= КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ =

УДК 548.736

СИНТЕЗ И СТРОЕНИЕ РЬUO2(СН2С(СН3)СОО)4

© 2019 г. Л. Б. Сережкина^{1, *}, М. С. Григорьев², Н. А. Шимин¹, В. Н. Сережкин¹

¹Самарский национальный исследовательский университет им. акад. С.П. Королева, Россия, 443086 Самара, Московское шоссе, 34

²Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Россия, 119071 Москва, Ленинский пр-т, 31, корп. 4

*e-mail: lserezh@samsu.ru

Поступила в редакцию 12.03.2018 г. После доработки 06.08.2018 г. Принята к публикации 15.08.2018 г.

Синтезировано, рентгеноструктурно и ИК-спектроскопически исследовано новое соединение $PbUO_2(mac)_4$, где mac – метакрилат-ион $CH_2C(CH_3)COO^-$. В экваториальной плоскости пентагональных бипирамид UO_7 содержатся атомы кислорода четырех анионов, три из которых координированы к ионам уранила монодентатно, а один – бидентатно, образуя одноядерные комплексы $[UO_2(mac)_4]^{2-}$. Каждый ион свинца связан с 8 атомами кислорода пяти метакрилат-ионов из трех таких комплексов. В результате ионы свинца соединяют урансодержащие комплексы в электронейтральные цепочки [PbUO₂(mac)₄], которые являются основной структурной единицей кристаллов. Разная кристаллоструктурная роль четырех кристаллографически неэквивалентных метакрилатионов определяет кристаллохимическую формулу цепочек как A'AB⁰¹B¹¹(B²¹)₂, где A' = Pb²⁺, A = UO_2^{2+} , B⁰¹, B¹¹ и B²¹ = mac. Связывание цепочек в каркас происходит за счет системы водородных связей. Рассмотрено влияние природы катионов R²⁺ на строение метакрилатоуранилатов.

Ключевые слова: соединения уранила, метакрилаты, рентгеноструктурный анализ **DOI:** 10.1134/S0044457X19030176

введение

Одноядерные комплексы $[UO_2(L)_3]^-$, где L^- – анион одноосновной карбоновой кислоты, являются одним из наиболее известных типов комплексов U(VI) [1, 2]. В таких комплексах атомы урана, входящие в состав практически линейных ионов уранила (UO_2^{2+}) , связаны в экваториальной плоскости с атомами кислорода трех бидентатных карбоксилат-ионов L и образуют координационные полиэдры в виде гексагональной бипирамиды UO₂O₆. В структурах большинства кристаллов, содержащих комплексы [UO₂(L)₃]⁻, в качестве L выступают анионы насыщенных алифатических карбоновых кислот (уксусной, пропионовой и др.), а роль противоинов R^{Z+} обычно играют одно- или двухзарядные органические или неорганические катионы. Отметим, что указанные комплексы [UO₂(L)₃]⁻ присутствуют в структурах кристаллов даже в тех случаях, когда в составе соединений отношение $L: UO_2^{2+} > 3$. Примерами такого рода могут служить $PbUO_2(L)_4$.

 \cdot 3H₂O [3] и Cr₃UO₂(L)₉O \cdot 6H₂O, где L – ацетат-ион [4].

Комплексы уранила с анионами ненысыщенных алифатических одноосновных карбоновых кислот (акриловой и метакриловой) стали изучаться только в последние годы [5–10]. Во всех охарактеризованных к настоящему времени структурах кристаллов акрилатоуранилатов или метакрилатоуранилатов с одно- или двухзарядными катионами металлов [8, 9] также содержатся комплексы состава $[UO_2(L)_3]^-$ с гексагонально-бипирамидальным окружением атома урана и кристаллохимической формулой AB_3^{01} . При исследовании системы $Pb^{2+}-UO_2^{2+}-mac^--H_2O$ (Hmac – метакриловая кислота, $CH_2C(CH_3)COOH$) нами было синтезировано соелинение $PbUO_2(CH_2C(CH_3)COO)_4$ (I), в котором на один ион уранила приходятся четыре метакрилатиона. Цель данной работы – исследование особенностей строения I методами рентгеноструктурного анализа и ИК-спектроскопии.

