ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 544.1;544.18

СРАВНИТЕЛЬНЫЙ КВАНТОВО-ХИМИЧЕСКИЙ АНАЛИЗ СТРОЕНИЯ И ОТНОСИТЕЛЬНОЙ СТАБИЛЬНОСТИ ОКСИАНИОНОВ НЕПЕРЕХОДНЫХ ЭЛЕМЕНТОВ II И III ПЕРИОДОВ

© 2019 г. Н. И. Баранов¹, К. В. Боженко¹, Н. Н. Бреславская², Т. Ю. Михайлова², С. П. Долин^{2, *}

¹Российский университет дружбы народов, Россия, 117198 Москва, ул. Миклухо-Маклая, 6 ²Институт общей и неорганической химии им. Н.С. Курнакова РАН, Россия, 119071 Москва, Ленинский пр-т, 31

*e-mail: dolin@igic.ras.ru Поступила в редакцию 18.06.2018 г. После доработки 06.08.2018 г. Принята к публикации 15.08.2018 г.

С использованием различных квантово-химических методов рассмотрены причины различия координационных чисел центральных атомов (Э) в структурах оксианионов непереходных элементов II и III периодов. Изучены изоэлектронные серии – треугольные $ЭO_3$ и тетраэдрические $ЭO_4$ – как в изолированном состоянии (ионы), так и с учетом протонного и катионного окружения (кислоты и соли). Путем моделирования элементарного акта реакций присоединения типа $H_k ЭO_3 + H_2O = H_{k+2} ЭO_4$ (даже в такой наиболее упрощенной форме) показано, что в случае Э(II) указанные (часто сильно эндотермические) реакции не протекают, тогда как в случае Э(III) они протекают безбарьерно. Проанализированы имеющиеся немногочисленные отклонения от этого опытного факта. Обсуждены возможные более сложные подходы с учетом среды (прежде всего водной) и проведен анализ роли различных H-связей.

Ключевые слова: квантовая химия, оксианионы непереходных элементов, Н-связи, внутри- и межмолекулярные Н-связи, элементарный акт химических реакций

DOI: 10.1134/S0044457X19030036

ВВЕДЕНИЕ

Оксиды и оксианионы непереходных элементов изучались неоднократно, но и в настоящее время они привлекают внимание исследователей, которые продолжают изучать их с применением современных методов, как экспериментальных, так и теоретических [1–4]. Однако имеется ряд вопросов, до сих пор не получивших убедительного объяснения на микроскопическом уровне [5–7]. К ним относится, например, взаимосвязь между пространственным строением оксианионов, включая координационное число (**КЧ**) центрального атома, и свойствами соответствующих кислот, солей и комплексов на их основе, наиболее важными из которых являются стабильность и реакционная способность.

В настоящей работе изучены оксианионы непереходных элементов II и III периодов. Для элементов II периода характерна тригональная координация центрального атома (КЧ = 3), тогда как для элементов III периода – тетраэдрическая (КЧ = 4). Изучены причины нарушения принципа изоэлектронности для первых систем с центральным атомом из 6- и 7-ой групп обоих периодов, связанного с отсутствием стабильной триго-

нальной координации систем O_4 и FO_3^+ и с ее наличием у серы и хлора.

Возможный способ микроописания этой задачи связан с применением различных теоретических (численных) подходов, среди которых квантовая химия (**KX**) занимает особое место, поскольку позволяет оценить электронные и структурные параметры [8, 9]. Отметим, что такой KX-анализ можно проводить разными способами [10–12].

Нами рассмотрены особенности реакции присоединения, которую можно записать в виде:

$$\Theta(\text{II},\text{III})O_3 \to \Theta(\text{II},\text{III})O_4,$$
 (1)

где $\Im(II) = B - F, \Im(III) = Al - Cl.$

Эти модельные газофазные реакции изучены в чисто ионном и протонированном (кислоты) виде:

$$\Im O_3^p + O^{2-} \to \Im O_4^q + M_{II}, \qquad (2)$$

$$H_p \Im O_3 + H_2 O \to H_q \Im O_4 + M_{III}, \qquad (3)$$

где p = -3...+1; q = -5 ...-1.

Предлагаемый КХ-анализ выполнен в двух вариантах, в первом проанализирована энергетика (тепловые эффекты М_{II}, М_{III}) наиболее простых реакций присоединения, а во втором проведено моделирование элементарного акта их возможного протекания, начиная (для всех изоэлектронных серий) с простейшего газофазного случая.

