ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 3, с. 260-265

= КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ =

УДК 548.73+546.94

ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ *d*²-РЕНИЯ(V) [ReO(Lⁿ)₂(L_{моно})] С АТОМАМИ КИСЛОРОДА БИДЕНТАТНО-ХЕЛАТНЫХ ЛИГАНДОВ О, N (Lⁿ). ЧАСТЬ 1. КОМПЛЕКСЫ С ПЯТИЧЛЕННЫМИ МЕТАЛЛОЦИКЛАМИ ReNC₂O

© 2019 г. В. С. Сергиенко^{1, 2, *}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119991 Москва, Ленинский пр-т, 31 ²Всероссийский институт научной и технической информации РАН, Россия, 125190 Москва, ул. Усиевича, 20 *e-mail: sergienko@igic.ras.ru Поступила в редакцию 30.11.2017 г. После доработки 15.07.2018 г. Принята к публикации 15.08.2018 г.

Рассмотрены особенности строения 14 моноядерных октаэдрических монооксокомплексов d^2 -Re(V) с однозарядными атомами кислорода бидентатно-хелатных (O, N) лигандов (L^n) – [ReO(L^n)₂($L_{\text{моно}}$)] ($L_{\text{моно}}$ – монодентатный лиганд), содержащих пятичленные металлоциклы ReNC₂O. Атомы O(L^n) находятся в *транс*-положениях к лигандам O(оксо).

Ключевые слова: кристаллическая структура, рентгеноструктурный анализ, октаэдрические монооксокомплексы *d*²-Re, бидентатно-хелатные (O, N) лиганды **DOI:** 10.1134/S0044457X19030188

Особенности строения мономерных октаэдрических комплексов (**MOK**) d^0 -, d^2 -металлов V–VII групп (Nb, V, Mo, W, Re, Tc) с кратносвязанными лигандами О(оксо) подробно изложены в [1-7]. Для d^2 -Re(V) методом PCA определена кристаллическая структура более пятисот комплексов (см. Кембриджский банк структурных данных (КБСД), версия 5.37, февраль 2017 г. [8]). Большинство из них – MOK ReO_{оксо}O(Lig)_{транс} – с атомами кислорода моно- и полидентатных лигандов в *транс*-позициях к оксолигандам. Ранее мы опубликовали ряд обзорных статей по МОК d²-Re(V) с атомами галогенидов [9], азота [10], серы и водорода [11], кислорода монодентатных ацидолигандов (гидроксо- [12], алкоксо- (метоксо-[13], этоксо- [14], пропоксо- [15]), OR^{*n*-} (*n* = 1, 2; $R = Ph, Cy, C_6H_4OH, C_6H_4OMe, P(O)(OMe)_2,$ $C(O)(CF_3), OCMe(CF_3)_2, BF_3)$ [16], OER^{n-} (n = 1, 2; $E = Si, B, S; R = Me_3, F_3, O_2CF_3$) [17]) и бидентатно-хелатных (O, O) [18], (O, S) и (O, C) [19], (O, P) [20] однозарядных лигандов, а также нейтральных кислородсодержащих лигандов (молекул воды [21], фосфин- и арсиноксидных OER_3 (E = P, As; $R_3 = Ph_3$, PhEt₂) [22], молекул OR' (ДМФ, R"OH (R" = Me, Et, Pr), L ($ON_4C_6 \cdot C_6H_{10}$, O⁻ $(C_6H_3MeCH_2NH^+Et_2), O^-(NH^+C_5H_4))$ [23] в

транс-позициях к кратносвязанным лигандам O(оксо). Нами опубликованы также обзорные статьи по особенностям строения MOK d^0 -Re(VII) [24] и d^0 -, d^2 -технеция(V, VII) [25].