Сингония, пр. гр., Z	Триклинная, <i>P</i> 1, 2
<i>a</i> , Å	8.8492(2)
b, Å	11.0952(3)
<i>c</i> , Å	11.9392(3)
α, град	85.480(1)
β, град	74.844(1)
ү, град	69.905(1)
V, Å ³	1062.50(5)
ρ _x , г/см ³	2.555
μ, мм ⁻¹	15.571
Температура, К	100(2)
Излучение, λ, Å	$MoK_{\alpha}, 0.71073$
Размер кристалла, мм	$0.32 \times 0.28 \times 0.18$
θ _{max} , град	35.00
Область <i>h</i> , <i>k</i> , <i>l</i>	$-14 \le h \le 13,$ $-17 \le k \le 17,$ $-19 \le l \le 18$
Число отражений:	
измеренных/независимых (N_1),	22483/9270,
R_{int} / c $I \ge 1.96 \sigma(I) (N_2)$	0.0358/7108
Число уточняемых параметров	275

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры $PbUO_2(mac)_4$

0.0319 *R*₁ по N₂ wR_2 по N_1 0.0650 S 0.991 Остаточная электронная -3.897/1.549плотность (min/max), $e/Å^3$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Трудности синтеза метакрилатных комплексов обусловлены склонностью метакриловой кислоты к быстрой и необратимой полимеризации, которую инициируют дневной свет и присутствие катиона уранила [11]. Поэтому синтез соединения проводили в сосудах, окрашенных в черный цвет. Навеску оксида свинца(II) (0.32 г, 0.7 ммоль) растворяли в водном растворе Нтас (0.96 г, 5.6 ммоль), к которому затем добавляли навеску UO₃ · 2H₂O (0.22 г, 0.35 ммоль). Исходные мольные соотношения $UO_3 \cdot 2H_2O$: PbO : : Нтас равны 1 : 2 : 16. Водородный показатель полученного раствора составил 4. Раствор оставляли при комнатной температуре для изотермического испарения. Через 4-5 сут выпадали желтые кристаллы состава PbUO₂(mac)₄ (I) (найдено, %: U – 28.8; вычислено – 28.57, выход 54%). По данным рентгенофазового анализа (ДРОН-3, Cu- K_{α} -излучение), продукт прокаливания I до 850°C представлял собой PbUO₄, кристаллографические характеристики которого практически совпадали с данными [12]. Экспериментально установленная потеря массы (39.2%), отвечающая превращению I \rightarrow PbUO₄, хорошо согласуется с теоретическим значением (38.90%).

Рентгенодифракционный эксперимент проведен на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker KAPPA АРЕХ II. Параметры элементарной ячейки уточнены по всему массиву данных [13]. В экспериментально определенные значения интенсивности рефлексов внесены поправки на поглошение с использованием программы SADABS [14]. Структура расшифрована прямым методом (SHELXS97 [15]) и уточнена полноматричным методом наименьших квадратов (SHELXL-2014 [16]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов, кроме атомов С(17)-С(20) второй ориентации (с заселенностью 0.309) одного разупорядоченного метакрилат-иона. На рисунках и в таблицах приведены данные только для атомов С(13)–С(16) такого метакрилат-иона с большей заселенностью (0.691). Атомы Н метакрилат-ионов размещены в геометрически вычисленных позициях с изотропными температурными параметрами, равными $1.2U_{3KB}(C)$ для групп CH_2 и $1.5U_{3KB}(C)$ для групп CH₃.

Параметры эксперимента и окончательные значения фактора недостоверности приведены в табл. 1, основные геометрические параметры структуры – в табл. 2. Координационные числа атомов рассчитаны с помощью метода пересекающихся сфер [17]. Координаты атомов и величины температурных параметров депонированы в Кембриджском центре кристаллографических данных ССDС № 1818937.

