ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 541.49

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В МАКРОЦИКЛАХ ТЕТРАТИОЗАМЕЩЕННЫХ 1,8-ДИОКСА-, 1,8-ДИТИА-3,6,10,13-ТЕТРААЗАЦИКЛОТЕТРАДЕКАНА И 1,3,5,8,10,12-ГЕКСААЗАЦИКЛОТЕТРАДЕКАНА ПРИ КОМПЛЕКСООБРАЗОВАНИИ С ИОНАМИ М(II) 3*d*-ЭЛЕМЕНТОВ ПО ДАННЫМ МЕТОДА ФУНКЦИОНАЛА ПЛОТНОСТИ

© 2019 г. О. В. Михайлов^{1, *}, Д. В. Чачков^{2, 3}

¹Казанский национальный исследовательский технологический университет, ул. Карла Маркса. 68. Казань. 420015 Россия

²Казанское отделение Межведомственного суперкомпьютерного центра РАН — филиал Федерального государственного учреждения "Федеральный научный центр Научно-исследовательский институт системных исследований РАН", ул. Лобачевского, 2/31, Казань, 420111 Россия

³Казанский (Приволжский) Федеральный университет, ул. Лобачевского, 2/31, Казань, 420111 Россия

*e-mail: olegmkhlv@gmail.com Поступила в редакцию 16.03.2018 г. После доработки 17.09.2018 г. Принята к публикации 21.09.2018 г.

С использованием квантово-химического метода расчета DFT OPBE/TZVP и программы Gaussian09 осуществлен расчет валентных углов в макроциклах 1,8-диокса-3,6,10,13-тетраазациклотетрадекантетратиона-4,5,11,12, 1,8-дитиа-3,6,10,13-тетраазациклотетрадекантетратиона-4,5,11,12, 1,3,5,8,10,12-гексаазациклотетрадекантетратиона-6,7,13,14 и их координационных соединений с ионами Cr(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II) и Zn(II) с (NNNN)-координацией донорных центров лиганда, возникающих при комплексообразовании в тройных M(II)–этандитиоамид–формальдегид, M(II)–этандитиоамид–2-тиапропандиол-1,3 и в четверной M(II)–этандитиоамид–формальдегид–аммиак системах в желатин-иммобилизованных матричных имплантатах. Отмечено значительное искажение макроцикла, которое количественно может быть охарактеризовано по степени его отклонения от компланарности, как в макроциклических соединениях, так и в образуемых ими комплексах (более 60°). При этом в зависимости от природы как иона M(II), так и макроциклического лиганда это искажение может ослабляться или усиливаться.

Ключевые слова: макроциклическое соединение, компланарность, M(II), DFT-метод **DOI:** 10.1134/S0044457X19040147

ВВЕДЕНИЕ

Ранее [1-3] с использованием метода DFT OP-BE/TZVP осуществлен квантово-химический расчет молекулярных структур макротетрациклических металлохелатов ряда ионов 3*d*-элементов М(II) с 1,8-диокса-3,6,10,13-тетраазациклотетрадекантетратионом-4,5,11,12 (ML1), а также его структурными аналогами, получаемыми в результате замены двух находяшихся в противоположных концах макроцикла (положения 1 и 8) атомов углерода на атомы серы и азота: 1,8-дитиа-3,6,10,13-тетраазациклотетрадекантетратионом-4,5,11,12 (ML2) и 1,3,5,8,10,12-гексаазациклотетрадекантетратионом-6,7,13,14 (ML3), возникающих в результате темплатного синтеза ("самосборки") в тройных М(II)-этандитиоамид-формальдегид,

М(II)-этандитиоамид-2-тиапропандиол-1,3 и четверной М(II)-этандитиоамид-формальдегид-аммиак системах в металлгексацианоферрат(II)ных желатин-иммобилизованных матричных имплантатах по валовым схемам (1), (2) и (3) соответственно (M = Mn, Fe, Co, Ni, Cu и Zn).

