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для всех исследованных в настоящей работе подандов значения K_d обеих подгрупп РЗЭ плавно возрастают с увеличением порядкового номера элемента. Наилучшими экстракционными характеристиками обладает поданд 1,8-*бис*[2-(оксиэтоксифосфорил)-4-этилфенокси]-3,6-ди-

HNO ₃ , моль/л	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
0	5.23	0.15	0.33	0.50	0.57	1.29	1.58	1.25	2.37	3.26	3.64	6.03	6.49	18.86	32.92
0.1	0.08	0.00	0.01	0.01	0.02	0.03	0.04	0.03	0.05	0.07	0.07	0.10	0.17	0.38	0.59
0.2	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.03	0.04
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Таблица 2. Коэффициенты распределения РЗЭ в зависимости от концентрации азотной кислоты в водной фазе для L³. Концентрация поданда L³ 0.028 моль/л, исходная концентрация РЗЭ 0.1 г/л по каждому металлу

Таблица 3. Коэффициенты распределения РЗЭ. Концентрация исходного раствора 1 г/л по каждому из металлов, концентрация подандов 0.028 М, среда нейтральная

L ⁿ	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
L ⁰	2.32	0.10	0.26	0.40	0.40	0.83	1.16	0.72	1.47	1.20	1.90	2.38	2.66	3.35	3.39
L^1	4.42	0.49	0.66	1.00	0.85	1.39	2.17	2.60	3.78	3.98	4.15	5.44	3.86	3.66	2.77
L ²	1.19	0.06	0.13	0.18	0.22	0.51	0.58	0.49	0.65	0.98	1.02	1.19	2.64	4.79	5.69
L ³	5.23	0.15	0.33	0.50	0.57	1.29	1.58	1.25	2.37	3.26	3.64	6.03	6.49	18.86	32.92
L^4	1.14	0.04	0.08	0.11	0.11	0.27	0.38	0.40	0.75	1.06	1.27	1.80	2.39	3.45	3.54
L ⁵	0.48	0.02	0.05	0.06	0.07	0.17	0.24	0.24	0.38	0.48	0.53	0.77	1.29	2.36	2.89

оксаоктан (L³), этиленгликолевая цепочка которого состоит из трех звеньев. Введение бензольного фрагмента в полиэфирную цепь лиганда с целью закрепления его С-образной конформации, как и при экстракции в 1,2-дихлорэтан [14], приводит к уменьшению коэффициентов распределения РЗЭ. Результаты экспериментов приведены в табл. 2 и 3.

Проведенные исследования показали, что экстракционные свойства данных систем лучше проявляются в среде, приближенной к нейтральной (до 0.1 М азотной кислоты), в отличие от изученных ранее подандов нейтрального типа [25], экстракционная способность которых возрастает в сильнокислых средах (6 М). Фосфорилподанды кислотного типа, так же как и фосфорилподанды нейтрального типа, селективно извлекают РЗЭ иттриевой подгруппы лучше, чем цериевой, при прочих равных условиях.

Установлено, что реэкстракция 1М раствором HNO₃ в бидистиллированной воде позволяет полностью извлечь РЗЭ из органической фазы в случае каждого лиганда. Остаточное содержание РЗЭ после такой реэкстракции в органической фазе составляло не более 10 мкг/л.

Стехиометрию комплексов суммы РЗЭ цериевой подгруппы определяли на примере поданда L^2 методом сдвига экстракционного равновесия [21], поскольку в работах [11, 12, 14] именно этот поданд был исследован наиболее полно. Зависимость lg D_M от lg c_{L^2} РЗЭ цериевой подгруппы для лиганда L^2 приведена на рис. 1, из которого видно, что соотношение Ln : $L^2 = 2$: 3. В случае экстракции в дихлорэтан [14] стехиометрическое соотношение металл: экстрагент было определено методом сдвига равновесия и показано, что сольватное число при экстракции всех РЗЭ близко к 2.

К сожалению, выделить комплексы с РЗЭ в виде монокристаллов или монокристаллы свободных Lⁿ, пригодных для рентгеноструктурного анализа, не удалось. Ранее [26] нами методом порошкового рентгеноструктурного анализа (пРСА) была определена структура их менее липофильного структурного аналога 1,5-*бис*(2-оксиэтоксифосфорилфенокси)-3-оксапентана Lig (II, пр. гр.

Рис. 1. Зависимость коэффициентов распределения при экстракции La(III), Ce(III) и Pr(III) от концентрации лиганда L^2 .