МЕТОДИКА РАСЧЕТОВ

Расчеты электронного строения всех указанных выше систем проводили с полной оптимизацией геометрии, а также путем анализа нормальных колебаний и с учетом термических поправок (при 298K, 1 атм) разными методами: RHF, DFT (B3LYP, MO6), MPn (n = 2-4), QCISD, CCSD в рамках комплекса программ Gaussian-09.

В подавляющем большинстве расчетов использовали базисный набор гауссовых функций 6-311+G(d,p) — экономный способ получения численных данных для указанных систем с разумной точностью. Этот вывод основан на результатах проведенного нами предварительного анализа (в рамках методов DFT, MP2, QCISD и CCSD) зависимости результатов расчетов с привлечением двух расширенных базисов: 6-311+G(2d,2p) и aug-cc-pVTZ. Кроме того, показано, что расчеты в рамках MP4SDQ/6-311+G(d,p) практически точно воспроизводят электронное строение CO, CO₂ и некоторых других малых молекул.

Для каждой из систем, указанных в уравнениях (2) и (3), методом натуральных орбиталей выполнен анализ распределения электронной плотности [13, 14].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ энергетики ионных реакций типа (1) показал, что реакции с участием в качестве центрального атомов 3-, 4- и 5-ой групп обоих периодов являются эндотермическими, аналогичные реакции с участием атомов 6- и 7-ой групп обоих периодов — экзотермическими (табл. 1).

Полученная информация по энергетике не может дать окончательный ответ о стабильности этих систем, но позволяет предположить, что основной причиной стабильности является молекулярный заряд оксианиона. Это предположение подтверждается, в частности, отсутствием надежных данных по строению ионов BO₄^{5–} и AlO₄^{5–}, так

как расчеты для них почти во всех методах не удается довести до конца.

В системах с большими отрицательными зарядами сильное отталкивание лигандов должно приводить к значительному удлинению связей Э–О, которое в действительности не наблюдается.

Если считать, что вероятность протекания экзотермических реакций выше, чем эндотермических. то использование изолированных анионов из любого изоэлектронного ряда в качестве модельных для изучения элементарного акта реакций присоединения типа (2) крайне нежелательно. Однако, согласно результатам расчетов энергетики реакций типа (3), реакции с участием протонированных оксианионов В, С, N остаются эндотермическими, тогда как соответствующие реакции с участием оксианионов от Al до Cl меняют свой характер и становятся экзотермическими. С учетом сделанного выше предположения протонированные системы ("кислоты") даже в изолированном виде гораздо точнее описывают опытные данные. Подчеркнем, что полученные в расчетах всех рассмотренных систем этого типа (тригональных и тетрагональных) межатомные расстояния Э–О с точностью 0.02 Å воспроизводят их средние значения в соответствующих твердотельных системах. Этот же качественный эффект был обнаружен и в расчетах при замене водородного окружения на катионное (как в солях) с участием щелочных металлов (лития и др.), что позволило подтвердить существенную роль второй координационной сферы в строении оксианионов во всех рассмотренных случаях.

Иными словами, нейтральные системы (протонированные или катионные) даже в изолированном виде являются более подходящими структурными моделями при микроописании элементарного акта соответствующих реакций присоединения (3).

Вместе с тем проведенная серия расчетов изолированных анионов (включая многозарядные) показала, что полученные данные по электронной структуре для каждой изоэлектронной серии правильно описывают последовательное возрастание ковалентного характера связи Э–О с ростом порядкового номера Э. Из этих же расчетов следует простое объяснение низкой стабильности

тригональных молекул O₄ и FO₃⁺ и тетраэдриче-

ских O_5^{2-} и FO₄, поскольку указанные структуры соответствуют в каждом случае только высокоэнергетическим локальным минимумам, а не глобальным.

Таким образом, описанные выше расчеты энергетики реакций (2) и (3) позволили, на наш взгляд, однозначно выбрать протонированные ионы в качестве простых структурных моделей для дальнейшего анализа.