На основании данных этих расчетов выявлены ключевые детали по координации возникающих при этом макроциклических лигандов (хелантов) к соответствующему иону M(II). Отмечалось [1–3], что ни один из хелатов ML1, ML2 и ML3 не является компланарным (плоским); и некомпланарными оказываются все фрагменты, определяющие итоговую молекулярную структуру хелатного комплекса, а именно хелатные узлы MN₄, 5- и 6-членные металлоциклы. В связи с этим целе-

сообразно с помощью квантово-химического расчета методом DFT оценить степень некомпланарности макроциклов в металлокомплексах ML1, ML2 и ML3, сопоставить ее с аналогичным параметром для соответствующего хеланта и выяснить, сопровождается ли комплексообразование ионов M(II) 3*d*-элементов с рассматриваемыми макроциклическими хелантами усилением или ослаблением степени отклонения макроцикла комплекса от компланарности. С другой стороны, стоит проследить, как зависит степень некомпланарности металлокомплексов с одним и тем же M(II) от природы гетероатомов, находящихся в положениях 1 и 8 14-членного макроцикла. Рассмотрению этих вопросов и будет посвящена данная статья.

МЕТОД РАСЧЕТА

Квантово-химический расчет проведен методом функционала плотности (DFT), сочетающим обменно-корреляционный функционал ОРВЕ [4-6] и стандартный расширенный валентнорасщепленный базис TZVP [7, 8], который, согласно данным [5, 9-12], в случае комплексов 3dэлементов дает точное соотношение энергетической стабильности между высоко- и низкоспиновым состояниями и надежно характеризует основные геометрические параметры молекулярных структур соединений данного типа. Расчеты проводили с использованием программного пакета Gaussian09 [13]. Как и в [14-19], соответствие найденных стационарных точек минимумам энергии во всех случаях доказывали расчетом вторых производных энергии по координатам атомов. При этом все равновесные структуры, соответствовавшие точкам минимума на поверхностях потенциальной энергии, имели вещественные положительные значения частот нормальных колебаний. Для комплексов Mn(II) и Co(II) pacсматривали мультиплетности 2, 4 и 6, для комплексов Cr(II) и Fe(II) – мультиплетности 1, 3 и 5, для комплексов Ni(II) и Zn(II) – мультиплетности 1 и 3, для комплекса Cu(II) – мультиплетности 2 и 4. Из оптимизированных при указанных мультиплетностях структур выбирали структуру с наименьшей энергией. Расчет параметров молекулярных структур при мультиплетностях, отличных от 1, всегда проводили неограниченным методом UOPBE; при мультиплетности 1 – ограниченным методом ROPBE. При мультиплетности 1 применяли вариант расчета неограниченным методом в сочетании с опцией GUESS = Mix. В этом случае результаты всегда были аналогичны данным, полученным с использованием ограниченного метода.

Количественную оценку степени отклонения макроциклов от компланарности как хелантов, так и образуемых ими металлокомплек-

399

сов осуществляли по величинам VAS¹⁴ – 2160°, где VAS¹⁴ – сумма внутренних углов в соответствующем 14-членном макроцикле, 2160° – сум-

ма внутренних углов в плоском 14-угольнике; чем меньше модуль этой величины, тем меньше степень отклонения от компланарности.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Квантово-химический расчет молекулярных структур каждого из хелантов H_2L1 , H_2L2 и H_2L3 , дважды депротонированные формы которых находятся во внутренней координационной сфере металлохелатов ML1, ML2 и ML3 соответственно, показал, что все они, как и молекулярные структуры образуемых ими металлокомплексов, являются неплоскими. Такой результат не был неожиданным, так как известно, что циклические соединения с числом атомов в цикле, равным 7 и более, как правило, неплоские, но имеются и исключения, например, хелаты d-элементов с фталоцианином [4]. Данные расчета значений VAS¹⁴ макроциклических хелантов и образуемых ими металлокомплексов ML1, ML2 и ML3 представлены в табл. 1-3; молекулярные структуры показаны на рис. 1-3 соответственно. Остановимся подробнее на характеристике каждого соединения (хелант + металлокомплекс).

