ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.248+541.67

ПЕРЕРАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В СИСТЕМЕ GeCl₄←O=C[N(CH₃)₂]₂ ПРИ ОБРАЗОВАНИИ КООРДИНАЦИОННОЙ СВЯЗИ

© 2019 г. В. П. Фешин^{1, *}, Е. В. Фешина¹

¹Институт технической химии УрО РАН, ул. Академика Королева, 3, Пермь, 614013 Россия

**E-mail: vpfeshin@mail.ru* Поступила в редакцию 17.09.2018 г. После доработки 06.11.2018 г. Принята к публикации 15.11.2018 г.

Методами RHF/6-31G(d) и MP2/6-31G(d) выполнены квантово-химические расчеты системы $Cl_4Ge \leftarrow O=C[N(CH_3)_2]_2$ с полной оптимизацией ее геометрии. При этом учтено, что аксиальная связь Ge–Cl и связь O=C не находятся на одной прямой, как полагали ранее. Расчеты методом MP2/6-31G(d) этой системы выполнены также при различных расстояниях между координационными центрами, а молекул GeCl₄ и O=C[N(CH₃)_2]₂ с полной оптимизацией их геометрии. По результатам расчетов проведена количественная оценка перераспределения электронной плотности в системе при образовании координационной связи. Показано, что при образовании этой связи про-исходит увеличение электронной плотности атомов хлора, особенно аксиального, за счет переноса ее с атомов водорода лиганда и поляризации связей Ge–Cl. При этом возрастают частичный отрицательный заряд атома кислорода и положительный заряд карбонильного атома углерода.

Ключевые слова: комплекс Cl₄Ge←O=C[N(CH₃)₂]₂, квантово-химические расчеты, ядерный квадрупольный резонанс, структура, перераспределение электронной плотности **DOI:** 10.1134/S0044457X19050076

введение

При образовании внутри- или межмолекулярной координационной связи происходит перераспределение электронной плотности в компонентах системы. Мы полагали, что это перераспределение происходит в результате переноса электронной плотности с электронодонорного фрагмента молекулы на электроноакцепторный, а также в результате поляризации связей внутри этих фрагментов [1]. При этом образуются молекулярные орбитали, в которых принимают участие различные атомные орбитали координационных центров и других атомов молекул компонентов [1–4].

Перераспределение электронной плотности в компонентах системы при образовании координационной связи можно оценить количественно, проанализировав изменения зарядов атомов, полученных в результате квантово-химических расчетов системы при сближении ее координационных центров, и сопоставив их с результатами расчетов исходных компонентов. Мы полагаем, что наиболее адекватно электронное распределение в молекуле описывают малликеновские заряды атомов, что подтверждается экспериментальными данными ядерного квадрупольного резонанса

(**ЯКР**) на ядрах ³⁵Cl большого числа органических, элементоорганических и координационных соединений [1, 5].

Изменения зарядов атомов при образовании комплексов проанализированы нами в целом ряде систем [1–4]. Однако количественное соотношение этих вкладов ранее нами практически не рассматривалось. Кроме того, при анализе результатов расчета системы $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ методом RHF/6-31G(d) мы исходили из того, что в этом комплексе тригонально-бипирамидального строения [6–8] связь O = C(1) находится на одной прямой с аксиальной связью Cl(1)-Ge [1, 6]. Для этого, как рекомендуется при расчетах линейных фрагментов [9], вводили мнимый атом X, связанный с атомом O карбонильной группы, принимали углы XOGe и $C(1)OX = 90^\circ$, двугранный угол XOGeCl(2) = 0° , а угол $C(1)OXGe = 180^\circ$.

Как показали наши дальнейшие исследования этой системы, карбонильная группа не находится на одной прямой с аксиальной связью Cl(1)—Ge, поскольку в образовании координационной связи Ge \leftarrow O участвует одна из двух неподеленных пар электронов карбонильного атома кислорода (*p* или *sp*-гибридизованная) [10]. Их орбитали располагаются под прямым или тупым углом к связи C=O соответственно.

В настоящей статье представлены результаты этих исследований, оценены вклады различных факторов в перераспределение электронной плотности в компонентах системы при комплексообразовании, определены параметры ЯКР на ядрах ³⁵Cl и сопоставлены с экспериментальными данными. Это сопоставление необходимо для оценки корректности квантово-химических расчетов молекулы.

