ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 3, с. 288–295

ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 546.621

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ИЗОМЕРОВ ДОПИРОВАННЫХ КЛАСТЕРОВ L₂Al₄₂ С ДОПАНТАМИ L ПЕРЕХОДНЫХ ЭЛЕМЕНТОВ ВНУТРИ И НА ПОВЕРХНОСТИ АЛЮМИНИЕВОГО КАРКАСА

© 2019 г. О. П. Чаркин^{1,} *, Н. М. Клименко²

¹Институт проблем химической физики РАН, Россия, 142432 Черноголовка Московской обл., пр-т Академика Семенова, 1 ²Московский государственный технологический университет им. М.В. Ломоносова, Россия, 119571 Москва, пр-т Вернадского, 86 *e-mail: charkin@icp ac.ru

Поступила в редакцию 25.06.2018 г. После доработки 05.07.2018 г. Принята к публикации 15.08.2018 г.

В рамках метода функционала плотности выполнены расчеты структуры и стабильности внутренних и внешних изомеров у семейства наноразмерных кластеров L_2Al_{42} с атомами допантов переходных элементов L внутри и на поверхности алюминиевого каркаса. Установлено, что для всех кластеров с L = Sc-Cu предпочтительны изомеры с допантами во внутренних (закрытых) позициях в ядре кластера. Переход допантов на поверхностные позиции и превращение их в открытые каталитические центры требуют затрат энергии ~15-25 ккал/моль. Впервые предсказана высокая стабильность и возможность существования высокоспиновых кластеров типа L_5Al_{39} с пятью допантами, расположенными в предпочтительных аксиальных и экваториальных внутренних позициях. Результаты могут быть полезными для теоретического прогнозирования и моделирования более крупных молекулярных алюминиевых сплавов с более высоким содержанием допантов L.

Ключевые слова: наноразмерные алюминиевые кластеры, допанты переходных металлов, внутренние и внешние изомеры, мультиплетность, магнетизм

DOI: 10.1134/S0044457X19030061

В последние годы была опубликована серия работ, посвященных квантово-химическим расчетам электронной и геометрической структуры, стабильности, спектроскопических и других молекулярных характеристик алюминиевых кластеров, допированных атомами других элементов [1-8]. Авторы изучали зависимость структуры и свойств нейтральных и заряженных систем от размеров и формы алюминиевых кластеров [1], исследовали каталитические свойства микросплавов переходных 3*d*-металлов в поверхностной области алюминиевого каркаса [2], моделировали механизмы реакций взаимодействия анионов борзамещенных алюминидов с молекулярным кислородом [3], активации молекулярного азота с использованием Si- и Р-допированных кластеров алюминия [4] и других процессов. В ряде работ рассчитаны поверхности потенциальной энергии и исследованы механизмы диссоциативного присоединения молекулярного водорода к алюминиевым кластерам, допированным атомом магния, 3d- и 4d-переходных металлов. Аналогичные расчеты были выполнены для реакций присоединения молекулы H_2 к Mg-допированному кластеру MgAl₁₂ [6]. Структурные особенности алюминиевых сплавов с переходными металлами изучены в [7]. В [8] бинарные кластеры LAl₁₂ исследованы методами масс-спектрометрии и фотоэлектронной спектроскопии с интерпретацией результатов в рамках концепции "суператомов".

Как правило, подобные расчеты выполняли с помощью методов теории функционала плотности (**ТФП/DFT**) и они посвящены небольшим кластерам типа LAl₁₂ с одним допантом L и икосаэдрической структурой каркаса, в которой все атомы занимают поверхностные позиции, за исключением одного – в центре икосаэдра. Недавно (см. работу [9] и библиографию в ней) DFTподход был распространен на более сложные алюминиевые кластеры C_2Al_{42} , C_6Al_{38} , $C_{12}Al_{32}$, Si_6Al_{38} , N_6Al_{38} и P_6Al_{38} с пятиатомным внутренним ядром и несколькими допантами. В этих работах прослеживаются тенденции изменения структуры и относительной стабильности внутренних и внешних изомеров (с допантами в составе внутреннего ядра и на поверхности кластера соответственно) при изменении допантов L в ряду углерод-кремний-азот-фосфор. Этот вопрос связан с общей проблемой влияния примесей и легирующих добавок на структуру и свойства наноразмерных частиц. Важно также понять, в каких случаях предпочтительным сохраняется рассеянное распределение допантов по всему объему кластера в виде разделенных атомов (ионов) и в каких при увеличении числа допантов может появиться возможность микрокластеризации допантов с образованием их ковалентно-связанных двухатомных или более сложных частиц типа [L_m]. Этот вопрос связан с проблемой поиска пограничных областей в стехиометрическом соотношении допанта и основного металла, ниже которых атомы (ионы) допантов рассеиваются стохастически и выше которых становится существенной кластеризация допанта вплоть до сегрегации компонентов.

