_ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123.2

РАСЧЕТ ФАЗОВОЙ ДИАГРАММЫ СИСТЕМЫ NaCl-RaCl₂ НА ОСНОВАНИИ АНАЛИЗА СИСТЕМ NaCl-MCl₂ (M = Ca, Sr, Ba) С ИСПОЛЬЗОВАНИЕМ УРАВНЕНИЯ ШРЕДЕРА-ЛЕ ШАТЕЛЬЕ

© 2019 г. И. К. Гаркушин^{1, *}, А. В. Бурчаков¹, У. А. Емельянова¹

 ¹Самарский государственный технический университет, Россия, 443100 Самара, ул. Молодогвардейская, 244 *e-mail: uliana_sergeeva@bk.ru Поступила в редакцию 06.03.2018 г. После доработки 28.03.2018 г. Принята к публикации 15.08.2018 г.

Выполнен прогноз фазовых равновесий в двухкомпонентной системе NaCl–RaCl₂ на основе двойных систем NaCl–MCl₂ (M = Ca, Sr, Ba). Все рассматриваемые системы эвтектического типа. Проведена обработка экспериментальных данных и получены функциональные зависимости $T_e/Z = f(Z)$ и $T_e/r = f(r)$, где T_e – температура плавления эвтектики в двухкомпонентных системах NaCl–CaCl₂, NaCl–SrCl₂ и NaCl–BaCl₂, Z – порядковый номер, а r – ионный радиус элементов Ca, Sr и Ba. Дальнейшими расчетами с помощью этих функций определена температура плавления эвтектики в системе NaCl–RaCl₂. С помощью уравнения Шредера–Ле Шателье рассчитан состав двухкомпонентной эвтектики в прогнозируемой системе, молярная энтальпия плавления RaCl₂, а также построены ветви ликвидуса системы.

Ключевые слова: фазовые равновесия, *Т*–*х*-диаграмма, эвтектика, физико-химический анализ, хлориды щелочноземельных металлов, энтальпия плавления, ионный радиус, уравнение Шредера–Ле Шателье **DOI:** 10.1134/S0044457X19030097

введение

Большое значение в неорганической и физической химии имеет прогнозирование и расчет свойств элементов, простых веществ, соединений и смесей в группах Периодической системы Д.И. Менделеева. В работах [1–3] приводятся аналитические и графические зависимости свойств от различных параметров: порядковых номеров s^1 -элементов, ионных радиусов, отношения ионных радиусов, энергий связи, энергий кристаллических решеток, ионного потенциала и т.д. Использование различных методов прогноза и моделирования фазовых равновесий многокомпонентных систем актуально в современном физико-химическом анализе [1–17].

В настоящей работе изложены результаты прогноза состава и температуры плавления эвтектики, образующейся в двухкомпонентной системе NaCl–RaCl₂, аналитическим методом, описанным в [1]. Прогнозирование фазовой диаграммы двойной системы NaCl–RaCl₂ состоит из нескольких этапов. На первом этапе проведен литературный обзор термических свойств индивидуальных веществ [18–20] и фазовых равновесий в двойных системах NaCl–MCl₂ (M = Ca, Sr, Ba)

[21, 22]. На втором этапе изучены системы NaCl– MCl₂, где M = Ca, Sr, Ba – щелочноземельные металлы (рис. 1). Все они относятся к эвтектическому типу [21, 22]. Поскольку топология фазовых диаграмм рассматриваемых систем одинакова, можно предположить, что система NaCl–RaCl₂ также относится к эвтектическому типу.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

На следующем этапе выполнено построение графиков функций $T_e/Z = f(Z)$ и $T_e/r = f(r)$ по трем точкам, которым соответствуют значения температур плавления эвтектик для систем NaCl-MCl₂ (M = Ca, Sr, Ba), значения порядкового номера Z и ионного радиуса *r* металлов Ca, Sr, Ba (рис. 2, 3). Данные для построения представлены в табл. 1 и 2. Определены искомые функциональные зависимости с помощью инструментов MO Excel:

$$T_{e}/Z = 471.35Z^{-0.835}; R = 0.9988; \sigma = 0.39;$$
 (1)

$$T_e/r = 507579r^2 - 145211r + 17112;$$

$$R = 1; \quad \sigma = 0.17;$$
(2)

где R – коэффициент корреляции, σ – среднеквадратичное отклонение.