Хелант H₂L1 и комплексы ML1. Как видно из данных табл. 1, сумма внутренних углов в 14членном макроцикле как в самом хеланте H_2L1 , так и в образуемых им комплексах ML1 (VAS¹⁴) намного (как минимум на 65°) меньше, чем сумма внутренних углов в плоском 14-угольнике (2160°). При этом в каждом из указанных в хелатов ML1 отклонение от суммы 2160° существенно меньше, чем в хеланте H_2L1 , так что комплексообразование каждого из перечисленных M(II) с H₂L1 сопровождается уменьшением степени искажения содержащегося в нем макроцикла. Знак величины VAS¹⁴(H₂L1)–VAS¹⁴(ML1) не зависит от природы M(II), однако она незначительно сказывается на модуле вышеуказанного параметра (от 16.7° в случае MnL1 до 24.9° в случае NiL1). В результате комплексообразования резко меняется и внешний вид группировок атомов S1C2C1S4 и S2C3C4S3 (рис. 1), несмотря на то, что ни один из атомов, входящих в состав этих группировок, не образует в результате комплексообразования химических связей с атомом М. Соответственно, изменяются и значения образуемых ими торсионных (диэдрических) углов, которые для всех ML1, за исключением CoL1, совпадают по модулю, различаясь между собой лишь знаком. Например, торсионный угол S1C2C1S4 в H₂L1 составляет -130.9° , а в образуемых им комплексах ML1 варьирует от -25.8° (NiL1) до -62.4° (MnL1), т.е. оказывается значительно меньшим.

Хелант H_2L2 и комплексы ML2. H_2L2 отличается от H_2L1 наличием в положениях 1 и 8 макроцикла атомов серы вместо атомов кислорода, но для него (табл. 2), как и для H_2L1 , сумма внутренних углов в его 14-членном макроцикле (VAS¹⁴), как и аналогичные суммы в комплексах ML2, существенно меньше, чем сумма внутренних углов в плоском 14-угольнике. При этом, как и в случае H_2 L1, отклонение от 2160° в каждом из комплексов ML2 меньше, чем в H₂L2, и знак величины $VAS^{14}(H_2L2) - VAS^{14}(ML2)$ не зависит от природы M(II). Однако модуль этой величины в каждом комплексе ML2, во-первых, меньше, чем в аналогичном ему комплексе ML1, а во-вторых, динамика изменения данного параметра в ряду Cr-Zn несколько иная, чем в случае хелатов ML1 – минимальное значение имеет место в случае CoL2 (4.9°), максимальное – в случае CuL2 (13.0°), и разброс этих значений намного меньше. В результате комплексообразования сильно меняется внешний вид группировок атомов S1C2C1S5 и S2C3C4S4 (рис. 2) и значения соответствующих им торсионных (диэдрических) углов (например, угол S1C2C1S5 в хеланте H₂L2 равен –135.1°, в металлохелатах ML2 он варьируется от -34.2° (CoL2) до -61.7° (MnL2)). Комплекс CoL2 оказывается единственным, для которого имеет место неравенство модулей величин углов S1C2C1S5 и S2C3C4S4 (39.0° и 34.2° соответственно).

Хелант H_2L3 и комплексы ML3. Искажения макроцикла в результате комплексообразования хеланта H_2L3 с M(II) с образованием металлохе-

МИХАЙЛОВ, ЧАЧКОВ

	Комплекс и MS основного состояния							
Валентный угол	H ₂ L1	CrL1	MnL1	FeL1	CoL1	NiL1	CuL1	ZnL1
	1	5	6	3	2	1	2	1
C6O1C5	117.8	118.0	117.5	116.8	117.0	116.7	117.6	117.4
01C5N1	112.7	110.9	111.3	110.3	110.0	110.2	111.0	111.0
C5N1C2	227.6	242.8	242.1	244.7	244.9	246.6	244.1	243.2
N1C2C1	120.0	112.4	112.4	111.3	110.8	110.9	112.5	112.7
C2C1N4	111.8	110.5	110.1	110.9	110.7	110.9	111.5	110.5
C1N4C7	233.5	240.3	239.4	241.6	241.8	241.6	239.1	238.7
N4C7O2	111.8	111.3	110.8	111.2	111.4	111.5	111.4	111.0
C7O2C8	116.6	115.3	116.2	114.4	114.1	114.0	115.7	116.6
O2C8N3	111.8	111.3	110.8	111.2	111.4	111.5	111.4	111.0
C8N3C4	233.5	240.3	239.4	241.6	241.8	241.6	239.1	238.7
N3C4C3	118.8	110.5	110.1	110.9	110.6	110.9	111.5	110.5
C4C3N2	120.0	112.4	112.4	111.1	110.8	110.9	112.5	112.7
C3N2C6	227.6	242.8	242.1	244.7	244.9	246.6	244.1	243.2
N2C6O1	112.7	110.9	111.3	110.3	110.0	110.2	111.0	111.0
VAS ¹⁴	2069.2	2089.7	2085.9	2091.0	2090.2	2094.1	2092.5	2088.2
$VAS^{14}(H_2L1) -$	0	-20.5	-16.7	-21.8	-21.0	-24.9	-23.3	-19.0
VAS ¹⁴ (ML1)								
VAS ¹⁴ -2160°	-90.8	-70.3	-74.1	-69.0	-69.8	-65.9	-67.5	-71.8