В нашей предыдущей работе [10] выполнены DFT-расчеты изомеров допированных кластеров L₂Al₄₂, полученных из алюминиевого кластера Al44 при замещении двух его атомов Al атомами легких непереходных sp-элементов, Cu, Zn и H в различных позициях на поверхности и внутри алюминиевого каркаса. Нас интересовало, как меняется структура и относительная энергетическая стабильность внутренних и внешних изомеров при изменении допанта L вдоль второго и третьего непереходных периодов и при переходе от 2*s*2*p*-элементов к их 3*s*3*p*-аналогам. Расчеты [10] свидетельствовали, что для большинства допантов sp-элементов и атома Н предпочтительны позиции допантов либо на поверхности, либо в подповерхностном (промежуточном) пространстве, в котором допант L связан с атомами алюминия, расположенными как на поверхности, так и во внутреннем ядре каркаса. С другой стороны, для легких элементов второго периода ($L = Be \ u \ B$) и элементов конца 3d-периода (L = Cu и Zn) самыми выгодными и более предпочтительными являются внутренние позиции допантов. Результаты сравнивали с данными предыдущих DFT-расчетов изомеров кластеров LAl₁₂ с теми же допантами L [11]. Рассмотрено влияние размера алюминиевого каркаса на относительную энергетическую стабильность поверхностных и внутренних позиций допантов.

В настоящем сообщении, являющемся продолжением [10], DFT-расчеты распространены на родственные кластеры L_2Al_{42} с допантами элементов первого и второго переходных периодов (L = Sc-Ni, Zr, Mo и Pd), расположенными в позициях внутри и на поверхности каркаса. Основное внимание фокусируется на энергетических характеристиках внутренних и внешних изомеров и тенденциях их поведения при изменении допантов вдоль переходных периодов. Вопрос об относительной стабильности внутренних и внешних изомеров важен при рассмотрении каталитической активности допантов d- и f-переходных металлов, где максимальная активность соответствует открытым поверхностным позициям, в то время как во внутренних позициях допант пространственно закрыт атомами алюминия и не активен. Представляло также интерес оценить стабильность изомеров к распаду с отщеплением двух атомов допанта

$$L_2 Al_{42} \rightarrow Al_{42} + 2L + E_{\pi\mu c} \tag{1}$$

и возможность существования структур, в которых атомы допанта ассоциированы в виде двух-

атомной молекулы L_2 или иона L_2^- .

Экспериментальные исследования подобных проблем на уровне наноразмерных частиц сталкиваются с трудностями, и значительную помощь здесь могут оказать модельные квантово-химические подходы и расчеты, которые в некоторых случаях оказываются единственным источником полезной информации. Из-за приближенного характера метода DFT основное внимание уделяется не столько абсолютным значениям рассчитанных величин, сколько их относительным изменениям и тенденциям в родственных рядах кластеров L_2Al_{42} . Рассмотрение имеет модельный и предсказательный характер.

Работа состоит из нескольких частей. В первой части на примере тестовых кластеров Ti₂Al₄₂, $Ni_2Al_{42}, Zn_2Al_{42}, Zr_2Al_{42}$ и Pd_2Al_{42} оптимизированы те же восемь базовых стартовых структур, которые подробно исследовались в [10] и изображены на рис. 1. Две из них – $(\mathbf{a}_{I}^{+}, \mathbf{a}_{I}^{-})$ и $(\mathbf{e}_{0}, \mathbf{e}_{0}^{'})$ – соответ-ствуют внутренним, а остальные шесть – $(\mathbf{v}_{II}^{+}, \mathbf{v}_{II}^{-})$, $(\mathbf{v}_{I}^{+}, \mathbf{v}_{I}^{-}), (\mathbf{v}_{0}, \mathbf{v}_{0}^{'}), (\mathbf{m}_{II}^{+}, \mathbf{m}_{II}^{-}), (\mathbf{m}_{I}^{+}, \mathbf{m}_{I}^{-})$ и $(\mathbf{m}_{0}, \mathbf{m}_{0}^{'})$ – по-верхностным изомерам. (Здесь используются обозначения позиций v, m, a, e и слоев 0, I^{\pm} и II^{\pm} , принятые в [10]). Относительные энергии равновесных структур, оптимизированных в настоящей работе, приведены в табл. 1. Расчеты ставили целью выявить в каждой из этих двух групп энергетически наиболее выгодные изомеры. Показано, что для большинства рассмотренных в первой группе кластеров наиболее выгодными являются близколежащие (аксиальный и экваториальный) внутренние изомеры $(\mathbf{a}_{I}^{+}, \mathbf{a}_{I}^{-})$ и $(\mathbf{e}_{0}, \mathbf{e}_{0}^{'})$, а во второй группе — изомер $(\mathbf{m}_{I}^{+}, \mathbf{m}_{I}^{-})$ с допантами в промежуточных слоях (см. ниже).