ИК-спектр был записан при комнатной температуре в диапазоне 400-4000 см⁻¹ на ИК-Фурьеспектрометре ФТ-801. Образцы готовили прессованием таблеток с KBr.

РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

Координационный полиэдр (КП) атома урана пентагональная бипирамида UO_2O_5 (рис. 1), в аксиальных позициях которой находятся два атома кислорода, образующих с атомом урана практически линейную и равноплечную уранильную группировку (угол OUO равен 178.13°, расстояния U–O – 1.766(3) Å). В экваториальной плоскости находятся пять атомов кислорода, два из которых принадлежат одному метакрилат-иону, координированному к урану бидентатно (тип координации В⁰¹, обозначения приведены в соответствии с [18]). Три других атома кислорода принадлежат трем метакрилат-ионам, связанным с атомом урана монодентатно (тип координации M¹).

		1 10 01	2× / T	
Связь *	d, Å	Ω, % **	Угол	ω, град
	Пент	агональная бипира	мида UO ₇	
U-O(1)	1.766(3)	21.4	O(1)UO(2)	178.13(13)
U–O(2)	1.766(3)	21.7	O(1)UO(3)	91.40(13)
U-O(3)	2.405(3)	10.6	O(1)UO(4)	91.57(12)
U-O(4)	2.414(3)	10.2	O(1)UO(5)	87.56(13)
U-O(5)	2.337(3)	12.1	O(1)UO(7)	88.01(12)
U-O(7)	2.381(3)	11.4	O(1)UO(9)	89.18(13)
U-O(9)	2.338(3)	12.6		
		КП PbO ₈	'	
Pb-O(5)	2.795(3)	7.6	O(5)Pb(1)O(6)	49.85(9)
Pb-O(6)	2.371(3)	13.4	O(7)Pb(1)O(8)	47.60(9)
$Pb-O(7^{a})$	2.946(3)	5.6	O(7)Pb(1)O(9)	58.09(9)
Pb-O(7)	2.926(3)	8.6	O(9)Pb(1)O(10)	45.78(9)
Pb-O(8)	2.391(3)	13.6	O(5)Pb(1)O(8)	73.99(9)
Pb-O(9)	3.074(3)	4.1	O(6)Pb(1)O(10)	80.37(10)
Pb-O(10 ^a)	2.363(3)	10.2	O(8)Pb(1)O(10)	81.75(9)
$Pb-O(10^{b})$	2.761(3)	14.3	O(6)Pb(1)O(8)	80.74(10)
	1	Метакрилат-ион	Ы	1
O(3)-C1	1.274(5)	29.2	O(3)C(1)O(4)	118.7(4)
O(4)-C1	1.266(5)	29.9	O(3)C(1)C(2)	119.9(4)
C(1)–C(2)	1.489(6)	26.0	C(1)C(2)C(4)	116.5(5)
C(2)–C(3)	1.344(7)	26.5	C(3)C(2)C(4)	124.7(5)
C(2)–C(4)	1.451(8)	19.6		
O(5)–C(5)	1.281(4)	29.4	O(5)C(5)O(6)	120.4(4)
O(6)-C(5)	1.266(5)	29.7	O(5)C(5)C(6)	119.8(4)
C(5)–C(6)	1.487(6)	25.8	C(5)C(6)C(8)	117.7(4)
C(6) - C(7)	1.379(6)	26.4	C(7)C(6)C(8)	124.4(5)
C(6) - C(8)	1.441(8)	19.8		
O(7)–C(9)	1.285(5)	29.7	O(7)C(9)O(8)	121.8(3)
O(8)–C(9)	1.248(4)	30.0	O(7)C(9)C(10)	118.8(3)
C(9) - C(10)	1.485(5)	26.0	C(9)C(10)C(11)	119.6(4)
C(10) - C(11)	1.338(5)	26.9	C(11)C(10)C(12)	123.7(4)
C(10) - C(12)	1.492(6)	19.3		
O(9)–C(13)	1.256(5)	20.2	O(9)C(13)O(10)	121.5(5)
O(10) - C(13)	1.281(6)	18.7	O(9)C(13)C(14)	120.4(5)
C(13)–C(14)	1.488(7)	19.5	C(13)C(14)C(15)	118.8(6)
C(14)–C(15)	1.325(8)	23.2	C(15)C(14)C(16)	124.3(5)
C(14) - C(16)	1.499(9)	19.2		