Таблица 1. Валентные углы 14-членного макроцикла в хеланте H_2L1 и образуемых им комплексах типа ML1

Таблина 2. Ва	лентные углы 14-членно	го макроникла в хеланте Н	L2 и образуемых им хел	атах типа ML2
I wormign It Du	, , , , , , , , , , , , , , , , , , ,	i o manpodinona o normani o i i		

	Комплекс и MS основного состояния								
Валентный угол	H ₂ L2	CrL2	MnL2	FeL2	CoL2	NiL2	CuL2	ZnL2	
-	1	5	6	3	2	1	2	1	
C7S6C8	103.2	100.6	103.5	98.1	97.4	97.3	100.8	102.7	
S6C8N3	113.4	112.5	110.9	112.4	111.4	112.8	112.5	112.1	
C8N3C4	234.8	241.3	239.4	242.6	241.8	242.5	240.2	239.6	
N3C4C3	111.8	110.3	109.4	110.7	109.8	110.5	111.4	110.3	
C4C3N2	120.2	112.1	112.7	111.0	110.4	110.2	112.4	113.7	
C3N2C6	228.0	242.5	241.7	242.9	243.0	244.6	243.3	242.6	
N2C6S3	115.1	112.1	113.0	111.2	111.1	111.1	112.2	112.5	
C6S3C5	105.0	103.7	103.2	102.5	102.4	102.1	103.0	103.0	
S3C5N1	115.1	112.2	113.1	111.2	110.8	111.1	112.2	112.5	
C5N1C2	228.0	242.5	241.7	242.9	242.2	244.6	243.3	242.6	
N1C2C1	120.2	112.1	112.7	111.0	110.6	110.2	112.4	113.7	
C2C1N4	111.8	110.3	109.4	110.7	110.9	110.5	111.4	110.3	
C1N4C7	234.8	241.3	239.4	242.6	244.0	242.5	240.2	239.6	
N4C7N6	113.4	112.5	110.9	112.4	113.9	112.8	112.5	112.1	
VAS ¹⁴	2054.8	2066.0	2061.0	2062.2	2059.7	2062.8	2067.8	2067.3	
$VAS^{14}(H_2L2) - VAS^{14}(ML2)$	0	-11.2	-6.2	-7.4	-4.9	-8.0	-13.0	-12.5	
$VAS^{14} - 2160^{\circ}$	-105.2	-94.0	-99.0	-97.8	-100.3	-97.2	-92.2	-92.7	
			ЖУРН	іал неорга	НИЧЕСКОИ	і химии	том 64 №	4 2019	