Во второй части оба предпочтительных изомера – $(\mathbf{a}_{1}^{+}, \mathbf{a}_{1}^{-})$ и $(\mathbf{m}_{1}^{+}, \mathbf{m}_{1}^{-})$ – были оптимизированы для всей серии кластеров L₂Al₄₂ с допантами переходных металлов от Sc до Zn. Оптимизированные структуры изомеров $(\mathbf{a}_{1}^{+}, \mathbf{a}_{1}^{-})$ и $(\mathbf{m}_{1}^{+}, \mathbf{m}_{1}^{-})$ изображены на рис. 2. В табл. 2 рассмотрены тенденции по-

Рис. 1. Базисные стартовые структуры кластеров M_2Al_{42} .

ведения относительных энергий $\Delta E_{\text{отн}}$ изомеров при изменении L вдоль 3*d*-ряда. Как показали расчеты, для всех рассмотренных кластеров закрытые изомеры с допантами во внутренних позициях $\mathbf{a}_{\mathbf{I}}^+$ и \mathbf{e}_0 существенно более выгодны по сравнению с открытыми аналогами (см. ниже).

290

В третьем разделе рассчитана серия новых кластеров L_5Al_{39} с пятью допантами (L = Sc-Ni). Их оптимизированные структуры, в которых допанты заполняют все пять самых выгодных внутренних позиций (2a + 3e) в форме искаженного бипирамидального ядра (сердечника), встроенного во внутреннюю полость каркаса Al_{39} , изображены

Таблица 1. Относительные энергии $E_{\text{отн}}$ ключевых поверхностных и внутренних изомеров кластеров L(3*d*)₂Al₄₂, допированных атомами переходных металлов 3*d*-периода

Параметр	Относительная энергия, $E_{\rm orth}$, ккал/моль*										
	Ti_2Al_{42} $(S=1)$	Mn_2Al_{42} $(S=11)$	Ni_2Al_{42} $(S=1)$	Zn_2Al_{42} $(S=1)$	Zr_2Al_{42} $(S=1)$	Pd_2Al_{42} $(S=1)$					
$(\mathbf{v}_{\mathrm{II}}^{+},\mathbf{v}_{\mathrm{II}}^{-})$	47	34	35	29	40	9					
$(\mathbf{v}_{\mathbf{I}}^+, \mathbf{v}_{\mathbf{I}}^-)$	30	36	46	24	29	18					
$(\mathbf{v}_0, \mathbf{v}_0')$	26	44	42	14	14	0					
$(\mathbf{m}_{\mathrm{II}}^{+},\mathbf{m}_{\mathrm{II}}^{-})$	26	19	55	22	24	16					
$(\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-})$	15	8	~41	10	0						
$(\mathbf{m}_0, \mathbf{m}_0')$	23	10	47	11	20						
(a_{I}^{+}, a_{I}^{-})	2	0	0	0	9	0					
(e_0, e'_0)	0	35	16	4	0						

* Расчеты $E_{\text{отн}}$ выполнены в приближении B3LYP/6-31G* при геометрии, оптимизированной на уровне B3LYP/6-31G для наиболее выгодных высокоспинового состояния у изомеров $\text{Mn}_2\text{Al}_{42}$ (S = 11) и синглетных состояний у остальных кластеров. За начало отсчета выбраны энергии наиболее выгодных внутренних изомеров ($\mathbf{a}_{I}^+, \mathbf{a}_{I}^-$) и ($\mathbf{e}_0, \mathbf{e}_0'$).

Рис. 2. Оптимизированные структуры наиболее выгодных внутреннего $(\mathbf{a}_{I}^{+}, \mathbf{a}_{I}^{-})$ и поверхностного $(\mathbf{m}_{I}^{+}, \mathbf{m}_{I}^{-})$ изомеров кластеров L₂Al₄₂.