Структурное проявление трансвлияния кратносвязанного лиганда O(оксо) – удлинение противолежащей связи Re– L_{mpahc} – определяется параметром Δ (разность длин одноименных связей (Re– L_{mpahc}) – (Re– $L_{цис}$)). Если же в конкретной структуре отсутствуют лиганды одного сорта и в *транс*-, и в *цис*-положениях к оксолиганду, мы используем параметр (Re– L_{mpahc}) – (Re–L(CT), где CT – среднестатистическое стандартное расстояние Re(V) с атомом лиганда того же сорта, что и $L_{транс}$. В качестве параметра Re–O(CT) мы приняли (как и в [4]) величину 2.04 Å.

Ранее мы опубликовали две обзорные статьи об особенностях кристаллической структуры $[\text{ReO}(L^n)(L_{\text{моно}})_3]$ (L^n – бидентатно-хелатные кислородсодержащие (O, N), а $L_{\text{моно}}$ – монодентатные лиганды), содержащей пяти-, шести- и семичленные металлоциклы ReNC_2O [26], ReNC_3O и ReNC_4O [27]. В настоящей статье рассмотрены особенности строения 14 мономерных октаэдрических монооксокомплексов $[\text{ReO}(L^n)_2(L_{\text{моно}})]$, содержащих, за одним исключением, два оди-

наковых лиганда L^{*n*} и один L_{моно}. Первые из них кристаллической структуре комплексов в ReO(оксо)³⁺ по преимуществу выполняют бидентатно-хелатную функцию с ацидоатомом кислорода $O(L^n)$ в *транс*-позиции к оксолиганду. В трех исключениях — комплексах $[\text{ReO}(L^n)_2(L_{\text{моно}})]$ с пятичленными хелатными циклами ReNC₂O – транс-позиции к О(оксо) занимают лиганды L_{моно} (Cl⁻, OMe⁻). Отметим, что во всем массиве структур с пятичленными хелатными кольцами реализуются два геометрических изомера: одноименные атомы азота и кислорода двух лигандов L^n располагаются либо в *транс*(N,N), *цис*(O,O)-, либо в uuc(N,N), uuc(O,O)-позициях друг к другу (далее *транс*(N,N)- и *цис*(N,N)-изомеры, поскольку атомы $O(L^n)$ всегда расположены в *цис*положении друг к другу).

Основные длины связей в структурно исследованных 14 комплексах приведены в табл. 1.

Во всех рассмотренных комплексах (как и в содержащих аналогичные пятичленные металлоциклы (**МЦ**) в соединениях [$\text{ReO}(L^n)(L_{\text{моно}})_3$] [26, 27]) в однозарядных лигандах (L^n)[–] пятичленные хелатные кольца Re-N(1)-C(1)-C(2)-O включены по связям N-C (N-C, C-C) в бициклические (трициклические) системы.

I. Комплекс [ReO(L¹)₂Cl] с бициклами, сочлененными по связям N(1)-C(1)

В структуре [ReO(L¹)₂Cl] (I) [28] (рис. 1) бициклическая система 2-(оксиметил)пиридин $C_5H_4NCH_2O(L^1)$ включает пятичленный пиридиновый цикл NC₅H₄. Атом рения смещен из гофрированной экваториальной плоскости (±0.12 Å) Cl, O, N₂ ($\Pi_{_{3KB}}$) к оксолиганду ($\Delta_{Re} = 0.200$ Å). Практически плоский (±0.055 Å) металлоцикл МЦ₁ почти нормален относительно П_{экв} (двугранный угол 3.8°). Второй металлоцикл МЦ₂ более гофрирован (± 0.144 Å) и составляет с $\Pi_{_{3KB}}$ двугранный угол 16.2°. Связи Re–N(L¹) в структуре I (средн. 2.140 Å) попадают в широкий интервал значений 2.02-2.41 Å (средн. 2.17 Å) для 62 структур (КБСД, 2005 г.) [8]. Связи Re-O(L¹) в I (средн. 1.94 Å) сходны с типичными значениями Re-O(фенолят) [29].

II. Комплексы [ReO(Lⁿ)₂(L_{моно})] с бициклами, сочлененными по связям N(1)-C(1), и с заместителями при атомах C(2)

Известна кристаллическая структура четырех комплексов указанного в заголовке главы II типа.