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В МАКРОЦИКЛАХ

	Комплекс и MS основного состояния							
Валентный угол	H2 L3	CrL3	MnL3	FeL3	CoL3	NiL3	CuL3	ZnL3
	1	5	6	3	2	1	2	1
N6C6N2	112.8	109.0	109.9	107.7	107.9	107.4	108.9	109.2
C6N2C3	227.9	242.2	241.3	243.5	245.7	245.6	243.1	242.2
N2C3C4	119.8	112.4	112.7	111.3	111.2	110.9	112.5	112.8
C3C4N3	112.1	110.2	109.3	110.8	110.7	110.6	111.2	110.1
C4N3C8	234.2	240.2	238.1	241.6	241.9	241.8	239.2	238.1
N3C8N5	117.2	109.4	108.5	109.2	109.6	109.8	109.7	109.1
C8N5C7	119.9	116.7	118.7	115.3	115.0	114.7	117.0	118.7
N5C7N4	117.2	109.4	108.5	109.2	109.6	109.8	109.7	109.1
C7N4C1	234.2	240.2	238.1	241.6	241.9	241.8	239.2	238.1
N4C1C2	112.1	110.2	109.3	110.8	110.7	110.6	111.2	110.1
C1C2N1	119.8	112.4	112.7	111.3	111.2	110.9	112.5	112.8
C2N1C5	227.9	242.3	241.3	243.5	245.7	245.6	243.1	242.2
N1C5N6	112.8	109.0	109.9	107.7	107.9	107.4	108.9	109.2
C5N6C6	119.7	119.9	119.0	118.3	118.4	118.2	119.3	118.9
VAS ¹⁴	2087.6	2083.5	2077.3	2081.8	2087.4	2085.0	2085.6	2080.6
$VAS^{14}(H_2L3) - VAS^{14}(ML3)$	0	+4.1	+10.3	+5.8	+0.2	+2.6	+2.0	+7.0
$VAS^{14} - 2160^{\circ}$	-72.4	-76.5	-82.7	-78.2	-72.6	-75.0	-74.4	-79.4

Таблица 3. Валентные углы 14-членного макроцикла в хеланте H₂L3 и образуемых им хелатах типа ML3

Рис. 1. Пространственная структура 1,8-диокса-3,6,10,13-тетраазациклотетрадекантетратиона-4,5,11,12 (а) и его комплекса с Co(II) (б).

Рис. 2. Пространственная структура 1,8-дитиа-3,6,10,13-тетраазациклотетрадекантетратиона-4,5,11,12 (а) и его комплекса с Co(II) (б).

латов ML3 такое же, как и для хелантов H_2L1 и H_2L2 , т.е. как сам хелант, так и его комплексы обнаруживают весьма значительные отклонения от компланарности – сумма внутренних углов в макроциклах в каждом из них отличается от суммы внутренних углов плоского 14-угольника более чем на 70° (табл. 3). Однако здесь изменяется соотношение между степенью искажения макроцикла в хеланте и образуемых им металлохелатах: если для H_2L1 и H_2L2 разность VAS¹⁴(H_2L2) – VAS¹⁴(ML2) отрицательна, то для H_2L3 она оказывается положительной, но малой по модулю по сравнению с аналогичными параметрами для ML1 и ML2. При этом наибольшее значение модуля величины VAS¹⁴(H₂L3)-VAS¹⁴(ML3) наблюдается в случае MnL3, наименьшее – в CoL3. В результате комплексообразования сильно меняется внешний вид группировок атомов S1C2C1S4 и S2C3C4S3 (рис. 3), и значение соответствующих им торсионных углов (S1C2C1S4) в хеланте H₂L3 равно -130.3°, в металлохелатах ML3 - от -28.6° NiL3 до -61.1° MnL3). Стоит отметить, что в комплексе CoL3 в отличие от CoL1 и CoL2 модули значений углов S1C2C1S4 и S2C3C4S3 одинаковы (по 28.8°). Такое же попарное равенство характерно для всех остальных комплексов ML3. Степень отклонения от компланарности у каждого из комплексов ML1 заметно меньше, чем у комплексов ML3. При этом в комплексах ML1, ML2 и ML3 не связанные с M(II) атомы O, S и N соответственно, имеющиеся в их макроциклах, располагаются по разные стороны от плоскости донорных атомов $\mathrm{N}_4.$