на рис. 3. Согласно расчетам, этому изомеру отвечает самая низкая полная энергия $E_{\text{полн}}$ у всех кластеров L₅Al₃₉ с допантами переходных металлов. В табл. 3 приведены относительные энергии низколежащих мультиплетов и спиновые плотности на сердечнике $\rho(L_5)$ и каркасе $\rho(Al_{39})$, рассчитанные для систем с разными допантами L.

Все расчеты кластеров с допантами 3*d*-элементов выполнены с помощью программы GAUSS-IAN-09 [12] в рамках приближения B3LYP [13, 14]

Параметр*	$Al_{42}Ti_2$ $(S=5)$		$Al_{42}V_2$ $(S=7)$		$Al_{42}Cr_2$ $(S=9)$		$Al_{42}Mn_2$ $(S=11)$		$Al_{42}Fe_2$ (S=9)		$Al_{42}Co_2$ $(S = 7)$		Al ₄₂ Ni ₂ **	
	$\mathbf{a}_{\mathbf{I}}^{+},\mathbf{a}_{\mathbf{I}}^{-}$	$\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-}$	$a_{\rm I}^+, a_{\rm I}^-$	$\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-}$	a_{I}^{+},a_{I}^{-}	$\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-}$	$\mathbf{a}_{\mathbf{I}}^{+},\mathbf{a}_{\mathbf{I}}^{-}$	$\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-}$	a_{I}^{+},a_{I}^{-}	$\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-}$	$a_{\rm I}^+, a_{\rm I}^-$	$\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-}$	$\mathbf{a}_{\mathrm{I}}^{+},\mathbf{a}_{\mathrm{I}}^{-}$	$\mathbf{m}_{\mathrm{I}}^{+},\mathbf{m}_{\mathrm{I}}^{-}$
R(LL)	4.53	4.51	4.50	4.53	4.53	4.48	4.38	4.72	4.26	4.31	4.44	4.12	4.04	3.96
v(LL)	353		360		378		385		387		403		390	
ρ(2L)	2.6	3.4	5.8	6.2	7.6	9.0	9.0	9.6	6.4	7.2	2.6	4.2	0.2	2.0
$\rho(Al_{42})$	1.4	0.6	0.5	-0.2	0.4	-1.1	1.1	0.3	1.5	0.7	3.5	1.7	3.8	2.0
E _{oth}	0	12.5	0	22.0	0	14.0	0	3.8	0	23.2	0	20.7	0	41
<i>E</i> _{дис} (1)	64.6		62.7		80.9		-10		41.4		69.7		~100	

Таблица 2. Рассчитанные характеристики низших внутреннего и поверхностного изомеров алюминиевых кластеров L₂Al₄₂, допированных атомами элементов 3*d*-периода, ккал/моль

* Расстояние между допантами R(LL) и частота колебания v(LL) выражены в Å и см⁻¹ соответственно. $\rho(L)$ – спиновая плотность на атоме допанта, а $\rho(Al_{42})$ – суммарная спиновая плотность алюминиевого каркаса Al_{42} (в долях e). $E_{\text{отн}}$ – относитель-

ные энергии изомеров $\mathbf{a}_{\mathbf{I}}^+, \mathbf{a}_{\mathbf{I}}^-$ и $\mathbf{m}_{\mathbf{I}}^+, \mathbf{m}_{\mathbf{I}}^-; E_{\text{дис}}(1)$ – энергия распада допированного кластера по схеме $L_2Al_{42} \rightarrow Al_{42} + 2L$, приходящаяся на один атом L. Энергии $E_{\text{отн}}$ и $E_{\text{дис}}(1)$ выражены в ккал/моль. ** У кластера $Al_{42}Ni_2$ предпочтительный синглет и соседние триплет и квинтет расположены тесной группой в пределах нескольких ккал/моль.

Рис. 3. Оптимизированные структуры кластеров $L_5@Al_{39}$ с бипирамидальным магнитным сердечником L_5 внутри алюминиевого каркаса Al_{39} .

с базисами 6-31G (оптимизация геометрии и расчеты частот колебаний) и 6-31G* (повторная оптимизация геометрии и расчет энергетических характеристик). В расчетах кластеров с допантами 4*d*-элементов использовали смешанный базис Gen = LANL2DZ(L) + 6-31G(Al).