Сходное с I строение имеет комплекс $[\text{Re}(L^2)_2(\text{Me})]$ (II) [30]. Лиганд L отличается от L^1 наличием заместителя — карбонильного атома

кислорода при атоме C(2) ($L^2 - 2$ -пиколинат, NC₅H₄C(O)O). В структуре II следует отметить редкий случай заметного расхождения длины связей Re–N(L^n) с разными *транс*-партнерами: 2.113(9) и 2.163(9) Å в *транс*-позициях соответственно к Re–C(Me) и Re–O(L^2).

Кристаллы двух комплексов [$\text{ReO}(L^n)_2\text{Cl}$], содержащих пиколинатный NC₅H₄C(=O)O (III) [31] (n = 3) и 3-гилроксипиколинатный NC₅H₃(OH)C(=O)O (**IV**) [32] (*n* = 4) лиганды, различаются только наличием во втором из них гидроксизаместителя R в позиции 4 пирилинового цикла. В этих двух соединениях к атомам N(1), С(1) приконденсирован пиридиновый цикл NC_5H_3R (R = H в III и OH в IV), к атому C(2) – атом О(карбонил). В комплексах I-IV атомы азота и кислорода двух лигандов Lⁿ располагаются попарно в цис-позициях друг к другу. Такой же геометрический изомер реализуется в комплексной молекуле соединения $[ReO(L^5)_2Cl] \cdot CH_2Cl_2$ (V) [33] (рис. 1). Как и в комплексах I–IV, в молекуле V к металлоциклу ReNC₂O по связи N(1)-С(1) приконденсирован Ру-цикл. С атомом С(2) пиридилалкоголятного лиганда 9-(2-пиридил)флуорен-9-олато $NC_5H_4C(C_6H_4)_2O$ связан бициклический заместитель (С₆Н₄)₂. Для комплексной молекулы [ReO(L⁵)₂Cl] соединения V с типичным расположением атома кислорода одного из лигандов L⁵ в *транс*-положении к оксолиганду есть другой геометрический изомер с хлоролигандом в транс-позиции к О(оксо) [32]. В структуре V, как и в II, можно отметить существенную разницу длины связей Re-N(Lⁿ): 2.110(3) и 2.161(3) Å в *транс*-позициях соответственно к Re–Cl и Re–O(L^5).

III. Комплексы [ReO(Lⁿ)₂(L_{моно})] с трициклами, сочлененными по связям N(1)-C(1) и C-C

В структурах [ReO(L⁶)₂(Py)]Cl \cdot H₂O (VI) (рис. 1) [34], [ReO(L⁷)₂Cl] (VII) [35] и [ReO(L⁸)(Me)] (два независимых исследования: (VIII) [29] и (VIIIa) [36]) в лигандах Lⁿ – моноанионах 1H-(бензимидазол-2-ил)метанолато) (n = 6) NC₆H₄N(H)CCH₂O, 1Н-бензимидазол-2-карбоновой кислоты (n = 7) NC₆H₄O(H)C(O)CO и 8гидроксихинолина (n = 8) NC₈H₆ – металлоциклы ReNC₂O сочленены по связям N(1)-C(1), С(1)-С(2) с бензимидазольными бициклами. В структуре VIII, как и в I–IV, реализуется цис(N,N)-, а в VI и VII, наоборот, транс(N,N)изомер. Структурные единицы кристалла VI – комплексные катионы $[\text{ReO}(L^5)_2(\text{Py})]^+$, анионы хлора и кристаллизационные молекулы воды объединены разветвленной сеткой водородных связей (BC) N-H...Cl, N-H...O, O-H...Cl, C-

СЕРГИЕНКО

Таблица 1. Основные геометрические параметры (Å) мономерных октаэдрических монооксокомплексов [ReO(L^n)₂($L_{\text{моно}}$)] с бидентатно-хелатными (O, N) лигандами (L^n) (n = 1-13), содержащими пятичленные металлоциклы ReNC₂O, и с атомами O(L^n) в *транс*-позициях к O(оксо); $L_{\text{моно}}$ – монодентатный лиганд