Рис. 1. T-х-диаграммы двухкомпонентных систем: $a - NaCl-CaCl_2$, $6 - NaCl-SrCl_2$, $B - NaCl-BaCl_2$.

Таблица 1. Данные [18–21] для построения зависимости T_e/Z от порядкового номера металла (*Z*) для систем NaCl–MCl₂ (M = Ca, Sr, Ba)

Ζ	<i>T_e</i> , K	T_e/Z
20	780	39
38	839.5	22.09
56	930	16.6

Рис. 2. Зависимость отношения T_e/Z от порядкового номера щелочноземельного металла (Z), звездочкой отмечена прогнозируемая система.

Рис. 3. Зависимость отношения T_e/r от ионного радиуса металла (r), звездочкой отмечена прогнозируемая система.

Экстраполяцией функций (1) и (2) для Z = 88 и r = 0.144 нм, относящихся к хлориду радия, выявлены два значения температур плавления эвтектики в системе NaCl–RaCl₂: $T_{e1} = 987$ и $T_{e2} = 969$ K соответственно.

С помощью уравнения Шредера–Ле Шателье [23] проведен расчет мольной доли NaCl в двойной эвтектике системы NaCl–RaCl₂:

$$\ln x(\text{NaCl}) = \frac{\Delta_m H(\text{NaCl})(T_e - T_m(\text{NaCl}))}{RT_m(\text{NaCl})T_e},$$
 (3)

где x(NaCl) — мольная доля NaCl в двойной эвтектике системы NaCl—RaCl₂; $\Delta_m H(NaCl)$ — молярная энтальпия плавления NaCl, Дж/моль; $T_m(NaCl)$ — температура плавления NaCl, K; T_e температура плавления эвтектики, K; R = = 8.314 Дж/(моль K) — универсальная газовая постоянная.

Определена мольная доля NaCl в двойной эвтектике для двух значений температур T_{e1} и T_{e2} : x_1 (NaCl) = 0.757 и x_2 (NaCl) = 0.709 и рассчитана мольная доля RaCl₂ в двойной эвтектике в соот-

Таблица 2. Данные [23] для построения зависимости T_e/r от ионного радиуса металла (r) для систем NaCl-MCl₂ (M = Ca, Sr, Ba)

<i>г</i> , нм	<i>T_e</i> , K	T_e/r
0.104	780	39
0.120	839	22.09
0.138	930	16.6

Таблица 3. Температура ликвидуса и состав эвтектики в точках на линиях ликвидуса в прогнозируемой системе NaCl-RaCl₂. $T_o/Z = f(Z)$

Состав эвтектики, мол. д.		Температура		
NaCl	RaCl ₂	ликвидуса, К		
Ветвь кристаллизации NaCl				
0.757	0.243	987		
0.765	0.235	990		
0.792	0.208	1000		
0.819	0.181	1010		
0.846	0.154	1020		
0.874	0.126	1030		
0.902	0.098	1040		
0.930	0.070	1050		
0.959	0.041	1060		
0.988	0.012	1070		
1.000	0.000	1074		
Ветвь кристаллизации RaCl ₂				
0.755	0.245	987		
0.748	0.252	990		
0.700	0.300	1010		
0.645	0.355	1030		
0.583	0.417	1050		
0.513	0.487	1070		
0.434	0.566	1090		
0.345	0.655	1110		
0.247	0.753	1130		
0.139	0.861	1150		
0.019	0.981	1170		
0.000	1.000	1173		