Отметим, что расчеты кластеров с участием атомов *d*-металлов с открытыми оболочками могут представлять сложную задачу из-за высокой плотности и пересечений низколежащих термов с различной мультиплетностью, из-за присутствия термов с одинаковой мультиплетностью, но с разным распределением электронной и спиновой плотности, из-за многодетерминантного характера волновых функций и др. Здесь мы ограничились оптимизацией высокоспиновых мультиплетов с $S = S_{\text{max}}$ и расчетом вертикальных состояний с мультплетностями $S = S_{\text{max}} - 2$, $S_{\text{max}} - 4$, $S_{\text{max}} - 6$ и т.д. при геометрии, оптимизированной для S = $= S_{\text{max}}$. В рамках приближения B3LYP высокоспиновые состояния ($S = S_{\text{max}}$) с однотерминантными функциями должны описываться точнее, чем

Кластер	Спин,	$\Delta E_{\text{отн}},$	$\rho(L_5),$	ρ(Al ₃₉),	Кластер	Спин,	$\Delta E_{\text{отн}},$	$\rho(L_5),$	ρ(Al ₃₉)
L ₅ @Al ₃₉	S	ккал/моль	е	е	$L_5@Al_{39}$	S	ккал/моль	е	е
Sc ₅ @Al ₃₉	1	0	-	_	Fe ₅ @Al ₃₉	16	0	14.3	0.7
	3	5.3	0.7	1.3		12	14.9	13.8	-2.8
	5	12.9	1.3	2.7		8	38.0	13.6	-6.6
Ti ₅ @Al ₃₉	6	0	2.8	2.2	Co ₅ @Al ₃₉	11	0	8.5	1.5
	4	0.6	2.0	1.0		7	17.7	7.4	-1.4
	2	2.4	1.5	-1.5		3	26.4	2.1	-0.1
V ₅ @Al ₃₉	11	0	7.4	2.6	Ni ₅ @Al ₃₉	2	0	0.7	0.3
	7	2.3	3.9	2.1		4	8.7	0.7	2.3
	3	16.9	2.4	-0.4		6	16.1	1.7	3.3
Cr ₅ @Al ₃₉	16	0	17.7	-2.7	Cu ₅ @Al ₃₉	1	0	_	_
	12	18.8	17.0	-6.0		3	11.7	0.3	1.7
	8	51.8	16.1	-9.1		5	30.0	0.5	3.5
Mn ₅ @Al ₃₉	21	0	21.6	-1.6	Zn ₅ @All ₃₉	2	0	0.1	0.9
	17	10.9	20.0	-4.0		4	10.1	0.4	2.6
	13	33.6	19.3	-7.3		6	27.1	0.5	4.5

Таблица 3. Относительные энергии $\Delta E_{\text{отн}}$ (в ккал/моль) и распределение спиновой плотности ρ между сердечником L₅ и каркасом Al₃₉ (в долях *e*) у низколежащих мультиплетов кластеров L₅@Al₃₉ (1)*

* У систем с допантами L = Sc, Ni, Cu и Zn данные приведены для предпочтительных низкоспиновых, а у остальных кластеров – для предпочтительных высокоспиновых мультиплетов.

низкоспиновые, и в настоящей работе основное внимание концентрировалось на относительных изменениях рассчитанных величин в рядах родственных систем.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изомерия кластеров Ti_2Al_{42} , Mn_2Al_{42} , Ni_2Al_{42} , $\mathbf{Zr}_{2}\mathbf{Al}_{42}$ и $\mathbf{Pd}_{2}\mathbf{Al}_{42}$. Из табл. 1 следует, что в рамках приближения B3LYP/6-31G* кластерам Ti₂Al₄₂ и Mn₂Al₄₂ отвечают наиболее выгодные высокоспиновые состояния с мультиплетностями $S_{\text{max}} = 5$ и 11. Рядом с ними (в пределах 5-8 и 7-12 ккал/моль) располагаются состояния с более низкими значениями S = 3 и 1, 9 и 7 соответственно. У Ni₂Al₄₂ различия в энергиях синглета, триплета и квинтета не превышают ~5 ккал/моль, причем синглет и триплет практически вырождены. У состояний кластеров Ti_2Al_{42} и Mn_2Al_{42} с S_{max} спиновые плотности на атомах 3*d*-металлов варьируют в пределах ~1.3-1.6 и ~4.5-4.8 е соответственно. На качественном уровне они ближе всего соответствуют двухвалентному состоянию атомов титана и марганца, где они сохраняют два и пять неспаренных электронов с параллельными спинами. С другой стороны, в триплетном состоянии Ni_2Al_{42} спиновая плотность $\rho(Ni)$ не превышает десятых долей е, так что состояние атомов никеля в этом кластере близко к нульвалентному.