№ соеди- нения	Соединение	Re=O	Re-L _{uuc}	$Re-O(L^n)_{mpahc}$	Δ , (Δ ')	Литература
Ι	[ReO(L ¹) ₂ Cl]	1.693(4)	$\begin{array}{l} 1.940(5) \ O(L^1) \\ 2.140(6) \pm 0.021 \ N(L^1) \\ 2.396(1) \ Cl \end{array}$	1.943(4)	0.003	[28]
II	$[\text{ReO}(\text{L}^2)_2(\text{Me})]$	1.662(8)	2.014(8) $O(L^2)$ 2.138(9) \pm 0.025 $N(L^2)$ 2.11(1) $C(Me)$	2.100(7)	0.086	[30]
III	$[\text{ReO(L}^3)_2\text{Cl}]$	1.658(5)	1.996(5) $O(L^3)$ 2.111(6) \pm 0.011 $N(L^3)$ 2.366(2) Cl	2.037(6)	0.041	[31]
IV	[ReO(L ⁴) ₂ Cl]	1.65(1)	2.00(1) O(L ⁴) 2.125(2) \pm 0.025 N(L ⁴) 2.354(6) Cl	2.04(1)	0.04	[32]
V	$[\text{ReO}(\text{L}^5)_2\text{Cl}] \cdot \text{CH}_2\text{Cl}_2$	1.696(3)	1.933(2) $O(L^5)$ 2.136(3) ± 0.026 $N(L^5)$ 2.392(1) Cl	1.966(3)	0.033	[33]
VI	$[\text{ReO}(\text{L}^6)_2(\text{Py})]\text{Cl}\cdot\text{H}_2\text{O}$	1.675(3)	1.937(3) O(L ⁶) 2.105(4) ± 0.046 N(L ⁶) 2.153(4) N(Py)	1.973(3)	0.034	[34]
VII	$[\text{ReO} (\text{L}^7)_2\text{Cl}]$	1.670	2.096 $O(L^7)$ 2.108 ± 0.036 $N(L^7)$ 2.460 Cl	2.071	-0.025	[35]
VIII	$[\operatorname{ReO}(\mathrm{L}^8)_2(\mathrm{Me})]$	1.677(4)	1.986(4) O(L ⁸) 2.164(4) ± 0.038 N(L ⁸) 2.111(6) C(Me)	2.037(4)	0.051	[36]
VIIIa	$[\operatorname{ReO}(\mathrm{L}^8)_2(\mathrm{Me})]$	1.658(5)	2.003(4) $O(L^8)$ 2.126(4) \pm 0.026 $N(L^8)$ 2.128(7) $C(Me)$	2.094(4)	0.091	[36]
IX	[ReO(L ⁹) ₂ Cl] · MeOH	1.674(3)	1.974(3) $O(L^9)$ 2.117(4) \pm 0.009 $N(L^9)$ 2.351(1) Cl	2.039(3)	0.065	[37]
X	$\text{ReO}(L^9)_2(\text{OMe})]$	1.678(3)	$\begin{array}{c} 1.988(3) \ O(L^9) \\ 2.130(3) \pm 0.007 \ N(L^9) \\ 1.942(3) \ O(OMe) \end{array}$	2.065(3)	0.077	[37]
XI	$[\text{ReO}(\text{L}^{10})_2\text{Br}]$	1.660(6)	1.962(5) $O(L^{10})$ 2.171(6) ± 0.010 $N(L^{10})$ 2.4773(10) Br	2.068(5)	0.106	[38]
XII	[ReO(L ¹⁰) ₂ Cl] · MeCN	1.666(3)	$\begin{array}{c} 1.993(2) \ \mathrm{O}(\mathrm{L}^{10}) \\ 2.172(3) \pm 0.001 \ \mathrm{N}(\mathrm{L}^{10}) \\ 2.3345(9) \ \mathrm{Cl} \end{array}$	2.017(2)	0.024	[38]