Из табл. 1-3 видно, что степени отклонения макроцикла хелантов H_2L1 , H_2L2 и H_2L3 от компланарности весьма существенно отличаются друг от друга (90.8°, 105.2° и 72.4° соответственно), что свидетельствует и о весьма сильной зависимости данного параметра от природы гетероатомов в макроцикле, наиболее удаленных от атомов М, не связанных с ними химическими связями, и находящихся в положениях (1,8) (в случае H_2L1 и H_2L2) и в положениях (3,10) (в случае H₂L3). В то же время, согласно данным [19], степень отклонения от компланарности хеланта - 1,4,8,11тетраазациклотетрадекантетратиона-2,3,9,10, который содержит в аналогичном 14-членном макроцикле лишь четыре атома азота, составляет 82.6°. Таким образом, при замене в макроцикле этого хеланта двух атомов углерода, наиболее удаленных от его центра ("периферийных"), на атомы азота степень некомпланарности макроцикла уменьшается, при замене их на атом О или S, напротив, возрастает. Сопоставление величин углов CEC (где E = C, N, O или S) в рассматриваемых соединениях показывает, что при переходе от С к N они в целом увеличиваются, а при переходе от N к O и далее к S – уменьшаются как в хелантах, так и в комплексах. При этом ни в тех, ни в других они попарно не равны друг другу. Но если для комплексов M(II) такое неравенство вполне ожидаемо и объяснимо (поскольку содержащиеся в них 6-членные металлоциклы не полностью

Рис. 3. Пространственная структура 1,3,5,8,10,12-гексаазациклотетрадекантетратиона-6,7,13,14 (а) и его комплекса с Co(II) (б).

идентичны друг другу, так как в одном из них оба атома N связаны с атомами водорода, в другом же - нет), то для хелантов оно остается непонятным. Обращает на себя внимание тот факт, что характер изменения вышеуказанных валентных углов в ряду N-O-S сходен с характером изменения степени искажения макроциклов, однако увеличение величин данных углов связано с уменьшением степени искажения. Возможно, именно здесь причина выраженной зависимости степени искажения макроцикла от природы гетероатомов. Можно предположить, что дело в размерах гетероатома Е – чем больше его орбитальный радиус, тем меньше должен быть образуемый валентный угол СЕС. Для атомов С (орбитальный радиус 67 пм), гетероатомов N (56 нм) и гетероатомов S (88 пм) это ожидание оправдывается. В случае гетероатомов О (48 пм) следовало ожидать наибольших значений "периферийных" валентных углов, чего на самом деле не наблюдается. С другой стороны, эти углы должны зависеть и от наличия атомов Н, химически связанных с гетероатомами Е, и с ростом их числа должны увеличиваться вследствие стерических препятствий, возникающих для сближения соседних с Е атомов углерода. Каждый из вышеуказанных "периферийных" атомов С в макроцикле связан с двумя атомами Н, тогда как каждый из гетероатомов N – с одним, а гетероатомы О и S связаны лишь с соседними с ними атомами углерода. В случае гетероатома О влияние второго фактора превалирует над первым, так что несмотря на меньший его орбитальный радиус по сравнению с таковым для гетероатома N, углы COC оказываются меньшими, чем углы CNC.