При уменьшении суммарной мультиплетности кластера, например при переходе от $S_{\text{max}} = 11$ к S = 9, 7 и 5 у $\text{Mn}_2\text{Al}_{42}$ (табл. 2), спиновая плотность допанта $\rho(Mn)$ уменьшается медленно и не опускается ниже 4.3–4.5 *е*. Этот результат свидетельствует о том, что уменьшение *S* связано в основном с перераспределением спиновой плотности каркаса $\rho(Al_{42})$. При этом спины допантов, с одной стороны, и спины каркаса Al_{42} – с другой, могут иметь противоположное направление (антиферромагнитный эффект) и частично компенсировать друг друга. Похожая картина имеет место при возбуждении термов у внутреннего изомера Ni₂Al₄₂ (a_1^+, a_1^-). В этом случае спиновая

плотность $\rho(Ni)$ остается малой как в триплетном (0.07 *e*), так и в квинтетном (0.18 *e*) состоянии, так что увеличение мультиплетности *S* этого кластера почти целиком связано с увеличением спиновой плотности каркаса $\rho(Al_{42})$.

Из табл. 1 следует, что для всех тестовых кластеров явно предпочтительными являются внутренние изомеры с допантами в аксиальных $(\mathbf{a}_{1}^{+}, \mathbf{a}_{1}^{-})$ и экваториальных $(\mathbf{e}, \mathbf{e}')$ позициях ядра. У $Ti_{2}Al_{42}$ эти изомеры близки друг к другу в пределах нескольких ккал/моль, а у $Mn_{2}Al_{42}$ и $Ni_{2}Al_{42}$ экваториальный изомер значительно менее выгоден, чем аксиальный. Среди поверхностных изомеров предпочтительна структура $\mathbf{m}_{1}^{+}, \mathbf{m}_{1}^{-}$, но и она остается на ~15 ($Ti_{2}Al_{42}$), ~8 ($Mn_{2}Al_{42}$) и ~41 ($Ni_{2}Al_{42}$) ккал/моль менее выгодной, чем $\mathbf{a}_{1}^{+}, \mathbf{a}_{1}^{-}$. Аналогичный резуль-

менее выгоднои, чем \mathbf{a}_{1} , \mathbf{a}_{1} . Аналогичный результат получен в расчетах кластеров $Cu_{2}Al_{42}$ и $Zn_{2}Al_{42}$, у которых внутренний изомер выгоднее поверхностного на ~25 и ~22 ккал/моль [10].

В отличие от систем L_2Al_{42} с допантами 3*d*-элементов, для аналогов с допантами 4*d*-элементов (в табл. 1 приведены данные расчетов для кластеров Zr_2Al_{42} и Pd_2Al_{42}) предпочтительны низкоспиновые (синглетные) состояния. Возбуждение ближайших триплетных и квинтетных состояний из основного синглетного связано с затратами энергии ~4-6 и ~10-12 ккал/моль соответственно.

Сравнение внутреннего (a_{I}^{+}, a_{I}^{-}) и поверхностного (m_{I}^{+}, m_{I}^{-}) изомеров кластеров L_2Al_{42} (L = Ti–Ni). Рассмотрим тенденции поведения энергетических, структурных и электронных характеристик низших внутреннего и поверхностного изомеров у высокоспиновых кластеров L_2Al_{42} при изменении допанта вдоль 3*d*-периода.

Анализ относительных энергий ($E_{\text{отн}}$, табл. 2) показывает, что для всего семейства этих кластеров наиболее выгодны аксиальный и близко расположенный экваториальный внутренние изоме-

ры $\mathbf{a}_{\mathbf{I}}^+, \mathbf{a}_{\mathbf{I}}^-$ и $\mathbf{e}_{\mathbf{O}}, \mathbf{e}_{\mathbf{O}}$, в которых оба допанта полностью экранированы соседними поверхностными атомами алюминия. Ближайший изомер с допан-

тами в открытых поверхностных позициях $\mathbf{m}_{\mathbf{I}}^{+}, \mathbf{m}_{\mathbf{I}}^{-}$ лежит выше на ~13-23 ккал/моль, а остальные поверхностные структуры еще менее выгодны. Во всех случаях перемещение (промотирование) допантов из закрытых внутренних на открытые (каталитически активные) поверхностные позиции должно быть связано с существенными затратами энергии.