Таблица 1. Окончание

№ соеди- нения	Соединение	Re=O	Re–L _{uuc}	$\operatorname{Re-O}(L^n)_{mpahc}$	Δ, (Δ')	Литература
XIII	[ReO(L ¹¹) ₂ (PPh ₃)]Cl	1.697(4)	2.043(5) O(L ¹¹) 2.063(6) ± 0.048 N(L ¹¹) 2.462(2) P	2.039(6)	-0.004	[39]
XIV	[ReO(L ¹²)(L ¹³)Cl]	1.69(1)	1.948(7) O(L ¹²) 2.159(8) \pm 0.003 N(L ¹² , L ¹³) 2.360(3) Cl	2.023(8) O(L ¹³)	0.075	[43]

Условные обозначения лигандов $(L^n)^-$ (n = 1-13): $L^1 = NC_5H_4CH_2O$, $L^2 = NC_5H_4C(O)O$, $L^n = NC_5H_3RC(=O)O$ (R = H, n = 3, R = OH, n = 4), $L^5 = NC_5H_4C(C_6H_4)_2O$, $L^6 = NC_6H_4N(H)CCH_2O$, $L^7 = NC_6H_4O(H)C(O)C(O)$, $L^8 = NC_8H_6$, $L^9 = NC_9H_6C(=O)O$, $L^{10} = NC_9H_4(Me)(COOH)O$, $L^{11} = N(H_2)CN(CH_2)_3$ COH, $L^{12} = NC_5H_3(CH_2OH)O$, $L^{13} = NC_9H_6O$.

Н...О в 2D-слои (Н...Сl 2.25 и 2.61, Н...О 2.10– 2.58, N...Cl 3.104, N...О 2.911, О...Сl 2.951, С...О 2.885–3.473 Å, углы NHCl 170°, NHO 158°, OHCl 109°, OHO 111°–154°). Отмечается низкая точность рентгеновского эксперимента структуры VII. Координаты атомов структур VII, VIII не включены в КБСД.

IV. Комплексы [ReO(Lⁿ)₂(L_{моно})] с трициклами, сочлененными по связям N(1)–C(1), C–C, и с заместителями O(карбонил) при атомах C(2)

В кристаллах [ReO(L⁹)Cl] · MeOH (IX) [36] (рис. 1) и [ReO(L⁹)(OMe)] (X) [37] комплексные молекулы различаются только монодентатным лигандом: Cl в IX и OMe в X. Трициклические системы в изохинолин-2-карбоксилатных лигандах L^9 (NC₉H₆C(=O)O) образованы сочленением пятичленных металлоциклов по связям N(1)-C(1) с бициклами NC₉H₃. Два изохинолинкарбоксилатных лиганда L⁹ (NC₉H₆) содержат трициклическую систему, в которой металлоцикл ReNC₂O соединен по связи N(1)-C(1) с бициклом $NC_{0}H_{6}$. В обеих структурах реализуется mpahc(N,N)-изомер. Авторы [37] отмечают необычность расположения метоксолиганда в структуре X в *цис*-, а не в транс-позиции (как обычно) к кратносвязанному оксолиганду.

V. Комплексы [ReO(Lⁿ₂)(L_{моно})] с трициклическими лигандами Lⁿ; циклы сочленены по связям N(1)-C(1) и C(1)-C(2)

Известна кристаллическая структура двух комплексов [ReO(L¹⁰)₂(Hal)] [38], где Hal = Br (**XI**) (рис. 1) и Cl (**XII**, сольват 1 : 1 с MeCN). В трициклическом лиганде L¹⁰ — моноанионе 8-гидрокси-2-метилхинолин-7-карбоновой кислоты хелатный цикл ReNC₂O сочленен по связям N(1)-C(1), C(1)-C(2) с бициклическим замещенным 8-гидрокси-2-метилхинолинатным лигандом NC₉H₄(Me)(COOH)O. В обеих структурах имеет место *цис*(N,N)-изомер. В структуре XI, XII параметр Δ_{Re} равен соответственно 0.324, 0.292 Å. Структура обоих комплексов стабилизирована сеткой меж- и внутримолекулярных ВС O–H...O (в XI O...O 2.569 и 2.629 Å, углы OHO 143° и 160°; в XII O...O 2.552 и 2.629 Å, углы OHO 153° и 173°) и C–H...O (в XI, X C...O 2.729–3.391 Å, углы CHO 100°–171°).

