_____ ФИЗИЧЕСКИЕ МЕТОДЫ ____ ИССЛЕДОВАНИЯ

УДК 544.31

НИЗКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ ГАФНАТА ЛАНТАНА

© 2019 г. В. Н. Гуськов^{1, *}, П. Г. Гагарин¹, А. В. Гуськов¹, А. В. Тюрин¹, К. С. Гавричев¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *E-mail: guskov@igic.ras.ru

Поступила в редакцию 09.04.2019 г. После доработки 23.04.2019 г. Принята к публикации 13.05.2019 г.

Методом адиабатической калориметрии измерена изобарная теплоемкость гафната лантана структурного типа пирохлора в области температур 0—346 К. Рассчитаны термодинамические функции: энтропия, приращение энтальпии и приведенная энергия Гиббса, которые могут быть использованы для моделирования физико-химических процессов с участием гафната лантана и оптимизации процессов его приготовления.

Ключевые слова: теплоемкость, гафнат лантана, термодинамические функции **DOI:** 10.1134/S0044457X19110060

введение

Гафнаты лантаноидов $Ln_2Hf_2O_7$ характеризуются высокими температурами плавления, отсутствием структурных фазовых превращений в широком интервале температур, химической инертностью [1]. Как и цирконаты, гафнаты считаются перспективными веществами для разработки на их основе термобарьерных материалов [2], твердых электролитов [3–5], люминесцентного [6] и матричного материала для иммобилизации радиоактивных отходов [7] и др.

Фазовые равновесия в большинстве систем Ln₂O₃-HfO₂ изучены достаточно схематично изза низких скоростей установления равновесия при температурах <1700-1800 К и сложностей при проведении экспериментальных исследований при более высоких температурах [8]. Тем не менее система La_2O_3 -HfO₂ при температурах >1900 К изучена достаточно подробно. В системе найдено единственное соединение — $La_2Hf_2O_7$. В отличие от более тяжелых гафнатов лантаноидов, $La_2Hf_2O_7$ плавится конгрузнтно при температуре 2560 К. Соединение La₂Hf₂O₇ кристаллизуется в структурном типе пирохлора (Fd3m) с параметром кубической ячейки a = 10.776 Å [8] (по данным [9], *a* = 10.779 Å). Гафнат лантана характеризуется широкой областью гомогенности от 3 мол. % при 1600 К до 12 мол. % при 2500 К и максимальной температурой плавления ~2600 К [9]. Согласно [10], температура конгруэнтного плавления равна 2733 К. Кристаллохимические характеристики гафната лантана впервые были исследованы в работе [11] и показано, что полученный твердофазным синтезом при 2050 К La₂Hf₂O₇ имеет структурный тип пирохлора, a = 10.774 Å, а размеры кристаллов составляют 0.7-8 мкм. В [12] параметр кристаллической ячейки пирохлора *a* =

= 10.7709 Å. Более поздние исследования [13] показали, что параметр кубической решетки пирохлора La₂Hf₂O₇ линейно зависит от атомного соотношения лантана и гафния в образце: a, Å == 0.4721(La/Hf, ат.) + 10.301. В этой же работе отмечено, что при использовании способа соосаждения гидроксидов для синтеза прокаливанием на воздухе при температуре 1400 К образуется флюоритная фаза (Fm3m), тогда как для получения гафната со структурой пирохлора требуется длительный (~50 ч) отжиг при 1723 К. В случае, если синтез осуществляют из расплава. послелующее охлаждение приводит к образованию структуры пирохлора без перехода во флюоритную модификацию. Особенности образования пирохлора из наноразмерного флюорита при нагревании исследованы в работах [14, 15]. Показано, что прокаливание гидроксидного прекурсора при 900-1500 К приводит к образованию нанокристаллической флюоритной структуры. Дальнейшее нагревание способствует росту частиц до микронных размеров и постепенному формированию структуры пирохлора.

Энтальпия образования $La_2Hf_2O_7$ структурного типа пирохлора из оксидов, приведенная в работах [13, 16] по результатам калориметрии растворения в расплаве молибдата натрия при 975 K,

составила $\Delta H_{f,ox}^{\circ}$ (кДж/моль) = -107.0 ± 5.0 . Изобарная теплоемкость гафната лантана при 57–302 К впервые была измерена в [17].