Рис. 2. Строение молекулы в структуре І.

Рис. 3. Сравнение строения молекул Lig в двух полиморфах.

Pbcn, a = 16.830(2), b = 8.8689(15), c = = 15.718(2)Å, V = 2346.1(6) Å³, Z = 4). В настоящей работе нам удалось получить монокристалл Lig (I) из смеси ацетонитрила и бензола (1 : 5) и методом PCA определить его кристаллическую структуру.

Новая модификация I кристаллизуется в пр. гр. $P_{2_12_12}$. В обеих модификациях молекула обладает кристаллографической симметрией 2, строение Lig в структурах I (рис. 2) и II одинаково (рис. 3). В структуре I "кислый" атом Н участвует в образовании водородной связи (**BC**) с фосфорильным атомом соседней молекулы, что приводит к образованию 1D-цепочек (рис. 4a). Геометрия BC в структуре I: расстояния O(3)–H(1) 0.79(8), H(1)...O(2B) 1.72(8), O(3)...O(2B) 2.502(7) Å, угол O(3)–H(1)...O(2B) 168(8)°, O(2B) связан с базисным атомом O(2) трансляцией x, y, z + 1. Две BC одной молекулы Lig объединяют в I две молекулы Lig, что приводит к образованию R₂²(32) цикла (рис. 3a). В структуре II аналогичная BC объединяет молекулы Lig в 2D-слои (рис. 36).

Объем, приходящийся на одну молекулу в структуре I, несколько меньше, чем в II (581.8 и

Рис. 4. Фрагменты структур полиморфов I (а) и II [16] (б).

586.5 Å³), что позволяет говорить об энергетической выгодности полиморфа I.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что фосфорилсодержащие поданды L^n , производные дифосфоновых кислот, проявляют высокую экстракционную способность в нейтральных средах. Наилучшими экстракционными характеристиками обладает 1,8-*бис*[2-(оксиэтоксифосфорил)-4этилфенокси]-3,6-диоксаоктан (L^3), этиленгликолевая цепочка которого состоит из трех звеньев. Потенциально он может быть использован для отделения металлов иттриевой подгруппы от цериевой. Установлена кристаллическая структура 1,5*бис*(2-оксиэтоксифосфорилфенокси)-3-оксапентана и показано, что поданд существует в двух полиморфных модификациях.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания 2018 г. (темы № 0088-2014-0001, 0081-2014-0015, 0090-2017-0024) и при частичной финансовой поддержке Программы Президиума РАН № 34 и РФФИ (грант № 18-29-24069). Исследования проведены с использованием оборудования ЦКП ФМИ ИОНХ РАН. Авторы статьи благодарят В.И. Жилова за помощь в определении концентрации всех РЗЭ методом ICP MS и Л.Х. Миначеву за участие в рентгеноструктурном эксперименте.

СПИСОК ЛИТЕРАТУРЫ

- El-Nadi Y.A. // Hydrometallurgy. 2012. V. 119–120.
 P. 23. doi 10.1016/j.hydromet.2012.03.003
- Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. V. 46. P. 7229. doi 10.1039/c7cs00574a
- Lumetta G.J., Sinkov S.I., Krause J.A. et al. // Inorg. Chem. 2016. V. 55. № 4. P. 13027. doi 10.1021/acs.inorgchem.5b02524
- 4. *Alyapyshev M., Babain V.A., Tkachenko L.I. et al.* // Solvent Extr. Ion Exch. 2014. V. 32. № 2. P. 138. doi 10.1080/07366299.2013.833783
- Makrlík E., Vaňura P., Selucký P. et al. // J. Radioanal. Nucl. Chem. 2010. V. 283. № 3. P. 839. doi 10.1007/s10967-009-0425-8
- 6. *Li Y., Jia Y., Wang Z. et al.* // RSC Advances. 2014. V. 4. № 56. P. 29702. doi 10.1039/C4RA02030H
- Sinharoy P., Khan P.N., Nair D. et al. // Radiochim. Acta. 2016. V. 105. № 34. P. 265. doi 10.1515/ract-2016-2646
- Tyumentsev M.S., Foreman M., Ekberg Ch. et al. // Hydrometallurgy. 2016. V. 164. P. 24. doi 10.1016/j.hydromet.2016.05.007
- Yang Liua, Seong Ho Sohnb, Man Seung Leea // Geosystem Engineering. 2016. doi 10.1080/ 12269328.2016.1223558
- Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. V. 25. № 5. P. 319. doi 10.1016/j.mencom.2015.09.001
- 11. Safiulina A.M., Matveeva A.G., Ivanets D.V. et al. // Russ. Chem. Bull. 2015. V. 64. № 1. Р. 161. doi 10.1007/s11172-015-0837-2 [Сафиулина А.М., Матвеева А.Г., Иванец Д.В. и др. // Изв. Академии наук. Сер. хим. 2015. № 1. С. 161.]
- 12. Safiulina A.M., Matveeva A.G., Ivanets D.V. et al. // Russ. Chem. Bull. 2015. V. 64. № 1. Р. 169. doi 10.1007/s11172-015-0838-1 [Сафиулина А.М., Матвеева А.Г., Иванец Д.В. и др. // Изв. Академии наук. Сер. хим. 2015. № 1. С. 169.]