РАСЧЕТНАЯ ЧАСТЬ

Квантово-химические расчеты системы Сl₄Ge←O=C[N(CH₃)₂]₂ выполняли ограниченным методом Хартри-Фока (RHF) и методом Хартри-Фока с учетом корреляции электронов по методу Меллера-Плессета 2-го порядка (МР2) с базисным набором 6-31G(d) по программе Gaussian 03W [11] без ограничений по симметрии. Расчеты методами RHF/6-31G(d) и MP2/6-31G(d) проводили с полной оптимизацией геометрии молекулы $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$, не используя мнимый атом Х и оптимизируя указанные выше углы. Расчеты методом MP2/6-31G(d) системы Сl₄Ge←O=C[N(CH₃)₂]₂ выполняли также при различных расстояниях между координационными центрами, а молекул GeCl₄ и $O=C[N(CH_3)_2]_2 - c$ полной оптимизацией их геометрии.

Результаты расчетов использовали для оценки частот ЯКР ³⁵Cl по заселенностям менее диффузных 3*p*-составляющих валентных *p*-орбиталей атомов хлора. Для этого при расчетах начало системы координат помещали в место расположения ядра атома хлора, параметры ЯКР которого собирались оценить. Судя по спектру ЯКР ³⁵Cl [7, 8], электронное распределение экваториальных атомов хлора в комплексе $Cl_4Ge \leftarrow O=C[N(CH_3)_2]_2$ тригонально-бипирамидального строения различается незначительно, а аксиального атома хлора существенно отличается от них. Поэтому расчеты проводили, выбрав начало системы координат в месте расположения ядра аксиального, а затем одного из экваториальных атомов хлора. Во всех случаях ось *z* системы координат совпадала с соответствующей связью Cl–Ge. Частоты ЯКР ³⁵Cl (v) и параметры асимметрии (η) градиента электрического поля (ГЭП) на ядрах ³⁵Cl рассчитывали по уравнениям (1) и (2) соответственно [12], в которых использовали не полные заселенности валентных *p*-орбиталей атомов хлора (Np_x , Np_y и Np_z), а лишь их менее диффузных 3*p*-составляющих. Расчеты по этой методике приводят к удовлетворительному соответствию между экспериментальными и вычисленными параметрами ЯКР различных хлорсодержащих органических и элементоорганических соединений [1, 5, 13].

$$= (e^{2}Qq_{at}/2\hbar)[-Np_{z} + (Np_{x} + Np_{y})/2](1 + \eta^{2}/3)^{1/2},^{(1)}$$

v =

$$\eta = |3(Np_x - Np_y)/(2Np_z - Np_x - Np_y)|, \qquad (2)$$

где $e^2 Qq_{at}$ — атомная константа квадрупольного взаимодействия, \hbar — постоянная Планка. Величина $e^2 Qq_{at}$ найдена по экспериментальной частоте ЯКР ³⁵Cl Cl₂ и заселенностям 3*p*-составляющих валентных *p*-орбиталей атомов Cl этой молекулы, полученным из расчета ее соответствующим методом [1, 5, 13].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Факт образования комплекса Cl₄Ge← $\leftarrow O = C[N(CH_3)_2]_2$ и его тригонально-бипирамидальное строение установлены методом ЯКР ³⁵Сl [7, 8]. Экваториальным атомам хлора в спектре ЯКР соответствуют три сигнала с частотами 25.094, 24.858 и 24.341 МГц [7, 8] и значительные величины параметров асимметрии ГЭП на ядрах ³⁵СІ (26.4, 25.3 и 27.0% соответственно) [8]. Аксиальному атому хлора отвечает сигнал ЯКР с частотой 20.673 МГц [7, 8] и сравнительно незначительный параметр асимметрии 5.6% [8]. Согласно выполненному нами ранее расчету молекулы Cl_4Ge ← $O=C[N(CH_3)_2]_2$ методом RHF/6-31G(d) с частичной оптимизацией геометрии, расстояние между ее координационными центрами составляет 3.376 Å, а частота ЯКР ³⁵Сl аксиального атома хлора, вычисленная по результатам этих расчетов, существенно отличается от экспериментальной [6]. Это расстояние лишь немного меньше суммы ван-дер-ваальсовых радиусов атомов О и Ge (~3.4 Å [14]), что может говорить об отсутствии комплексообразования. Расчет этой молекулы методом RHF/6-31G(d) с полной оптимизацией ее геометрии, в том числе с оптимизацией упомянутых выше углов, не привел к существенным изменениям. Расстояние Ge←O (3.322 Å) незначительно уменьшилось, частота ЯКР ³⁵Сl экваториального атома хлора осталась близка к экспериментальной, тогда как частота аксиального атома хлора по-прежнему существенно отличается от экспериментальной. Эти параметры $\rm SKP$ ³⁵Cl вычислены по уравнениям (1) и (2) соответственно и заселенностям $\rm 3p$ -составляющих валентных *p*-орбиталей атомов хлора (табл. 1).