Цель настоящей работы — измерение теплоемкости гафната лантана в области низких температур (0–346 K) и расчет температурных зависимостей термодинамических функций от 0 K до комнатных температур, в том числе при стандартных условиях. Эти данные необходимы для термодинамического моделирования как фазовых равно-

Т, К	<i>С_p</i> , Дж/(моль К)	Т, К	<i>С_p</i> , Дж/(моль К)	<i>T</i> , K	<i>С_p</i> , Дж/(моль К)
Серия 1		221.92	193.70	39.75	30.04
82.49	84.13	226.20	195.60	41.53	32.15
85.03	87.07	230.44	197.40	43.30	34.29
87.15	89.47	234.59	199.30	45.04	36.44
89.28	91.87	238.86	201.20	46.79	38.63
91.42	94.23	243.12	203.10	48.51	40.83
93.57	96.57	247.28	204.95	50.23	43.05
95.74	98.89	251.41	206.57	51.95	45.30
97.96	101.2	255.50	208.12	53.76	47.68
100.15	103.5	259.55	209.61	55.48	49.95
102.98	106.4	263.58	211.05	57.21	52.23
Серия 2		267.58	212.4	58.93	54.51
113.31	116.7	271.54	213.8	60.65	56.78
117.50	120.7	275.46	215.1	62.36	59.04
120.95	123.9	279.34	216.3	64.08	61.29
124.44	127.1	283.19	217.5	65.79	63.52
127.89	130.2	286.98	218.6	67.50	65.73
131.34	133.2	290.67	219.7	69.22	67.93
134.79	136.2	294.01	220.7	70.94	70.11
138.29	139.2	297.85	221.7	72.85	72.51
141.75	142.1	301.59	222.7	74.75	74.86
145.19	144.9	305.69	223.8	77.09	77.72
148.64	147.7	311.81	225.4	79.35	80.43
152.09	150.4	318.89	227.1	81.59	83.08
155.55	153.0	325.89	228.7	83.85	85.70
159.00	155.6	332.80	230.2	86.11	88.30
162.47	158.2	339.62	231.6	88.36	90.83
165.93	160.7	346.30	232.9	90.64	93.37
169.50	163.2	Серия 3		92.92	95.86
172.96	165.6	101.09	104.5	95.20	98.32
176.42	167.9	104.51	108.0	97.50	100.8
179.89	170.2	108.05	111.5	99.80	103.2
183.37	172.4	111.57	115.0	Cep	ия 5
186.85	174.6	115.14	118.4	14.61	2.612
190.33	176.8	Cep	ия 4	15.84	3.668
193.81	178.8	26.85	15.52	17.06	4.483
197.30	180.9	28.78	17.69	18.27	5.720
200.78	182.85	30.67	19.79	19.54	7.107
204.69	185.01	32.49	21.80	20.83	8.575
209.02	187.34	34.32	23.85	23.37	11.52
213.34	189.59	36.16	25.91		
217.64	191.76	37.96	27.96		

Таблица 1. Экспериментальные данные по измерению изобарной теплоемкости La₂Hf₂O₇ в области 15-346 К

весий в системе La_2O_3 —HfO₂, так и равновесий в других системах с участием $La_2Hf_2O_7$ структурного типа пирохлора. Теплоемкость диамагнитного гафната лантана может быть в дальнейшем использована для выявления аномалий теплоемкости парамагнитных гафнатов лантаноидов [18, 19].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гафнат лантана синтезировали "обратным" осаждением стехиометрической смеси гидроксидов лантана и гафния в растворе аммиака согласно [20]. Исходными веществами служили сексвиоксид лантана La₂O₃ (99.99%) и диоксид гафния HfO₂ (99.9%) (ООО "ЛАНХИТ"), предварительно растворенные в соляной кислоте. Прекурсор подвергали промежуточному ступенчатому отжигу с последующим прокаливанием при 1773 К. Температуры промежуточных ступеней отжига определяли на основе анализа кривых ДСК/ТГ прекурсора, полученных на установке синхронного термического анализа STA 449 F1 Jupiter Netzsch в атмосфере газообразного аргона высокой чистоты (99.995%). Общий вид кривых ДСК и ТГ совпадает в целом с результатами работы [15], а последовательность формирования кристаллической структуры аналогична описанной нами в [21]. Полученный образец идентифицировали

Рис. 1. Дифрактограмма образца $La_2Hf_2O_7$, отожженного при 1500°С. a = 10.772(1) Å.