Таблица 2. Основные геометрические параметры структуры PbUO₂(mac)₄

* Преобразования симметрии: ^a (1 - x, 1 - y, 1 - z), ^b (x - 1, y, z).

** Ω — телесный угол, отвечающий общей грани ПВД указанных атомов, % от величины общего телесного угла 4π стерадиан.

Атом свинца окружен восемью атомами кислорода, два из которых принадлежат двум разным монодентатным метакрилат-ионам, а шесть атомов попарно принадлежат трем бидентатным метакрилат-ионам (рис. 1). В структуре кристаллов один из четырех кристаллографически неэквивалентных метакрилат-ионов (включает атом C(1)) связан только с атомом урана (тип координации B^{01}), а три других координированы одновременно и атомом урана, и атомами свинца. Метакрилатион, включающий атом C(5), координирован атомом свинца бидентатно, а атомом урана – монодентатно, реализуя тип координации B^{11} . Метакрилат-ионы, содержащие атомы C(9) и C(13),

Рис. 1. Фрагмент структуры I. Эллипсоиды температурных смещений представлены с вероятностью 50%. Атомы H изображены сферами произвольного радиуса. Для двух монодентатных по отношению к атому свинца метакрилатионов показаны только координированные атомы кислорода (O(7^a) и O(10^b)). Преобразования симметрии: ^a (1 - x, 1 - y, 1 - z), ^b (x - 1, y, z).

связаны с одним атомом свинца бидентатно, а с другим атомом свинца и одним атомом урана монодентатно. В итоге таким метакрилат-ионам отвечает тип координации B^{21} . Типы координации B^{11} и изомерные B^{21} (рис. 2) обнаружены в структуре метакрилатоуранилатов впервые. Основными структурными единицами кристаллов являются цепочки [PbUO₂(mac)₄], распространяюциеся вдоль направления [100] (рис. 3). Разная кристаллоструктурная роль четырех кристаллографически неэквивалентных метакрилат-ионов определяет кристаллохимическую формулу (**КХФ**) гетероатомных цепочек как $A'AB^{01}B^{11}(B^{21})_2$, где $A' = Pb^{2+}$, $A = UO_2^{2+}$, а B^{01} , B^{11} и $B^{21} =$ mac. Ортогональные проекции цепочки представлены на рис. 3. Связывание цепочек в каркас происходит за счет системы водородных связей (табл. 3).

Объем полиэдра Вороного–Дирихле (**ПВД**) атома урана в структуре составляет 9.1 Å³ и в пределах погрешности совпадает с установленным (9.3(2) Å³ [19]) для КП UO_n при *n* от 5 до 9. Объем

Рис. 2. Схематическое изображение типов координации метакрилат-ионов, атомы Н ионов mac⁻ не показаны.

ПВД атома Pb(II) равен 16.4 Å³ и согласуется с установленным для КП PbO₈ значением 17(1) Å³ [20]. ПВД атома свинца имеет 17 граней и сложный вид из-за наличия граней, отвечающих невалентным взаимодействиям с атомами H, O и C.