ветствии с результатами предыдущего расчета: $x_1(\text{RaCl}_2) = 0.243; x_2(\text{RaCl}_2) = 0.291.$

На основании уравнения Шредера–Ле Шателье для RaCl₂:

$$\ln x(\text{RaCl}_2) = \frac{\Delta_m H(\text{RaCl}_2)(T_e - T_m(\text{RaCl}_2))}{RT_m(\text{RaCl}_2)T_e} \quad (4)$$

рассчитаны значения молярной энтальпии плавления этого компонента: $\Delta_m H_1(\text{RaCl}_2) =$ = 73212.77 Дж/моль и $\Delta_m H_2(\text{RaCl}_2) =$ = 57118.38 Дж/моль.

На последнем этапе построены ветви кристаллизации ж \rightleftharpoons NaCl и ж \rightleftharpoons RaCl₂ по уравнению Шредера–Ле Шателье:

$$\ln x(k)_{i} = \frac{\Delta_{m} H_{k}(T_{i} - T_{m}(k))}{R T_{m}(k) T_{i}},$$
(5)

где $\Delta_m H_k$ — молярная энтальпия плавления компонента k, кДж/моль; $T_m(k)$ — температура плавления компонента k, K; T_i — температура фигуративной точки i на линии ликвидуса ж $\rightleftharpoons k$; k —

Таблица 4. Температура ликвидуса и состав эвтектики в точках на линиях ликвидуса в прогнозируемой системе NaCl-RaCl₂. $T_e/r = f(r)$

Состав эвтектики, мол. д.		Температура		
NaCl	RaCl ₂	ликвидуса, К		
Ветвь кристаллизации NaCl				
0.709	0.291	968.6		
0.713	0.287	970		
0.739	0.261	980		
0.765	0.235	990		
0.792	0.208	1000		
0.819	0.181	1010		
0.846	0.154	1020		
0.874	0.126	1030		
0.902	0.098	1040		
0.930	0.070	1050		
0.959	0.041	1060		
1.000	0.000	1074		
Ветвь кристаллизации RaCl ₂				
0.709	0.291	968.6		
0.706	0.294	970		
0.661	0.339	990		
0.611	0.389	1010		
0.557	0.443	1030		
0.496	0.504	1050		
0.431	0.569	1070		
0.360	0.640	1090		
0.283	0.717	1110		
0.200	0.800	1130		
0.111	0.889	1150		
0.015	0.985	1170		
0.000	1.000	1173		

компонент системы (NaCl или RaCl₂ для соответствующей ветви ликвидуса).

На рис. 4 представлены рассчитанные фазовые диаграммы системы NaCl–RaCl₂, построенные по двум значениям температуры плавления эвтектики, в одной системе координат: $1 - T_{e1} = 987, 2 - T_{e2} = 969$ К.

АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ

Расчетные значения температуры и состава в точках на линиях ликвидуса, по которым проводилось построение фазовых диаграмм (рис. 4), представлены в табл. 3 и 4. Анализируя значения R и δ (уравнения (1) и (2)), приходим к выводу, что второй расчет (по экстраполяции функции $T_e/r = f(r)$) дает более надежные результаты. Следовательно, прогнозируемая эвтектика имеет следующие характеристики: $T_{e2} = 969$ К и состав $x_2(\text{NaCl}) = 0.709$ и $x_2(\text{RaCl}_2) = 0.291$ (в мол. д.).

Рассчитанные значения температуры плавления и состава двойной эвтектики дают возможность оптимизировать экспериментальное изучение системы NaCl–RaCl₂ и поиск эвтектической точки.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 3 2019

Рис. 4. *Т*-*х*-диаграмма прогнозируемой двухкомпонентной системы NaCl-RaCl₂; *1*-987, *2*-969 К.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках базовой части государственного задания Самарского государственного технического университета (проект № 4.5534.2017/8.9).