VI. Комплекс [ReO(L¹¹)₂(PPh₃)]Cl с бициклами, сочлененными по связям C(1)-C(2)

В структуре [Re(L¹¹)(PPh₃)]Сl (XIII) [39] (рис. 1) (HL^{11}) 2-амино-3-гидроксипиридин _ N(H₂)CN(CH₂)₃COH) бицикл, образованный металлоциклом ReNC₃O по связи C(1)-C(2), включает пиридиновое кольцо. Параметр $\Delta_{Re} =$ = 0.252 Å. Одна из неравноценных по длине связей Re–N(L¹¹) в структуре XIII (2.015 и 2.110 Å) выходит за нижнюю границу интервала расстояний Re-N(H₂) 2.10-2.22 Å [40, 41]. Обе связи Re-O(L¹¹), *транс* и *цис* (2.039 и 2.043 Å), типичны для расстояний Re-O(фенолят) 2.015-2.097 Å [42]. В данной структуре реализуется *транс*(N,N)-изомер. Двугранный угол между плоскостями Руциклов равен 88.42°.

VII. Комплекс [Re(L¹²)(L¹³)Cl] с двумя бидентатно-хелатными (N, O) лигандами разного состава

В единственном комплексе $[Re(L^{12})(L^{13})Cl]$ (XIV) [43] (рис. 1) два лиганда, содержащих пятичленные металлоциклы $ReNC_2O$, имеют разный состав. Бициклический лиганд $L^{12} - 2$ -(оксиметилен-6-гидроксиметил)пиридин $NC_5H_3(CH_2OH)O -$ образован сочленением металлоцикла $ReNC_2O$ и оксиметилензамещенного пиридинового кольца

Рис. 1. Строение комплексов I, V, VI, IX, XI, XIII, XIV.

по связи N(1)–C(1), трициклический 8-оксихинолиновый лиганд L¹³ – NC₉H₆O –формированием связей N(1)–C(1), C(1)–C(2) металлоцикла и бицикла NC₉H₆. Параметр $\Delta_{\text{Re}} = 0.23$ Å. В данной структуре реализуется *цис*(N, N)-изомер. *Транс*позицию к оксолиганду занимает атом O(2) лиганда L¹³. Двугранный угол между плоскостями квазиортогональных металлоциклов лигандов L¹², L¹³ составляет 81.0°.

БЛАГОДАРНОСТЬ

Автор признателен А.В. Чуракову за помощь в выборке данных из КБСД.

СПИСОК ЛИТЕРАТУРЫ

- Порай-Кошиц М.А., Гилинская Э.А. Кристаллохимия. М.: ВИНИТИ, Итоги науки и техники. 1966. С. 126.
- 2. Порай-Кошиц М.А., Атовмян Л.О. // Коорд. химия. 1975. Т. 1. С. 1271.
- 3. Griffith F., Wicing C. // J. Chem. Soc. A. 1968. P. 379.
- 4. *Порай-Кошиц М.А.* // Изв. Югосл. кристаллогр. центра. 1974. Т. 9. С. 19.
- 5. Порай-Кошиц М.А., Атовмян Л.О. Кристаллохимия коорд. соед. молибдена. М.: Наука, 1974. 231 с.
- Shustorovich E.M., Porai-Koshits M.A., Buslaev Yu.A. // Coord. Chem. Rev. 1975. V. 17. P. 1.
- Порай-Кошиц М.А., Сергиенко В.С. // Успехи химин. 1990. Т. 59. С. 86.
- 8. Allen F.H. // Acta Crystallogr. 2002. V. 58B. P. 380.
- 9. Сергиенко В.С., Чураков А.В. // Кристаллография. 2014. Т. 59. С. 685.
- Сергиенко В.С., Чураков А.В. // Кристаллография. 2015. Т. 60. С. 365.
- 11. *Сергиенко В.С.* // Журн. неорган. химии. 2014. Т. 59. № 4. С. 457.
- 12. *Сергиенко В.С.* // Журн. неорган. химии. 2014. Т. 59. № 10. С. 1338.
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2014. V. 59. № 13. P. 1683.
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2014. V. 59. № 14. P. 1715.
- Сергиенко В.С. // Журн. неорган. химии. 2015. Т. 60. № 3. С. 333.
- Сергиенко В.С. // Журн. неорган. химии. 2015. Т. 60. № 6. С. 758.
- Сергиенко В.С. // Журн. неорган. химии. 2016. Т. 61. № 11. С. 1461.

- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2016. V. 61. № 14. P. 1708.
- Сергиенко В.С. // Журн. неорган. химии. 2017. Т. 62. № 6. С. 766.
- 20. Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2017. № 10. Т. 62. С. 1043.
- 21. *Сергиенко В.С.* // Журн. неорган. химии. 2014. Т. 59. № 7. С. 957.
- Sergienko V.S. // Russ. J. Inorg. Chem. 2015. V. 60. № 14. P. 1723.
- 23. Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2016. Т. 61. № 7.С. 873.
- 24. Сергиенко В.С., Чураков А.В. // Кристаллография. 2014. Т. 59. С. 341.
- 25. Сергиенко В.С., Чураков А.В. // Кристаллография. 2013. Т. 58. С. 3.
- 26. *Сергиенко В.С., Чураков А.В.* // Журн. неорган. химии. 2018. Т. 63. № 3. С. 401.
- 27. *Сергиенко В.С., Чураков А.В.* // Журн. неорган. химии. 2018. Т. 63. № 6. С. 718.
- Gerber T.I.A., Luzipo G., Mayer P. // J. Chem. Cryst. 2005. V. 35. P. 39.
- Gerber T.I.A., Perils J., Bandoli J. et al. // J. Coord. Chem. 1996. V. 39. P. 290.
- 30. Shan X., Ellern J. // Inorg. Chem. 2002. V. 41. P. 7136.
- Chattopadhyay S., Fanwick P.E., Walton R.A. // Inorg. Chem. Commun. 2003. V. 6. P. 1358.
- 32. Gatto S., Gerber I.A., Bandoli G. et al. // Inorg. Chim. Acta. 1998. V. 269. P. 235.
- 33. Lobmaier G.M., Frey G.D., Dewhurst R.D. et al. // Organomet. 2007. V. 26. P. 6290.
- Machura B., Wolff M., Pencala M. // Polyhedron. 2012. V. 44. P. 156.
- Machura B., Kruszzynski R. // Polyhedron. 2007. V. 26. P. 3686.
- Delofire A., Halut S., Salles L. et al. // J. Chem. Soc., Dalton Trans. 1999. P. 2897.
- Machura B., Wolff M., Benoist E. et al. // Dalton Trans. 2013. V. 42. P. 8827.
- Machura B., Kusz J., Tabak D., Kruszynski R. // Polyhedron. 2009. V. 28. P. 493.
- Gerber T.I.A., Luzipo D., Mayer P. // J. Coord. Chem. 2004. V. 57. P. 1419.
- 40. *Bandoli G., Dolmella A., Gerber T.I.A. et al //* J. Coord. Chem. 2000. V. 55. P. 823.
- 41. *Melian C., Dolmella A., Gerber T.I.A. et al.* // Inorg. Chim. Acta. 2000. V. 306. P. 70.
- 42. Chen X., Femia F.J., Babich J.W., Zubieta J. // Inorg. Chim. Acta. 2000. V. 308. P. 80.
- 43. Bandoli G., Gatto S., Gerber T.I.A. et al. // J. Coord. Chem. 1996. V. 39. P. 299.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 3 2019