С учетом I в настоящее время установлены состав и строение пяти метакрилатоуранилатов, содержащих в своем составе катионы двухвалентных металлов R^{2+} [7, 10]. Как видно из табл. 4, в зависимости от природы атомов R кристаллы

Связь D–Н…А	<i>d</i> (D···A), Å	<i>d</i> (D–H), Å	<i>d</i> (H A), Å	Угол (D– Н…А), град	Ω(H···A), %	РГ**
C(3)–H(1)…O(2)	3.558(6)	0.95	2.75	143	11.5	0
(2-x,-y,-z)						
C(8)-H(10)…O(4)	3.458(8)	0.98	2.67	137	11.7	6
C(12)-H(15)····O(1)	3.457(6)	0.98	2.68	137	15.1	8
C(16)-H(19)····O(3)	3.224(6)	0.98	2.59	122	14.6	6
(1-x, 1-y, 1-z)						

Таблица 3. Параметры водородных связей в структуре I*

* Учтены контакты с $d(H \cdots A) < 2.8$ Å, $\Omega(H \cdots A) > 10\%$ и углом (D-H···A) > 120°. Для донорных атомов приведены преобразования симметрии.

** Межмолекулярным взаимодействиям отвечает ранг грани (РГ), равный 0, внутримолекулярным — РГ > 1. Численное значение РГ указывает минимальное число химических связей, соединяющих атомы, ПВД которых имеют общую грань.

276

Рис. 3. Две проекции цепочки PbUO₂(mac)₄: вдоль направления [100] (а) и [001] (б), для упрощения атомы H не показаны.

этих веществ принадлежат к триклинной или моноклинной сингонии. Хотя синтез всех соединений проводился в однотипных условиях из водных растворов, содержащих значительный избыток метакриловой кислоты HL (отношения HL : R и HL : U в исходных растворах равнялись 8 или 16), в кристаллах четырех полученных соединений отношение R : U : L совпадает и равно 1 : 2 : 6. Единственным исключением является комплекс I, в котором отношение R : U : L равно 1 : 1 : 4, несмотря на то, что исходное соотношение компонентов в I совпадает с использованным при синтезе II и III. Еще одной особенностью соединения I является отсутствие воды в его составе, при этом в остальных метакрилатах содержится 13 (II, III) или 14 (IV, V) молекул воды в расчете на один атом R. Следствием уникального соотношения R : U : L в I является и его необычное строение. Так, в соединениях II–V образуются характерные для атомов U(VI) одноядерные комплексы $[UO_2L_3]^-$ (L⁻ – метакрилат-ион) с KXФ AB_3^{01} (A = UO_2^{2+} , $B^{01} = L$).

СЕРЕЖКИНА и др.

Соеди-	0		КХФ	Отношение R : U : L		
нение Состав соединения	Пр. гр.	комплекса уранила	при синтезе	в кристаллах		
Ι	Pb[UO ₂ (CH ₂ C(CH ₃)COO) ₄]	<i>P</i> 1	$AB^{01}M_{3}^{1}$	2:1:16	1:1:4	
II	$Sr[UO_2(CH_2C(CH_3)COO)_3]_2 \cdot 13H_2O$	$P2_{1}/c$	AB_{3}^{01}	2:1:16	1:2:6	
III	$Ba[UO_2(CH_2C(CH_3)COO)_3]_2 \cdot 13H_2O$	<i>P</i> 1	AB_{3}^{01}	2:1:16	1:2:6	
IV	$Mg[UO_{2}(CH_{2}C(CH_{3})COO)_{3}]_{2} \cdot 14H_{2}O$	$P2_{1}/n$	AB_{3}^{01}	1 : 2: 16	1:2:6	
V	$Zn[UO_2(CH_2C(CH_3)COO)_3]_2 \cdot 14H_2O$	$P2_{1}/n$	AB_{3}^{01}	1 : 2: 16	1:2:6	

Таблица 4. Некоторые характеристики метакрилатоуранилатов двухвалентных металлов*

* L – метакрилат-ион.