Энергии Е_{лис} распада по схеме

$$L_2Al_{42}(\mathbf{a}_{\mathbf{I}}^+, \mathbf{a}_{\mathbf{I}}^-) \to Al_{42} + 2L, \tag{1}$$

приходящиеся на один атом допанта, в большинстве случаев значительны (~60-80 кал/моль), что свидетельствует о высокой энергетической стабильности и о возможности существования в свободном состоянии кластеров L_2Al_{42} с допантами Ti, V, Cr, Co и Ni. Исключение составляет кластер Mn₂Al₄₂, у которого энергия $E_{дис}$ отрицательна. Согласно расчетам, наиболее стабильными должны быть кластеры с допантами хрома и никеля, а наименее стабильным – кластер Fe₂Al₄₂.

Из табл. 2 видно, что расстояния R(LL) между допантами у обоих изомеров варьируют в пределах ~4.0-4.5 Å и имеют тенденцию к уменьшению с увеличением порядкового номера атома М и его атомного радиуса. Из анализа спиновой плотности ρ следует, что допанты V, Cr и Mn в кластерах сохраняют ~3, ~4 и ~5 неспаренных электронов с параллельными спинами, а плотность алюминиевого каркаса $\rho(Al_{42})$ при этом не превышает 0.5-1.1 *е*. В конце 3*d*-периода плотность $\rho(Al_{42})$ увеличивается до ~3.8 *е*, свидетельствуя, в частности, о том, что у внутреннего изомера $\mathbf{a}_{I}^{+}, \mathbf{a}_{I}^{-}$ кластера $Ni_{2}Al_{42}$ в квинтетном состоянии (S = 5) спиновая плотность практически полностью локализуется на алюминиевом каркасе, а атомы никеля остаются близкими к нульвалентным.

Помимо структур, изображенных на рис. 2, нами была рассчитана серия поверхностных изомеров с двумя соседними атомами L, которые располагаются на общих ребрах каркаса и могут играть роль двухцентровых каталитических центров. Их подробное рассмотрение будет дано позднее при изучении механизмов присоединения к ним молекул Н₂ и углеводородов к "активным" ребрам Ті-Ті, Ni-Ni и др. Здесь важен вывод, что все изомеры L2Al42 с допантами на общем ребре менее выгодны по сравнению с внутренним изомером $\mathbf{a}_{I}^{+}, \mathbf{a}_{I}^{-}$ на 20-35 ккал/моль. Аксиальные и экваториальные позиции а и е внутреннего ядра остаются предпочтительными у всех рассмотренных выше соединений.

Кластеры L₅@Al₃₉. В заключение мы рассчитали структуру и свойства еще одного семейства кластеров типа L₅@Al₃₉ с пятью атомами переходных металлов, которые занимают самые выгодные позиции $(2\mathbf{a} + 3\mathbf{e})$ и образуют бипирамидальный сердечник L₅, встроенный во внутреннюю полость каркаса Al₃₉ (рис. 3). В табл. 3 сравниваются относительные энергии $\Delta E_{\text{отн}}$ низших мультиплетов кластеров L₅@Al₃₉, а также суммарные спиновые плотности на внутреннем сердечнике $\rho(L_5)$ и алюминиевом каркасе $\rho(Al_{39})$. Из табл. 3 видно, что в зависимости от положения атома L в 3*d*-ряду сердечники L₅ претерпевают деформации со значительными изменениями валентных углов и расстояний *R*(LL) (по сравнению с параметрами свободных кластеров L_5 , рассчитанных нами в том же приближении). В частности, при изменении L вдоль периода аксиальное расстояние R(L_a, L_a) удлиняется от ~4.8 у Ti₅ до ~5.2 Å у Cr₅ и далее монотонно укорачивается до ~4.1 Å у Cu₅, вновь увеличиваясь до ~4.4 Å у Zn₅.

Подобно L_2Al_{42} , для кластеров $L_5@Al_{39}$ с атомами L, стоящими в начале и в конце 3d-периода, предпочтительны низкоспиновые состояния (синглет для $L_5 = Sc_5$ и Cu₅ и дублет для $L_5 = Ni_5$). Для кластеров с атомами L в середине периода наиболее выгодны высокоспиновые состояния. У последних соединений (с L в середине периода) при последовательном уменьшении мультиплетности кластера от $S_{max} \times S_{max} - 2$, $S_{max} - 4$ и т.д. спиновая плотность сердечников $\rho(L_5)$ меняется сравнительно слабо. Так, при изменении мультиплетности кластера $Cr_5@Al_{39}$ в интервале S == 12–16 плотность $\rho(Cr_5)$ сохраняется на уровне 17.0–17.7 *е*. У кластера Fe₅@Al₃₉ при уменьшении S от16 до 8 плотность $\rho(Fe_5)$ остается в интервале 13.6—14.3 e. Аналогичная картина наблюдается для $\rho(Co_5)$, и в рамках приближенной модели можно полагать, что в этих мультиплетах у атомов Cr, Fe и Co в сердечниках L₅ сохраняется по 4, 3 и 2 неспаренных электрона с параллельными спинами, а атомы Ni находятся в нульвалентном состоянии. У кластеров с допантами Ti₅ и V₅ имеются группы из нескольких низколежаших и близких по энергии мультиплетов (табл. 3).