методом рентгенофазового анализа на дифрактометре Bruker D8 Advance (Си K_{α} -излучение, $\lambda =$ = 1.5418 Å, Ni-фильтр, LYNXEYE-детектор, геометрия на отражение) в интервале углов $2\theta = 10^{\circ}$ -80°. Химический состав определяли рентгеноспектральным (Zeiss EVO 50 SEM с PCMA-анализатором e2v Sirius SD IXRF) и химическим (оптикоэмиссионный спектрометр с индуктивно-связанной плазмой Agilent 725) анализом. Морфологию образца исследовали с помощью электронного микроскопа Gross Beam Zeiss NVision 40. Измерения изобарной теплоемкости проводили методом адиабатической калориметрии в низкотемпературном калориметре БКТ-З АОЗТ "Термис" с программным обеспечением "НЕАТ" и с использованием жидкого гелия и азота в качестве криогенных жидкостей. В работе [21] приведено подробное описание методики. Масса образца составила 2.17387 ± 0.00005 г. Молекулярную массу гафната лантана 746.78933 г/моль определяли на основе данных [22]. Сглаживание экспериментальных результатов проводили ортонормированными полиномами по методике [23].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для проведения измерений получен однофазный образец гафната лантана, который, по результатам дифракционных исследований (рис. 1), имел структуру пирохлора с параметром кубической решетки a = 10.772(1) Å, хорошо совпадающим с рекомендованным в кристаллографической базе данных значением a = 10.7728(3) Å [24]. Образец, по данным рентгеноспектрального анализа, содержал 50.3 ± 0.2 ат. % лантана, примеси обнаружены не были. Химический анализ подтвердил его состав 50.20 ± 0.30 ат. % La. Образец представлял плотную хорошо сформированную

Рис. 2. Морфология гафната лантана.

Рис. 3. Экстраполяция температурной зависимости теплоемкости к 0 К. $C_p/T = 0.000926$ К², $R^2 = 0.9987$.

структуру, состоящую из кристаллических блоков с размерами >100—200 нм (рис. 2). Синтезированный образец гафната лантана, таким образом, не является наноразмерным и пригоден для получения воспроизводимых термодинамических величин.

Измерения теплоемкости были выполнены в области температур 15–346 К в пяти сериях при 117 значениях температуры. Экспериментальные результаты приведены в табл. 1. Сглаженные ортонормированными полиномами значения теплоемкости и рассчитанные термодинамические функции содержатся в табл. 2. Экстраполяция температурной зависимости теплоемкости к нулю Кельвина выполнена по закону кубов Дебая = AT^3 . Значение $A = 0.000926 \ Дж/(моль K^4)$ получено из линейности функции C_p/T vs T^2 (рис. 3). Температурная зависимость теплоемкости имеет гладкую S-образную форму, что свидетельствует