Реакция присоединения (3)

Элементарный акт этой реакции можно изучать по-разному. Чаще всего для таких целей применяют КХ-метод переходного состояния, реализуемый в комплексе программ Gaussian-09 в виде

Таблица 1. Тепловые эффекты реакций типа (2) и (3) с учетом поправок на энергию нулевых колебаний, ккал/моль

Реакция	Эффект	HF	B3LYP	MP2	MP4SDQ	QCISD	CCSD
$BO_3^{3-} + O^{2-} \rightarrow BO_4^{5-}$	Эндо	407.29	_	_	_	_	_
$\mathrm{CO}_3^{2-} + \mathrm{O}^{2-} \rightarrow \mathrm{CO}_4^{4-}$	Эндо	392.45	360.60	361.17	356.30	_	_
$NO_3^- + O^{2-} \rightarrow NO_4^{3-}$	Эндо	150.92	154.69	166.15	157.77	151.60	150.80
$O_{4 (d3h)} + O^{2-} \rightarrow O_5^{2-}$	Экзо	-200.29	-150.40	-116.32	-152.70	-157.94	-160.15
$O_{4 (d2d)} + O^{2-} \rightarrow O_5^{2-}$	Экзо	-161.62	-144.11	-117.28	-129.64	-136.97	-137.04
$O_{4 (d2h)} + O^{2-} \rightarrow O_5^{2-}$	Экзо	-193.35	-78.04	_	-99.47	-89.96	-90.97
$O_{4 (c2v)} + O^{2-} \rightarrow O_5^{2-}$	Экзо	-167.72	_	_	-90.56	-89.63	_
$O_{4 (c2h)} + O^{2-} \rightarrow O_5^{2-}$	Экзо	-178.84	-94.34	_	-105.43	-104.54	-108.60
$\mathrm{FO}_3^+ + \mathrm{O}^{2-} \rightarrow \mathrm{FO}_4^-$	Экзо	_	-513.84	-452.71	_	_	_
$\mathrm{SiO}_3^{2-} + \mathrm{O}^{2-} \rightarrow \mathrm{SiO}_4^{4-}$	Эндо	257.16	245.85	251.65	245.61	_	_
$PO_3^- + O^{2-} \rightarrow PO_4^{3-}$	Эндо	20.05	33.78	42.22	37.41	30.93	30.12
$SO_3 + O^{2-} \rightarrow SO_4^{2-}$	Экзо	-266.26	-235.06	-221.00	-230.72	-237.26	-240.53
$ClO_3^+ + O^{2-} \rightarrow ClO_4^-$	Экзо	-591.54	-543.62	-515.18	-536.83	-544.30	-548.55
$H_3BO_3 + OH^- \rightarrow H_4BO_4^-$	Экзо	-45.20	-45.62	-51.32	-51.59	-51.83	-52.12
$H_2CO_{3(c2v)} + H_2O \rightarrow H_4CO_{4(s4)}$	Эндо	11.04	11.94	9.21	7.86	7.755	7.30
$H_2CO_{3(c2v)} + H_2O \rightarrow H_4CO_{4(C1)}$	Эндо	14.30	14.78	11.97	_	10.60	10.18
$H_2CO_{3(Cs)} + H_2O \rightarrow H_4CO_{4(s4)}$	Эндо	23.44	23.82	21.15	19.89	19.76	19.30
$H_2CO_{3(Cs)} + H_2O \rightarrow H_4CO_{4(C1)}$	Эндо	12.25	13.30	10.30	_	8.98	8.53
$HNO_3 + H_2O \rightarrow H_3NO_4$	Эндо	43.46	45.18	49.20	43.73	43.03	42.63
$Al(OH)_3 + OH^- \rightarrow Al(OH)_4^-$	Экзо	-91.61	-87.12	-90.85	-91.97	-92.22	-92.67
$AlO_3^{3-} + OH^- \rightarrow HAlO_4^{4-}$	Эндо	_	218.10	204.08	_	_	_
$H_2SiO_{3(c2v)} + H_2O \rightarrow H_4SiO_{4(s4)}$	Экзо	-71.70	-60.82	-62.50	-64.27	-64.62	-65.45
$H_2SiO_{3(c2v)} + H_2O \rightarrow H_4SiO_{4(C1)}$	Экзо	-70.02	-59.15	-60.85	—	-62.91	-63.74
$H_2SiO_{3(Cs)} + H_2O \rightarrow H_4SiO_{4(s4)}$	Экзо	-72.86	-61.92	-63.71	-65.35	-65.67	-66.54
$H_2SiO_{3(Cs)} + H_2O \rightarrow H_4SiO_{4(C1)}$	Экзо	-71.17	-60.24	-62.06	_	-63.97	-64.83
$HPO_3 + H_2O \rightarrow H_3PO_4$	Экзо	-47.74	-36.58	-37.17	-39.14	-39.59	-40.42
$SO_3 + H_2O \rightarrow H_2SO_4$	Экзо	-22.00	-11.76	-9.06	-13.25	-14.02	-14.71
$ClO_3^+ + OH^- \rightarrow HClO_4$	Экзо	-277.75	-253.47	-237.28	-251.79	-253.52	-255.13
$\mathrm{SiO}_3^{2-} + \mathrm{SiO}_4^{4-} \rightarrow \mathrm{Si}_2\mathrm{O}_7^{6-}$	Эндо	445.66	437.13	435.98	433.25	_	_
$H_2SiO_{3(c2v)} + H_4SiO_{4(s4)} \rightarrow H_6Si_2O_7$	Экзо	-78.57	-65.26	-69.82	-71.70	-71.96	_
$H_2SiO_3 + H_4SiO_4 \rightarrow H_6Si_2O_7$	Экзо	-81.41	-68.01	-72.29	_	-74.67	_
$H_2SiO_{3(c2v)} + H_4SiO_4 \rightarrow H_6Si_2O_7$	Экзо	-80.25	-66.93	-71.47	_	-73.61	_
$H_2SiO_{3(Cs)} + H_4SiO_{4(s4)} \rightarrow H_6Si_2O_7$	Экзо	-79.72	-66.36	-71.04	-72.78	-72.96	—