Угол C(1)OGe (134.50°) в молекуле, рассчитанной методом RHF/6-31G(d) с полностью оптимизированной геометрией, значительно меньше 180° – величины, принятой в предыдущем расчете этим же методом с частичной оптимизацией геометрии [6]. Близкая величина угла C(1)OGe (129.86°) получена при расчете молекулы $Cl_4Ge \leftarrow$ $\leftarrow O = C[N(CH_3)_2]_2$ методом более высокого уровня (MP2/6-31G(d)) с полной оптимизацией ее геометрии. Величина этого угла соответствует представлениям об участии неподеленной пары электронов карбонильного атома кислорода в образовании координационной связи в этой молекуле. Расстояние между координационными центрами (2.061 Å), полученное в результате расчета молекулы методом MP2/6-31G(d), значительно меньше полученного при расчете ее методом RHF/6-31G(d) (см. выше). Валентные углы ClGeCl и ClGeO в этой молекуле, рассчитанной методом MP2/6-31G(d), соответствуют тригонально-бипирамидальному строению координационного полиэдра атома Ge. В ней углы между аксиальной и экваториальными связями Ge-Cl, а также между экваториальными связями Ge-Cl и координационной связью Ge \leftarrow O близки к 90°, а между экваториальными связями Ge-Cl – к 120°. Аксиальная связь в этой молекуле существенно длиннее экваториальных (табл. 2). Согласно результатам расчетов, координационный полиэдр атома германия в этой молекуле существенно искажен, поскольку один из углов между экваториальными связями Ge–Cl существенно больше, чем два других, одна из экваториальных связей Ge-Cl заметно длиннее двух других, а частичный отрицательный заряд ее атома хлора даже больше, чем аксиального (табл. 3).

Частота ЯКР ³⁵Сl и параметр асимметрии ГЭП на ядре ³⁵Cl экваториального атома хлора в молекуле Cl₄Ge←O=C[N(CH₃)₂]₂ (табл. 1), вычисленные по результатам расчета ее методом МР2/6-31G(d) с полной оптимизацией геометрии и по уравнениям (1) и (2), совпадают с соответствующими экспериментальными значениями, а частота ЯКР и параметр асимметрии ГЭП на ядре ³⁵Cl аксиального атома хлора (табл. 1) достаточно близки к экспериментальным (см. выше). Учитывая это, можно полагать, что метод MP2/6-31G(d) вполне удовлетворительно и значительно лучше, чем метод RHF/6-31G(d), описывает строение молекулы $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ и ее электронное распределение. Поэтому для анализа перераспределения электронной плотности в системе $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ при комплексообразовании мы выполнили расчеты ее методом МР2/6-

Таблица 1. Заселенности 3*p*-составляющих валентных *p*-орбиталей атомов хлора в молекуле $Cl_4Ge \leftarrow O=C[N(CH_3)_2]_2$, рассчитанной методами RHF/6-31G(d) и MP2/6-31G(d), а также частоты ЯКР ³⁵Cl (v) и параметры асимметрии ГЭП на ядрах ³⁵Cl (η) экваториального и аксиального атомов хлора, вычисленные по этим заселенностям и уравнениям (1) и (2)

Метод	Атом	Np_x , e	<i>Np_y</i> , e	Np_z , e	ν, ΜΓц	η, %
RHF	Cl(1)	1.280	1.280	1.019	24.297	0.0
	Cl(2)	1.294	1.278	1.008	25.912	8.63
MP2	Cl(1)	1.274	1.267	1.026	22.409	4.29
	Cl(2)	1.304	1.259	1.011	25.041	24.95