- 13. *Timofeeva G.I., Matveeva A.G., Safiulina A.M. et al.* // Russ. Chem. Bull. 2015. V. 64. № 1. Р. 224. doi 10.1007/s11172-015-0847-0 [*Тимофеева Г.И., Матвеева А.Г., Сафиулина А.М. и др.* // Изв. Академии наук. Сер. хим. 2015. Т. 64. № 1. С. 224.]
- 14. Turanov A.N., Karandashev V.K., Baulin V.E. et al. // Radiochemistry. 2014. V. 56. № 1. Р. 22. doi 10.1134/ S1066362214010056 [Туранов А.Н., Карандашев В.К., Баулин В.Е. и др. // Радиохимия. 2014. Т. 56. № 1. С. 21.]
- Safiullina A.M., Ivanets D.V., Kudryavtsev E.M. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 12. Р. 1679. doi 10.1134/S00360236 [Сафиулина А.М., Иванец Д.В., Кудрявцев М.Е. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1659. doi 10.1134/S0044457X18120188]
- Safiulina A.M., Ivanets D.V., Kudryavtsev E.M. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 4. Р. 601. doi 10.1134/S0036023612040213 [Сафиулина А.М., Иванец Д.В., Кудрявцев Е.М., Тананаев И.Г. // Журн. неорган. химии. 2012. Т. 57. № 4. С. 666.]
- *Тапапаеv I.G., Myasoedov B.F.* // Radiochemistry. 2016. V. 58. № 3. Р. 257. doi 10.1134/S1066362216030061 [*Тананаев И.Г., Мясоедов Б.Ф.* // Радиохимия. 2016. Т. 58. № 3. С. 222.]
- Baulin V.E., Kovalenko O.V., Turanov A.N. et al. // Radiochemistry. 2015. V. 57. № 1. Р. 61. doi 10.1134/ S1066362215010099 [Баулин В.Е., Коваленко О.В., Туранов А.Н. и др. // Радиохимия. 2015. Т. 57. № 1. С. 53.]
- Baulin V.E., Kalashnikova I.P., Kovalenko O.V. et al. // Prot. Met. Phys. Chem. Surf. 2016. V. 52. № 6. Р. 996. doi 10.7868/ S0044185616060085 [Баулин В.Е., Калашникова И.П., Коваленко О.В. и др. // Физикохимия поверхности и защита материалов. 2016. Т. 52. № 6. C. 604.]
- 20. *Чухланцева Е.В., Усолкин А.Н., Коваленко О.В. и др.* // Аналитика и контроль. 2013. Т. 17. № 2. С. 219.
- 21. Демин С.В., Жилов В.И., Цивадзе А.Ю. и др. // Журн. неорган. химии. 2006. Т. 51. № 10. С. 1182.
- 22. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Wisconsin, USA.
- 23. *Sheldrick G.M.*, SADABS. University of Göttingen, Germany, 1997.
- 24. *Sheldrick G.* Crystal structure refinement with SHELXL // Acta Crystallogr., Sect. C. 2015. V. 71. Nº 1. P. 3.
- Polyakova I.N., Krivorot'ko E.S., Ivanova I.S. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. Р. 1372. doi 10.1134/S0036023618100169 [Полякова И.Н., Криворотько Е.С., Иванова И.С. и др. // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1353. doi 10.1134/S0044457X18100161]
- 26. Baulin V.E., Ivanova I.S., Pyatova E.N. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 11. Р. 1443. doi 10.1134/S0036023612110046 [Баулин В.Е., Иванова И.С., Пятова Е.Н. и др. // Журн. неорган. химии. 2012. Т. 57. № 11. С. 1535.]