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 3 2019

Рис. 1. Сходимость процедуры самосогласования по данным B3LYP/6-311+G(d,p) (ат. ед.) для эндотермической реакции (3) с получением H_2CO_3 и H_2O .

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 3 2019

процедур поиска переходного состояния (TS) – QST2, QST3 – с последующим построением координаты реакции IRC для проверки. При его реализации обычно исходят из стартового и конечного комплексов реагентов (RgC) и продуктов (PrC) [15–17].

На первом этапе с использованием нескольких вариантов моделирования и расчета были рассмотрены две реакции типа (3): $H_2CO_3 + H_2O =$ = H_4CO_4 (рис. 1) и $H_2SiO_3 + H_2O = H_4SiO_4$ (рис. 2).

Учитывая опыт решения задач, связанных с КХ-моделированием переноса протона при изучении некоторых реакций окисления органических субстратов, а также Н-связанных сегнетоэлектриков, при построении RgC учитывали возможность образования Н-связи(ей) как естественных маршрутов (траекторий) переноса протона. Это предположение себя полностью оправдало в случае Si-систем. Более того, оказалось, что эта реакция присоединения протекает самопроизвольно, т.е. с отсутствием переходного состояния TS независимо от варианта расчета. При этом "скорость" ее протекания особенно высока в случае образования сильной Н-связи с длиной $R_{0-0} \approx 2.5$ Å, когда она меняет свой характер и фактически становится внутримолекулярной с последующим ослаблением вплоть до ее разрыва с образованием продукта. В случае С-систем ни в одном из рассмотренных вариантов сближения реагентов с образованием сильных Н-связей реакция присоединения воды не реализуется. Этот результат для обеих реакций полностью сохраняется и при учете среды (вода, спирты) в рамках метода поляризационного континуума (РСМ). Подчеркнем, что эти выводы соответствуют опыту и коррелируют с указанными выше энергетическими параметрами этих реакций. Однако в случае изучения реакций (3), несмотря на простейший способ их моделирования и анализа, результаты представляются гораздо более убедительными. Отметим также, что предпринятые многочисленные попытки моделирования реакций присоединения (2) с участием всех изолированных оксианионов (особенно многозарядных) к такому однозначному выводу не приводят.

ЗАКЛЮЧЕНИЕ

Представленные результаты описывают опытные данные по строению оксианионов и соответствующих кислот и провоцируют поиск более реалистического моделирования реакций присоединения, а возможно, и реакций иного типа.

Показана определяющая роль второй координационной сферы, прежде всего за счет протонов, что способствует образованию H-связи(ей), необходимых для протекания реакций с участием атомов III периода, что проиллюстрировано на

Si-системах. Вместе с тем возникает необходимость структурного расширения кластерной модели, где необходимо учитывать окружение, т.е. влияние среды.