Таблица 2. Некоторые длины связей (*d*) и валентные углы (α) в системе Cl₄Ge \leftarrow O=C[N(CH₃)₂]₂, рассчитанной методом MP2/6-31G(d) при различных расстояниях Ge \leftarrow O. В последней графе (∞) даны соответствующие величины в индивидуальных компонентах

Ge←O, Å	2.0	2.061	3.0	4.0	∞	
Связь	d, Å					
Ge–Cl(1)	2.229	2.223	2.144	2.127	2.122	
Ge-Cl(2)	2.212	2.199	2.122	2.122	2.122	
Ge–Cl(3)	2.181	2.172	2.121	2.118	2.122	
Ge-Cl(4)	2.167	2.164	2.132	2.123	2.122	
O=C(1)	1.287	1.283	1.243	1.237	1.234	
Угол	α, град					
Cl(1)GeCl(2)	92.88	93.88	105.29	108.59	109.47	
Cl(1)GeCl(3)	97.07	96.79	105.64	108.97	109.47	
Cl(1)GeCl(4)	91.63	92.65	104.36	108.39	109.47	
Cl(2)GeCl(3)	112.77	113.94	112.30	110.27	109.47	
Cl(2)GeCl(4)	133.52	129.82	114.77	110.20	109.47	
Cl(3)GeCl(4)	112.49	114.54	113.35	110.37	109.47	
Cl(2)GeO	86.31	85.87	75.77	70.18		
Cl(3)GeO	85.31	85.15	74.43	66.63		
Cl(4)GeO	87.88	86.13	74.53	77.43		
GeOC(1)	130.17	129.86	122.59	92.62		

31G(d) при различных расстояниях Ge...O (от 2.0 до 4.0 Å).

При уменьшении расстояния Ge...О возрастают длины связей C(1)=O и Ge-Cl, особенно той связи Ge-Cl, которая становится аксиальной при образовании тригонально-бипирамидальной $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ структуры системы (табл. 2). Длины связей C(1)-N(1) и C(1)-N(2) при этом незначительно уменьшаются. Длины связей между атомами азота и углерода метильных групп при уменьшении расстояния Ge...О изменяются незначительно и нерегулярно по сравнению с этими связями в молекуле $O=C[N(CH_3)_2]_2$, рассчитанной также методом MP2/6-31G(d) (~1.46 Å). Валентные углы атома Ge при уменьшении расстояния Ge...О приобретают значения,

Таблица 3. Заряды атомов в системе $Cl_4Ge \leftarrow O=C[N(CH_3)_2]_2$, рассчитанной методом MP2/6-31G(d) при различных расстояниях Ge \leftarrow O. В последней графе (∞) даны соответствующие величины в индивидуальных компонентах