Особый интерес представляет самый высокоспиновый кластер Mn₅@Al₃₉, у которого в интервале S = 17 - 21 плотность $\rho(Mn_5)$ сохраняется в пределах ~20-21.6 *е*, что соответствует числу неспаренных электронов у каждого атома Мп, промежуточному между 4 и 5. Ступенчатое уменьшение суммарного спина кластера Mn₅@Al₃₉ в интервале S = 17 - 21 определяется соответствующим увеличением плотности на каркасе $\rho(Al_{30})$ с противоположным знаком (антиферромагнитный эффект). Кластер Mn₅@Al₃₉ может рассматриваться как простейший молекулярный магнит с высоким магнитным моментом и быть полезным при моделировании родственных наноразмерных частиц с более крупными магнитными сердечниками и более высокими магнитными моментами.

Отметим, что, согласно расчетам, у кластеров $L_5@Al_{39}$ с допантами атомов 4d-элементов наиболее выгодными оказываются низкоспиновые состояния и возбуждение уровней с более высокой мультиплетностью связано с затратами энергии. Аналогичная картина отмечалась выше для кластеров Zr_2Al_{42} и Pd_2Al_{44} (табл. 1), где энергии возбуждения триплета и квинтета из синглета лежат в умеренных границах ~5–12 ккал/моль, а высокоспиновые термы явно невыгодны.

Можно полагать, что результаты расчетов и выводы, полученные для систем L_2Al_{42} и L_5Al_{39} , могут быть полезными при распространении DFT-подхо-

дов на более крупные наноразмерные кластеры с более высоким содержанием допантов.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках госзадания № 0089-2014-0030 при поддержке РФФИ (№ 18-03-01156а).

СПИСОК ЛИТЕРАТУРЫ

- Jimmenes-Iszal E., Moreno D., Mercero J.M. et al. // J. Phys. Chem. A. 2014. V. 118. P. 4309.
- Zheng M.M., Li S.J., Su Y., Kawazoe Y. // J. Phys. Chem. A. 2013. V. 117. P. 25077.
- Costanzo E., van Hemert M.C., Kroes G-J. // J. Phys. Chem. C. 2014. V. 118. P. 513.
- Smith J.C., Reber A.C., Khana S.N., Castleman J. // J. Phys. Chem. A. 2014. V. 118. P. 8485.
- Das S., Pal S., Krishnamurty S. // J. Phys. Chem. C. 2014. V. 118. P. 19869.
- Varano A., Henry D.J., Yarovsky I. // J. Phys. Chem. C. 2014. V. 118. P. 19865.
- 7. *Brodova I.G., Shirinkina I.G., Petrova A.N.* // Lett. Mat. 2011. V. 1. № 1. P. 32.
- Akutsu M., Koyashi K., Atobe J. et al. // J. Phys. Chem. A. 2007. V. 110. № 7. P. 12073. doi 10.1021/jp065161p
- 9. *Charkin O.P., Klimenko N.M.* // Russ. J. Inorg. Chem. 2015. V. 60. № 5. Р. 577. doi 10.1134/S0036023615050034 [Чаркин О.П., Клименко Н.М. // Журн. неорган. химии. 2015. Т. 60. С. 644.]
- 10. *Charkin O.P., Klimenko N.M.* // Russ. J. Inorg. Chem. 2018. V. 63. № 12. Р. 1578. doi 10.1134/S00360-23618120069 [*Чаркин О.П., Клименко Н.М.* // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1561.]
- Charkin O.P., Klimenko N.M., Charkin D.O., Mebel A.M. // Faraday Discuss. Chem. Soc. 2003. V. 124. P. 215.
- 12. Frisch M.J. et al. GAUSSIAN-03. Revision B.03. Gaussian, Inc., Pittsburg, PA. 2003.
- 13. Becke A.D.J. // J. Chem. Phys. 1993. V. 98. P. 5648.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1998. V. 37. P. 785.