Таблица 5. Некоторые параметры ионов R^{2+} в структурах метакрилатоуранилатов*

R ²⁺	R _{sd} , Å	<i>R</i> _{ион} , Å [21]	D _A , Å	КЧ атомов	Число координированных атомов кислорода		Тип координации метакрилат-иона к атомам	
				к	молекул Н ₂ О	O ^L	U	R
Mg	1.164	0.86	0	6	6	0	${ m B}^{01}$	_
Zn	1.181	0.88	0	6	6	0	\mathbf{B}^{01}	_
Sr (1)	1.538	1.40	0.048	8	6	2	\mathbf{B}^{01}	M^1
Sr(2)	1.575	1.35	0.119	7	7	0	\mathbf{B}^{01}	_
Ba(1)	1.621	1.56	0.068	8	6	2	\mathbf{B}^{01}	M^1
Ba(2)	1.676	1.56	0.026	8	8	0	\mathbf{B}^{01}	_
Pb	1.575	1.37	0.251	8	0	8	\mathbf{B}^{01}	_
							\mathbf{M}^1	B^{01}
							\mathbf{M}^1	B^{11}
							M^1	B^{11}

* *D*_A – смещение ядра атома R из центра тяжести его ПВД. О^L – атом кислорода метакрилат-иона.

Только в структуре кристаллов I образуются комплексы $[UO_2L_4]^{2-}$ с $KX\Phi AB^{01}M_3^1$, где $A = UO_2^{2+}$, B^{01} или $M^1 = L^-$ (рис. 1), в которых из четырех анионов, связанных с атомом урана, только один является бидентатным B^{01} , тогда как остальные три играют очень редкую для анионов одноосновных карбоновых кислот роль монодентатных лигандов M^1 .

Имеющиеся данные позволяют считать, что особенности строения кристаллов I обусловлены природой двухвалентного катиона. Как видно из табл. 5, в зависимости от размера иона \mathbb{R}^{2+} (ионного радиуса $R_{ион}$ [21] или радиуса сферического домена R_{sd} , объем которого совпадает с объемом соответствующего ПВД [17]) в структурах мета-крилатоуранилатов атомы R могут проявлять координационные числа (**КЧ**) 6, 7 или 8. Ионы с не-

большими радиусами (Mg, Zn) реализуют KЧ 6, а более крупные ионы (Sr, Ba, Pb) проявляют KЧ 7 или 8. При этом если не учитывать структуру I, содержащую ионы Pb²⁺, то независимо от размера ионы R²⁺ координируют от 6 до 8 молекул воды. По-видимому, отсутствие в структуре кристаллов I молекул воды в координационной сфере ионов Pb²⁺ обусловлено тем, что в их валентной оболочке имеется неподеленная электронная *E*-пара.

Как известно [20, 22, 23], надежным и убедительным кристаллохимическим признаком присутствия стереохимически активной *E*-пары в валентной оболочке некоторого атома является большое (выше 0.1 Å) смещение ядра этого атома из центра тяжести его ПВД (параметр D_A). В связи с этим отметим, что установленные для ионов Pb²⁺ в структуре I значения R_{sd} и D_A (соответ-

Таблица 6. Отнесение полос поглощения в ИК-спектре PbUO₂(mac)₄

Волновые числа, см ⁻¹ *	Отнесение
555 сл	ω(COO)
607 ср	ρ(COO)
668 сл	δ(COO)
833 сл	$v_{s}(UO_{2}^{2+})$
862 cp	ν(C-C)
923 c 945 cp	$v_{as}(UO_2^{2+})$
1012 сл	δ(CH ₃)
1237 c	δ(C-H)
1372 c	δ(CH ₂)
1415—1494 ш, с	v _s (COO)
1551 c	v _{as} (COO)
1640 cp	v(C=C)
2929 сл 2962 сл 2983 сл	v(CH)

* Примечание. с – сильная, ср – средняя, сл – слабая, ш – широкая.