СПИСОК ЛИТЕРАТУРЫ

- Замалдинова Г.И., Парфенова С.Н., Гаркушин А.И. и др. Свойства s¹-элементов, простых веществ, галогенидов и их смесей: аналитическое описание, расчет и взаимосвязь. Самара: Самар. гос. техн. ун-т, 2010. 202 с.
- 2. Замалдинова Г.И., Гаркушин А.И., Парфенова С.Н., Гаркушин И.К. // Бутлеровские сообщения. 2012. Т. 31. № 7. С. 104.
- 3. Замалдинова Г.И., Гаркушин А.И., Парфенова С.Н., Гаркушин И.К. // Бутлеровские сообщения. 2012. Т. 31. № 7. С. 108.
- Burchakov A.V., Dvoryanova E.M., Kondratyuk I.M., Moshchenskii Yu.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. Р. 563. [Бурчаков А.В., Дворянова Е.М., Кондратюк И.М., Мощенский Ю.В. // Журн. неорган. химии. Т. 62. № 5. 2017. С. 564.]
- Wang S.L., Su X.H., Li S.S. et al. // Calphad. 2018. V. 60. P. 214.
- Chenyang Zhou, Jiaxin Cui, Cuiping Guo et al. // Calphad. 2017. V. 58. P. 138.
- Yanhui Zhang, Peter Franke, Hans Jürgen Seifert // Calphad. 2017. V. 59. P. 142.
- Tazuddin, Hemantkumar N. Aiyer, Amit Chatterjee // Calphad. 2018. V. 60. P. 116.
- Berche A., Tédenac J.C., Jund P. // Calphad. 2016. V. 125. P. 271.
- Claire A. Utton, Ioannis Papadimitriou, Hajime Kinoshita, Panos Tsakiropoulos // J. Alloys Compd. 2017. V. 717. P. 303.
- 11. Belmonte D., Ottonello G., Vetuschi Zuccolini M. // Calphad. 2017. V. 59. P. 12.

- Zlomanov V.P., Zavrazhnov A.J., Davydov A.V. // Intermetallics. 2003. V. 11. P. 1287.
- Bożena Pilarek, Beata Salamon, Jan Kapałaa // Calphad. 2014. V. 47. P. 211.
- Lutsyk V., Zelenaya A. // Solid State Sciences. 2012. V. 14. № 11–12. P. 1604.
- Lutsyk V.I., Vorob'eva V.P., Zyryanov A.M., Shodorova S.Ya. // IFAC Proceedings Volumes. 2013. V. 46. Issue 16. P. 371.
- Lutsyk V.I., Vorob'eva V.P., Sumkina O.G., Tsyngeev B.V.// IFAC Proceedings Volumes. 2013. V. 46. Issue 16. P. 365.
- 17. Кондратюк И.М. // Изв. Самарск. научн. центра РАН. Проблемы нефти и газа. 2003. Т. 1. С. 206.
- Термические константы веществ: Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1981. Вып. Х. Ч. 1. 299 с.
- Термические константы веществ: Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1979. Вып. IX. 574 с.
- Термические константы веществ. База данных. Институт теплофизики экстремальных состояний РАН Объединенного института высоких температур РАН. Химический факультет Московского государственного университета им. М.В. Ломоносова. [Электронный ресурс] URL: http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcom.html (Дата обращения 24.02.18).
- Barin Ihsan. Thermochemical data of pure substances / In collab. with Gregor Platzki. Weinheim, N.Y., Base1, Cambridge, Tokyo: VCH, 1995.
- Hattori T., Ikezawa H., Hirano R., Mochinaga J. // Nippon Kagaku Kaishi. 1982. № 6. P. 925.
- Ефимов А.И., Белорукова Л.В., Василькова И.В., Чечев В.П. Свойства неорганических соединений. Л.: Химия, 1983. С. 82, 83.
- Гаркушин И.К., Дворянова Е.М., Бурчаков А.В. Моделирование фазовых систем и фазовых равновесий. Самара: Самар. гос. техн. ун-т, 2015. Ч. 1. 176 с.