	0	$S^{\circ}(T),$	$H^{\circ}(T)-H^{\circ}(0),$	$\Phi^{\circ}(T),$
Т, К	C_p° , Дж/(моль К)	Дж/(моль К)	Дж/моль	Дж/(моль К)
5	0.116	0.0376	0.0141	0.00940
10	0.926	0.3008	2.256	0.0752
15	3.045	1.015	11.42	0.2538
18	5.434	1.811	24.45	0.4528
20	7.818	2.507	37.72	0.6213
25	13.42	4.858	90.94	1.221
30	18.88	7.786	171.7	2.064
35	24.50	11.12	280.0	3.114
40	30.38	14.77	417.1	4.339
45	36.52	18.70	584.3	5.714
50	42.88	22.87	782.7	7.219
60	55.90	31.84	1276	10.56
70	68.81	41.43	1900	14.28
80	81.14	51.43	2651	18.30
90	92.69	61.66	3521	22.55
100	103.4	71.99	4502	26.97
110	113.5	82.33	5587	31.54
120	123.0	92.61	6770	36.20
130	132.0	102.8	8045	40.93
140	140.5	112.9	9408	45.71
150	148.7	122.9	10854	50.53
160	156.4	132.7	12380	55.36
170	163.6	142.4	13981	60.19
180	170.4	152.0	15651	65.03
190	176.6	161.4	17386	69.85
200	182.4	170.6	19181	74.67
210	187.7	179.6	21032	79.45
220	192.7	188.5	22935	84.20
230	197.4	197.1	24886	88.92
240	201.8	205.6	26882	93.60
250	205.9	213.9	28921	98.25
260	209.7	222.1	30999	102.9
270	213.3	230.1	33114	107.4
280	216.6	237.9	35264	111.9
290	219.6	245.5	37445	116.4
298.15	221.8	251.7	39243	120.0
300	222.3	253.0	39654	120.9
310	224.8	260.4	41890	125.2
320	227.3	267.5	44151	129.6
330	229.7	274.6	46435	133.9
340	231.8	281.5	48743	138.1
346	232.8	285.5	50137	140.6

Таблица 2. Термодинамические функции La₂Hf₂O₇ в области 0-346 К

об отсутствии структурных превращений в изученном диапазоне температур. Сравнение полученной температурной зависимости изобарной теплоемкости гафната лантана с измерениями, выполненными авторами [17], показало, что данные этой работы завышены в области 250–300 К и несколько ниже наших значений при температурах <75 К (рис. 4, кривая 2). Необходимо отметить, что аналогичное поведение температурной зависимости теплоемкости было выявлено нами и в работе [25] при изучении цирконата самария, выполненном на той же экспериментальной установке. На рис. 4 (кривые 1 и 2) продемон-

стрировано аналогичное отклонение данных [17, 25] в области выше 250 К от полученных нами значений для $La_2Hf_2O_7$ и $Sm_2Zr_2O_7$ [28]. Мы полагаем, что бо́льшая достоверность данных настоящей работы основана и на удовлетворительном согласии наших величин для $La_2Zr_2O_7$ [28] со значениями, приведенными в работе [27], которые используются в качестве справочных.

ЗАКЛЮЧЕНИЕ

Теплоемкость гафната лантана $La_2Hf_2O_7$ структурного типа *Fd3m* (пирохлор) измерена ме-

Рис. 4. Температурные зависимости разности теплоемкостей: $1 - C_p(\text{Sm}_2\text{Zr}_2\text{O}_7 [25]) - C_p(\text{Sm}_2\text{Zr}_2\text{O}_7 [26]);$ $2 - C_p(\text{La}_2\text{Hf}_2\text{O}_7 [17]) - C_p(\text{La}_2\text{Hf}_2\text{O}_7 [\text{наст. работа}]),$ $3 - C_p(\text{La}_2\text{Zr}_2\text{O}_7 [27]) - C_p(\text{La}_2\text{Zr}_2\text{O}_7 [28]).$

тодом адиабатической калориметрии. По сглаженным значениям теплоемкости рассчитаны энтропия, приращение энтальпии и приведенная энергия Гиббса в области температур 0–346 К. Стандартные термодинамические функции при 298.15 К составляют: C_p° (298.15 К) = 221.8 ± 0.5Дж/(моль K), S° (298.15 K) = 251.7±0.9Дж/(моль K), H° (298.15 К)— H° (0)= 39243 ± 120 Дж/моль, $\Phi^{\circ}(T)$ = 120.0±1.3Дж/(моль K). Полученные температурные зависимости термодинамических функций могут быть использованы для моделирования физико-химических процессов с участием гафната лантана и оптимизации процессов его получения.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при поддержке Российского научного фонда (грант № 18-13-00025) с использованием оборудования ЦКП ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Arsen'ev P.A., Glushkova V.B., Evdokimov A.A. et al. // Rare earth compounds. Zirconates, hafnates, niobates, tantalates, antimonates. M.: Nauka Publ., 1985. 261 p.
- Sevastyanov V.G., Simonenko E.P., Sevastyanov D.V. et al. // Russ. J. Inorg. Chem. 2013. V. 58. P. 1. https://doi.org/10.1134/S0036023613010178
- Shlyakhtina A.V., Kolbanev I.V., Knotko A.V. et al. // Inorg. Mater. 2005. V. 41. P. 854.