ЗАКЛЮЧЕНИЕ

Согласно данным квантово-химического расчета методом DFT OPBE/TZVP, в комплексах, образуемых макроциклическими лигандами -1,8-диокса-3,6,10,13-тетраазациклотетрадекантетратионом-4,5,11,12, 1,8-дитиа-3,6,10,13-тетраазациклотетрадекантетратионом-4,5,11,12 И 1,3,5,8,10,12-гексаазациклотетрадекантетратионом-6,7,13,14, как и в самих этих лигандах, имеет место значительное искажение 14-членного макроцикла. При этом в случае 1,8-диокса-3,6,10,13-тетраазациклотетрадекантетратиона-4,5,11,12 и 1,8-дитиа-3,6,10,13-тетраазациклотетрадекантетратиона-4,5,11,12 комплексообразование с Mn(II), Fe(II), Co(II), Ni(II), Cu(II) и Zn(II) сопровождается уменьшением степени искажения макроцикла хеланта, а в случае 1,3,5,8,10,12-гексаазациклотетрадекантетратиона-6,7,13,14, напротив, увеличением. В зависимости от природы как иона М(II), так и макроциклического лиганда эта степень может как ослабляться, так и усиливаться.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (грант № 4.5784.2017/8.9). Все квантово-химические расчеты выполнены в Казанском отделении Межведомственного суперкомпьютерного центра РАН — филиале Федерального государственного учреждения "Федеральный научный центр Научно-исследовательский институт системных исследований РАН" (http://kbjscc.knc.ru), которому авторы также выражают свою искреннюю признательность за оказанную техническую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Mikhailov O.V., Chachkov D.V. //* Russ. J. Inorg. Chem. 2015. V. 60. № 9. Р. 1117. doi 10.1134/ S0036023615090065 [*Михайлов О.В., Чачков Д.В. //* Журн. неорган. химии. 2015. Т. 60. № 9. С. 1225. doi 10.7868/ S0044457X15090068]
- 2. Mikhailov O.V., Chachkov D.V. // Russ. J. Inorg. Chem. 2015. V. 60. № 11. P. 1354. doi 10.1134/ S003602361511011Х [Михайлов О.В., Чачков Д.В. // Журн. неорган. химии. 2015. Т. 60. № 11. С. 1479. doi 10.7868/S0044457X15110112]
- Chachkov D.V., Mikhailov O.V. // Russ. J. Inorg. Chem. 2014. V. 59. № 3. Р. 218. doi 10.1134/ S0036023614030024 [Чачков Д.В., Михайлов О.В. // Журн. неорган. химии. 2014. Т. 59. № 3. С. 361. doi 10.7868/ S0044457X14030027]
- Hoshino A., Takenaka Y., Miyaji H. // Acta Crystallogr. B. 2003. V. 59. № 3. P. 393. doi 10.1107/ S010876810300942X
- Hoe W.-M., Cohen A., Handy N.C. // Chem. Phys. Lett. 2001. V. 341. № 3–4. P. 319. doi 10.1016/S0009-2614(01)00581-4
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1997. V. 77. № 18. P. 3865. doi 10.1103/PhysRev-Lett.77.3865
- Schaefer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571. doi 10.1063/1.463096

- Schaefer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829. doi 10.1063/1.467146
- Paulsen H., Duelund L., Winkler H., et al. // Inorg. Chem. 2001. V. 40. № 9. P. 2201. doi 10.1021/ic000954q
- Swart M., Groenhof A.R., Ehlers A.W., Lammertsma K. // J. Phys. Chem. A. 2004. V. 108. № 25. P. 5479. doi 10.1021/jp049043i
- Swart M., Ehlers A.W., Lammertsma K. // Mol. Phys. 2004. V. 102. № 23. P. 2467. doi 10.1080/0026897042000275017
- 12. Swart M. // Inorg. Chim. Acta. 2007. V. 360. № 1. P. 179. doi 10.1016/j.ica.2006.07.073
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford CT, 2009.
- Chachkov D.V., Mikhailov O.V. // Russ. J. Inorg. Chem. 2012. V. 57. № 7. Р. 981. doi 10.1134/S0036023612070078 [Чачков Д.В., Михайлов О.В. // Журн. неорган. химии. 2012. Т. 57. № 7. С. 1056.]
- 15. *Chachkov D.V., Mikhailov O.V.* // Macroheterocycles. 2009. V. 2. № 3-4. P. 271.
- Chachkov D.V., Mikhailov O.V. // Russ. J. Inorg. Chem. 2010. V. 55. № 8. Р. 1243. doi 10.1134/ S0036023610080152 [Чачков Д.В., Михайлов О.В. // Журн. неорган. химии. 2010. Т. 55. № 8. С. 1318.]
- 17. *Mikhailov O.V., Chachkov D.V.* // Inorg. Chim. Acta. 2013. V. 408. № 1. P. 246. doi 10.1016/j.ica.2013.09.003
- Chachkov D.V., Mikhailov O.V. // Russ. J. Inorg. Chem. 2013. V. 58. № 2. Р. 174. doi 10.1134/ S0036023613020186 [Михайлов О.В., Чачков Д.В. // Журн. неорган. химии. 2013. Т. 58. № 2. С. 209. doi 10.7868/S0044457X13020189]
- 19. *Mikhailov O.V., Chachkov D.V.* // Russ. J. Inorg. Chem. 2014. V. 59. № 11. Р. 1276. doi 10.1134/ S0036023614110138 [*Михайлов О.В., Чачков Д.В.* // Журн. неорган. химии. 2014. Т. 59. № 11. С. 1521. doi 10.7868/S0044457X14110130]