ственно 1.575 и 0.25 Å) хорошо согласуются с аналогичными среднестатистическими параметрами $(R_{sd} = 1.62(7)$ Å, $D_A = 0.3(2)$ Å), которые были установлены для 683 атомов Pb(II) в координационных полиэдрах PbO_n при *n* от 3 до 12 [20]. Не обладая из-за Е-пары склонностью к координации атомов кислорода молекул воды, ионы Pb²⁺ в кристаллах I выступают в роли дополнительных координационных центров, успешно конкурирующих с ионами UO_2^{2+} за связывание атомов кислорода метакрилат-ионов. Из табл. 5 видно, что в метакрилатоуранилатах Mg и Zn все ионы \mathbb{R}^{2+} образуют аквакомплексы $R(H_2O)_6^{2+}$ и не связаны с атомами кислорода (O^L) метакрилат-ионов. В комплексах, содержащих ионы Sr^{2+} или Ba^{2+} . половина катионов образует аквакомплекы $R(H_2O)_7^{2+}$ или $R(H_2O)_8^{2+}$, тогда как другая половина катионов одновременно монодентатно координирует шесть атомов кислорода молекул воды и два атома O^L разных метакрилат-ионов. И только в метакрилатоуранилате свинца все восемь атомов кислорода координационного полиэдра PbO₈ являются атомами O^L, которые входят в состав пяти анионов. Полиэдры PbO₈ соединены между собой двумя общими ребрами в бесконечные цепочки PbO_{4/2}O_{4/1}, распространяющиеся вдоль направления [100]. В отличие от кристаллов I, в

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 3 2019

структурах всех остальных метакрилатоуранилатов координационные полиэдры RO_n (R = Mg, Zn, Sr, Ba) не связаны друг с другом.

ИК-спектр соединения согласуется с данными РСА. В ИК-спектре присутствуют полосы поглошения, отвечающие характеристическим колебаниям уранильной группировки и метакрилатионов (табл. 6). Отнесение полос колебаний проведено на основании литературных данных [24-26]. Валентное антисимметричное колебание уранильной группы проявляется в виде дублета при 923 и 945 см⁻¹. Поглощение при 1551 см⁻¹ и широкая полоса при 1494–1415 см⁻¹ отвечают антисимметричным и симметричным колебаниям метакрилатной группы соответственно. Полосы средней интенсивности при 1640 и 862 см⁻¹ обусловлены колебаниями С=С и С-С связей. В области 1372-1012 см⁻¹ проявляются деформационные колебания углерод-водородсодержащих группировок, а в интервале 668-555 см⁻¹ – деформационные колебания группы СОО.

ЗАКЛЮЧЕНИЕ

Изученная структура PbUO₂(CH₂C(CH₃)COO)₄ (I) является первым охарактеризованным примером соединения, в структуре которого метакрилат-ионы проявляют по отношению к ионам уранила сравнительно редкий для карбоксилатионов монодентатный тип координации M¹. С учетом сведений о структурах кристаллов II–V и PbUO₂(L)₄ · 3H₂O (L – ацетат-ион) [3] полученные для I данные свидетельствуют о том, что выбор типа координации карбоксилат-ионов L атомами U(VI) из спектра теоретически возможных (B⁰¹, B¹¹, B², B²¹, B³, M¹ или M² [2]) зависит также от свойств внешнесферных катионов R, компенсирующих заряд урансодержащих ацидокомплексов.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания Минобрнауки России по проекту 4.5037.2017/8.9. Рентгенодифракционный эксперимент проведен в ЦКП ФМИ ИФХЭ РАН.

СПИСОК ЛИТЕРАТУРЫ

- Loiseau T., Mihalcea I., Henry N., Volkringer C. // Coord. Chem. Rev. 2014. V. 266–267. P. 69. http://dx.org/10.1016/j.ccr.2013.08.038.
- Savchenkov A.V., Vologzhanina A.V., Pushkin D.V., Serezhkina L.B. // Eur. J. Inorg. Chem. 2018. V. 2018. № 18. P. 1869. doi 10.1002/ejic.201701318
- 3. Сережкина Л.Б., Вологжанина А.В., Клепов В.В., Сережкин В.Н. // Кристаллография. 2011. Т. 56. № 1. С. 138.