2.0	2.061	3.0	4.0	∞
		<i>q</i> , e		
-0.250	-0.248	-0.183	-0.163	-0.153
-0.297	-0.282	-0.197	-0.152	-0.153
-0.242	-0.231	-0.163	-0.156	-0.153
-0.238	-0.230	-0.163	-0.137	-0.153
0.789	0.776	0.669	0.596	0.611
-0.758	-0.756	-0.690	-0.653	-0.646
1.079	1.075	1.019	0.984	0.982
-0.650	-0.651	-0.662	-0.658	-0.660
-0.645	-0.647	-0.660	-0.658	-0.660
-0.295	-0.293	-0.280	-0.278	-0.279
-0.306	-0.305	-0.305	-0.307	-0.306
-0.307	-0.306	-0.305	-0.305	-0.306
-0.325	-0.319	-0.287	-0.284	-0.279
0.246	0.243	0.211	0.208	0.206
0.187	0.185	0.167	0.166	0.163
0.183	0.181	0.165	0.163	0.162
0.209	0.208	0.202	0.209	0.204
0.189	0.187	0.176	0.171	0.173
0.200	0.198	0.175	0.172	0.169
0.184	0.183	0.173	0.176	0.173
0.211	0.208	0.180	0.172	0.169
0.207	0.206	0.207	0.198	0.204
0.199	0.196	0.169	0.171	0.163
0.192	0.188	0.167	0.162	0.162
0.239	0.236	0.215	0.203	0.206
	$\begin{array}{c} 2.0\\ -0.250\\ -0.297\\ -0.242\\ -0.238\\ 0.789\\ -0.758\\ 1.079\\ -0.650\\ -0.645\\ -0.295\\ -0.306\\ -0.307\\ -0.325\\ 0.246\\ 0.187\\ 0.183\\ 0.209\\ 0.189\\ 0.200\\ 0.184\\ 0.211\\ 0.207\\ 0.199\\ 0.192\\ 0.239\end{array}$	$\begin{array}{c ccccc} 2.0 & 2.061 \\ \hline \\ -0.250 & -0.248 \\ -0.297 & -0.282 \\ -0.242 & -0.231 \\ -0.238 & -0.230 \\ 0.789 & 0.776 \\ -0.758 & -0.756 \\ 1.079 & 1.075 \\ -0.650 & -0.651 \\ -0.645 & -0.647 \\ -0.295 & -0.293 \\ -0.306 & -0.305 \\ -0.307 & -0.306 \\ -0.325 & -0.319 \\ 0.246 & 0.243 \\ 0.187 & 0.185 \\ 0.183 & 0.181 \\ 0.209 & 0.208 \\ 0.189 & 0.187 \\ 0.200 & 0.198 \\ 0.184 & 0.183 \\ 0.211 & 0.208 \\ 0.207 & 0.206 \\ 0.199 & 0.196 \\ 0.192 & 0.188 \\ 0.239 & 0.236 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Таблица 4. Изменения зарядов атомов (Δq) в системе Cl₄Ge \leftarrow O=C[N(CH₃)₂]₂, рассчитанной методом MP2/6-31G(d) при различных расстояниях Ge \leftarrow O, относительно исходных компонентов. Величина перенесенного заряда на акцептор электронов (Δq_a). В последней графе (∞) представлены заряды атомов (q) в индивидуальных компонентах

Ge←O, Å	2.0	2.061	3.0	4.0	∞
Атомы		q			
$\Sigma Cl(1) - Cl(4) Ge O C(1) \Sigma N(1), N(2) \Sigma C(2) - C(5) \Sigma H(1) - H(12) $	$\begin{array}{c} -0.415\\ 0.178\\ -0.112\\ 0.097\\ 0.025\\ -0.063\\ 0.292\end{array}$	$\begin{array}{c} -0.379\\ 0.165\\ -0.110\\ 0.093\\ 0.022\\ -0.053\\ 0.265\end{array}$	$\begin{array}{r} -0.094\\ 0.058\\ -0.044\\ 0.037\\ -0.002\\ -0.007\\ 0.053\end{array}$	$\begin{array}{c} 0.004 \\ -0.015 \\ -0.007 \\ 0.002 \\ 0.004 \\ -0.004 \\ 0.017 \end{array}$	-0.612 0.611 -0.646 0.982 -1.320 -1.170 2.154
Δq_a	0.238	0.215	0.037	0.012	0.00

характерные для тригонально-бипирамидальных структур (см. выше). Угол GeOC(1) при этом возрастает от 92.62° (при 4.0 Å) до 130.17° (при 2.0 Å).

При уменьшении расстояния Ge...О возрастают частичные отрицательные заряды всех атомов хлора и атома кислорода, а также частичный положительный заряд атома германия. Это не соответствует представлениям о переносе электронной плотности с координационного центра донора электронов на центральный атом акцептора. При уменьшении расстояния незначительно возрастает частичный положительный заряд карбонильного атома углерода и увеличиваются частичные положительные заряды атомов водорода. Частичные отрицательные заряды атомов азота и атомов углерода метильных групп лиганда изменяются незначительно. В результате такого перераспределения электронной плотности в компонентах комплекса $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ донор электронов приобретает частичный положительный, а акцептор – частичный отрицательный заряд Δq_{a} (табл. 4). При образовании комплекса суммарный отрицательный заряд атомов хлора – акцепторов электронов – возрастает на – 0.379 е, а положительный заряд атома германия на 0.165 е относительно зарядов соответствующих атомов в индивидуальном GeCl₄ (табл. 4). Возрастание положительного заряда атома Ge при сближении компонентов системы обусловлено поляризацией связей Ge-Cl под действием частичного отрицательного заряда карбонильного атома кислорода (геминальное взаимодействие [5]). При больших расстояниях между координационными центрами вклад поляризации связей в величину заряда атома хлора больше, чем перенесенный заряд ($\Delta q_{\rm a}$), тогда как при малых расстояниях (2.0, 2.061 Å), наоборот, этот вклад меньше (табл. 4). В результате геминального взаимодействия происходит также поляризация связи С=О под действием положительно заряженного атома Ge: увеличение частичного отрицательного заряла атома кислорода и положительного заряда атома углерода карбонильной группы по сравнению с соответствующими значениями в индивидуальной молекуле О=С[N(CH₃)₂]₂. При образовании комплекса это увеличение составляет -0.110 и +0.093 *е* соответственно.