Отмеченный ранее вывод об инертной роли среды, полученный только в приближении РСМ, также нуждается в уточнении. Первые попытки учета влияния среды, особенно водной, на атомном уровне привели к интересным заключениям.

Так, на примере HNO_3-3H_2O и $NO_3^--3H_2O$ было зафиксировано образование слабых межмолекулярных H-связей длиной ≈3 Å, которые стабилизируют водный "кластер" за счет сокращения, хотя и небольшого (≈0.01 Å), средней длины связи Э-О в обоих случаях и выравнивая длин связей Э-О и Э-ОН в первом гетеролигандном случае. На наш взгляд, ярким подтверждением является стабилизация за счет этих связей твердой Н₃ВО₃ и образование димеров в твердой H₂CO₃ [6]. Не менее ярким примером является строение Н-связанных сегнетоэлектриков, например, КН₂РО₄, К₃HSO₄ и др., где реализуются сетки Н-связей разной размерности (0d-3d), определяющие термодинамические и электрические свойства таких диэлектриков [17]. Напрашивается вопрос об общем характере этих результатов. Наши неокончательные данные для пары HC1O₄-4H₂O и СІО₄-4H₂О выглядят оптимистично. Таким об-

разом, полученные данные говорят о двоякой роли Н-связей.

Описанная выше возможность образования слабых Н-связей помогает качественно понять сильно различающуюся силу рассмотренных неорганических кислот (правило пяти порядков Полинга [6]). Отметим, что обсуждение кислотных свойств требует проведения детального анализа строения и энергетики с учетом среды на атомном КХ-уровне не только гомолигадных, но и различных гетеролигадных систем типа ЭО_{*m*}(OH)_{*n*} [18, 19].

БЛАГОДАРНОСТЬ

Статья подготовлена при поддержке программы РУДН "5-100".

СПИСОК ЛИТЕРАТУРЫ

- 1. Шрайвер Д., Эткинс П. Неорганическая химия. Т. 1, 2. М.: Мир, 2004.
- 2. Muller U. Inorganic structure chemistry. N.Y.: Wiley, 1993.
- 3. *Mingos D.M.P.* Essential trends in inorganic chemistry. Oxford: Oxford University Press, 1998.
- 4. Белл Р. Протон в химии. М.: Мир, 1977.
- 5. Pearson R.G. In Survey of progress in chemistry / Ed. Scott A.V. Ch. 1. N.Y.: Academ Press, 1969.

- 6. *Pauling L*. The nature of chemical bond and the structure of molecules and crystals. N.Y.: Itahaca, 1960.
- 7. Сыркин Я.К., Дяткина М.Е. Химическая связь и строение молекул. М.: Госхимиздат, 1946.
- 8. Коулсон Ч. Валентность. М.: Мир, 1965.
- 9. Эткинс П. Кванты: справочник концепций. Пер. с англ. Ядровского Е.Л. М.: Мир, 1977.
- Чаркин О.П. Стабильность и структура газообразных неорганических молекул, радикалов и ионов. М.: Наука, 1980.
- 11. *Боженко К.В.* Дис. ... канд. хим. наук. М.: ИОНХ РАН, 1979.
- 12. Закжевский В.Г. Дис. ... канд. хим. наук. М.: МФТИ, 1979.
- 13. *Reed A.E., Curtiss L.A., Weinhold F. //* Chem. Rev. 1988. V. 88. P. 899.

- Немухин А.В., Вейнхольд Ф. // Рос. хим. журн. 1994. Т. 38Б. С. 5.
- Peng C., Schlegel H.B. // Israel J. Chem. 1993. V. 33. P. 449.
- Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J. // J. Comp. Chem. 1996. V. 17. P. 49.
- Dolin S.P., Mikhailova T.Yu., Breslavskaya N.N., Levin A.A. // Int. J. Quant. Chem. 2016. V. 116. № 3. P. 202.
- Левин А.А., Дьячков П.Н. Электронное строение, структура и превращения гетеролигандных молекул. М.: Наука, 1990.
- Лазарев А.Н., Щеголев Б.Ф., Смирнов М.Б., Долин С.П. Квантовая химия молекулярных систем и кристаллохимия силикатов. Л.: Наука, 1988.