- Shlyakhtina A.V., Boguslavskii M.V., Stefanovich S.Yu. et al. // Inorg. Mater. 2006. V. 42. P. 519. https://doi.org/10.1134/S002016850605013X
- Shlyakhtina A.V., Shcherbakova L.G. // Solid State Ionics. 2011. V. 192. P. 200. https://doi.org/10.1016/j.ssi.2010.07013
- Brixner L.H. // Mater. Res. Bull. 1984. V. 19. P. 143. https://doi.org/10.1016/0025-5408(84)90084-9
- Sickafus K.E., Minervini L., Grimes R.W. et al. // Science. 2000. V. 289 (5480). P. 748. https://doi.org/10.1126/science.289.5480.748
- Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363.
- https://doi.org/10.1016/j.jeurceramsoc.2008.01.009 9. *Duran P.* // Ceram. Intern. 1975. V. 1. P. 10.
- https://doi.org/10.1016/0390-5519(75)90032-0 10. Shevchenko A.V., Lopato L.M., Zaitseva Z.A. // Izv. AN
- SSSR. Inorg. Mater. 1984. V. 20. P. 1530. 11. Karyakina E.L., Zoz E.I., Gavrish A.M., Gul'ko N.V. //
- Izv. AN SSSR. Inorg. Mater. 1978. V. 20. P. 3202.
- 12. Govindan Kutti K.V., Rajagopalan S., Mathews C.K. // Mater. Res. Bull. 1994. V. 29. P. 759. https://doi.org/10.1016/0025-5408(94)90201-1
- Ushakov S.V., Navrotsky A. // J. Am. Ceram. Soc. 2007. V. 90. P. 1171. https://doi.org/10.1111/j.1551-2916.2007.01592.x
- 14. Popov V.V., Menushenkov A.P., Yaroslavtsev. A.A. et al. // J. Alloys Compd. 2016. V. 689. P. 669. https://doi.org/10.1016j.jallcom.2016.08.019
- Popov V.V., Petrunin V.F., Korovin C.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. P. 1617.
- 16. Ushakov S.V., Navrotsky A., Tangeman J.A. // MRS Online Proceedings Library Archive. 2008. V. 1122.
- Kopan A.R., Gorbachuk M.P., Lakiza S.M., Tichenko Ya.S. // Powder Metallurgy Metal Ceram. 2016. V. 54. P. 696. https://doi.org/10.1007/s11106-016-9764-5
- Sommers J.A., Westrum E.F. // J. Chem. Thermodyn. 1977. V. 9. P. 1.
- Westrum E.F. // J. Chem. Thermodyn. 1983. V. 15. P. 305.
- Gagarin P.G., Tyurin A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1478. https://doi.org/10.1134/S0036023618110050
- Gagarin P.G., Tyurin A.V., Guskov V.N. et al. // Inorg. Mater. 2017. V. 53. P. 619. https://doi.org/10.1134/S0020168517060048
- 22. Wieser M.E., Holden N., Coplen T.B. et al. // Pure Appl. Chem. 2013. V. 85. P. 1047. https://doi.org/10.1351/PAC-REP-13-03-02
- Gurevich V.M., Gorbunov V.E., Gavrichev K.S. et al. // Geochem. Int. 1999. V. 37. P. 367.
- 24. ICCD PDF 01-078-5592
- Kopan A.R., Gorbachuk M.P., Lakiza S.M., Tichenko Ya.S. // Powder Metallurgy Metal Ceram. 2010. V. 49. P. 317. https://doi.org/10.1007/s11106-010-9238-0
- 26. Gagarin P.G., Tyurin A.V., Guskov V.N. et al. // Inorg. Mater. 2017. V. 53. P. 619. https://doi.org/10.1134/S0020168517060048
- Bolech M., Cordfunke E.H.R., Van Genderen A.C.G. et al. // J. Phys. Chem. Solids. 1977. V. 58. P. 433. https://doi.org/10.1016/s0022-3697(06)00137-5
- 28. Gagarin P.G. Avtoref. kand. diss. (Russ.). M., 2018. 19 p.