Согласно полученным данным, возрастание электронной плотности акцептора электронов при образовании комплекса $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ происходит не в результате ее переноса с карбонильной группы лиганда, а в основном с его атомов водорода, поскольку частичный положительный заряд атомов водорода при этом существенно возрастает (на 0.265 *e*).

Таким образом, метод MP2/6-31G(d) вполне удовлетворительно описывает строение молекулы $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ и ее электронное рас-

пределение. Карбонильная группа лиганда не находится на одной прямой с аксиальной связью Cl(1)—Ge, как мы полагали ранее. При образовании комплекса $Cl_4Ge \leftarrow O = C[N(CH_3)_2]_2$ происходит возрастание электронной плотности всех атомов хлора, особенно аксиального, в результате переноса электронной плотности с лиганда, в основном с его периферийных атомов водорода, и в результате смещения ее с атома германия. При этом возрастают частичный отрицательный заряд атома кислорода и положительный заряд карбонильного атома углерода.

СПИСОК ЛИТЕРАТУРЫ

- 1. Фешин В.П. Проблемы координационных соединений элементов IVA группы по данным ЯКР и квантовой химии. Пермь: Изд-во УрО РАН, 2015. 366 с.
- Feshin V.P., Feshina E.V. // Trends of Heterocyclic Chemistry. 2013. V. 16. P. 85.
- Feshin V.P., Feshina E.V. // Russ. J. Inorg. Chem. 2014.
 V. 59. № 10. Р. 1395. [Фешин В.П., Фешина Е.В. // Журн. неорган. химии. 2014. Т. 59. № 10. С. 1395.]
- Feshin V.P., Feshina E.V. // Modern Chemistry. 2016.
 V. 4. № 6. P. 67.
- Фешин В.П. Геминальное взаимодействие в органической и элементоорганической химии. Екатеринбург: Изд-во УрО РАН, 2009. 265 с.

- Feshin V.P., Feshina E.V., Zhizhina L.I. // Russ. J. Gen. Chem. 2007. V. 77. № 7. Р. 1106. [Фешин В.П., Фешина на Е.В., Жижина Л.И. // Журн. общ. химии. 2007. Т. 77. № 7. С. 1106.]
- Feshin V.P., Dolgushin G.V., Lazarev I.M., Voronkov M.G. // The Proc. of the USSR Academy of Sciences. 1987.
 V. 295. № 6. Р. 1415. [Фешин В.П., Долгушин Г.В., Лазарев И.М., Воронков М.Г. // Докл. АН СССР. 1987. Т. 295. № 6. С. 1415.]
- Buslaev Yu.A., Kravchenko E.A., Morgunov E.G. et al. // The Proc. of the USSR Academy of Sciences. 1988.
 V. 301. № 6. Р. 1407. [Буслаев Ю.А., Кравченко Э.А., Моргунов В.Г. и др. // Докл. АН СССР. 1988. Т. 301.
 № 6. С. 1408.]
- 9. Foresman J.B., Frisch A.E. // Exploring Chemistry with Electronic Structure Methods. Second Edition. Pittsbourgh: Gaussian Inc., 1996. 302 p.
- 10. Яновская Л.А. Современные теоретические основы органической химии. М.: Химия, 1978. 358 с.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision D.1. Gaussian, Inc. Wallingford. CT. 2005.
- 12. Das T.P., Hahn E.L. Nuclear Quadrupole Resonance Spectroscopy. N.Y.: Acad. Press, 1958. 223 p.
- Feshin V.P., Feshina E.V. // Z. Naturforsch. A. 2000. B. 55. № 2. S. 555.
- 14. *Бацанов С.С.* Ван-дер-ваальсовы радиусы элементов по данным структурной неорганической химии // Изв. АН. Сер. хим. 1995. № 1. С. 24.