- 4. Клепов В.В., Пересыпкина Е.В., Сережкина Л.Б. и др. // Журн. неорган. химии. 2012. Т. 57. № 10. С. 1426.
- Serezhkina L.B., Grigor'ev M.S., Shimin N.A., et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 6. Р. 672. doi 10.1134/S0036023615060121 [Сережкина Л.Б., Григорьев М.С., Шимин Н.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 6. С. 746. doi 10.7868/S0044457X15060124].
- Klepov V.V., Vologzhanina A.V., Alekseev E.V. et al. // Cryst. Eng. Comm. 2016. V. 18. P. 1723. doi 10.1039/ C5CE01957E
- Klepov V.V., Serezhkina L.B., Pushkin D.V. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 118. doi 10.1002/ ejic.201501035
- Klepov V.V., Serezhkina L.B., Vologzhanina A.V. et al. // Inorg. Chem. Commun. 2014. V. 46. P. 5.
- Klepov V.V., Serezhkina L.B., Grigoriev M.S. et al. // Polyhedron. 2017. V. 133. P. 40.
- Сережкина Л.Б., Григорьев М.С., Клепов В.В., и др. // Кристаллография. 2019. № 2.
- 11. White R.B., Melvill H.W. // J. Soc. Dyers Colourists. 1949. V. 65. № 12. P. 703. doi 10.1111/j.1478-4408.1949.tb02548.x
- Cremers T.L., Eller P.G., Larson E.M. // Acta Crystallogr. 1986. V. C42. № 12. P. 1684. doi 10.1107S0108270186090947
- SAINT-Plus (Version 7.68) // Bruker AXS Inc., Madison, Wisconsin, USA. 2007.
- 14. SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- 15. *Sheldrick G.M.* // Acta Crystallogr. 2008. V. 64A. № 1. P. 112. doi 10.1107/S0108767307043930
- Sheldrick G.M. // Acta Crystallogr. 2015. V. 71C. № 1. P. 3. doi 10.1107/S2053229614024218

- Serezhkin V.N., Mikhailov Yu.N., Buslaev Yu.A. // Russ. J. Inorg. Chem. 1997. V. 42. № 12. P. 1871.
- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Crystallogr. 2009. V. 65B. № 1. P. 45. doi 10.1107/ S0108768108038846
- Serezhkin V.N., Karasev M.O., Serezhkina L.B. // Radiochem. 2013. V. 55. № 2. Р. 137. [Сережкин В.Н., Карасев М.О., Сережкина Л.Б. // Радиохимия. 2013. Т. 55. № 2. С. 97.] doi 10.1134/S106636221302001X
- 20. Pushkin D.V., Marukhnov A.V., Serezhkin V.N. // Russ. J. Inorg. Chem. 2006. V. 51. № 1. Р. 99. [Пушкин Д.В., Марухнов А.В., Сережкин В.Н. // Журн. неорган. химии. 2006. Т. 51. № 1. С. 107.] doi 10.1134/ S0036023606010165
- 21. Вайнштейн Б.К., Фридкин В.М., Инденбом В.Л. Современная кристаллография (в 4-х томах). Структура кристаллов. М.: Наука, 1979. Т. 2. С. 75.
- 22. Сережкин В.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 7. С. 1178.
- Marukhnov A.V., Pushkin D.V., Serezhkin V.N. // Russ. J. Coord. Chem. 2008. V. 34. № 8. Р. 570. [Марухнов А.В., Пушкин Д.В., Сережкин В.Н. // Коорд. химия. 2008. Т. 34. № 8. С. 577.] doi 10.1134/S1070328408080034
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A. Theory and Applications in Inorganic Chemistry. Wiley, 2009 [*Ha-камото K*. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.]
- Wu B., Lu W., Zheng X. // J. Coord. Chem. 2003. V. 56. P. 65. doi 10.1080/0095897031000065368
- 26. Zhu Y., Lu W., Chen F. // Acta Crystallogr. 2004. V. 60E. P. m1459. doi 10.1107/S1600536804022779