# \_\_\_\_ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ \_\_\_ И НАНОМАТЕРИАЛЫ

УДК 546.654

# ЖИДКОФАЗНЫЙ СИНТЕЗ НАНОЧАСТИЦ СУЛЬФИДА СЕРЕБРА В ПЕРЕСЫЩЕННЫХ ВОДНЫХ РАСТВОРАХ

## © 2019 г. С. И. Садовников<sup>1, \*</sup>

<sup>1</sup>Институт химии твердого тела УрО РАН, ул. Первомайская, 91, Екатеринбург, 620990 Россия \*E-mail: sadovnikov@ihim.uran.ru

> Поступила в редакцию 01.03.2019 г. После доработки 02.04.2019 г. Принята к публикации 15.04.2019 г.

Порошки и коллоидные растворы сульфида серебра синтезированы химическим осаждением из водных растворов нитрата серебра и сульфида натрия в присутствии цитрата натрия как стабилизатора. Методами рентгеновской дифракции, электронной микроскопии, Брунауэра–Эммета–Теллера и динамического рассеяния света определены размеры наночастиц в осажденных порошках и коллоидных растворах. Изменение концентрации реагентов в реакционных смесях позволило получить нанопорошки со средним размером частиц от ~1000 до ~40–50 нм. Размер наночастиц сульфида серебра в коллоидных растворах составляет 15–20 нм. Установлено качественное соотношение между размером частиц сульфида серебра и пересыщением растворов, использованных для синтеза.

*Ключевые слова:* химическое осаждение, пересыщение, наночастицы, сульфид серебра **DOI:** 10.1134/S0044457X19100118

## введение

Известно, что сульфидные полупроводники при уменьшении размера частиц до нанометрового масштаба изменяют свои физические и химические свойства. Размерный эффект в полупроводниках наиболее явно проявляется на их электронных свойствах, когда размер частиц становится меньше размера экситона [1]. Нанокристаллический сульфид серебра  $Ag_2S$  [2–5], как и сульфиды ZnS, CdS, PbS, Cu<sub>2</sub>S, Hg<sub>2</sub>S [6–10], не только весьма активно изучается, но и уже находит применение. Это связано с возможностью регулирования свойств  $Ag_2S$ , особенно электронных и оптических, путем изменения размера наночастиц (кристаллитов).

Крупнокристаллический (bulk) сульфид серебра с размером частиц >500 нм является полупроводником с шириной  $E_g$  запрещенной зоны ~0.88–0.90 эВ при 300 К [11]. Согласно [12], уменьшение размера частиц сульфида серебра приводит к росту ширины запрещенной зоны, и  $E_g$  наночастиц  $Ag_2S$  размером ~8 нм составляет 2.85 эВ.

Нанокристаллический сульфид серебра получают разными химическими и физическими методами. Согласно [13], для получения наноструктурированных сульфидов серебра наиболее применимы методы синтеза типа "снизу вверх" (bottom-up). Среди них химическое осаждение из водных растворов рассматривается как эффективный способ получения нанокристаллов с контролируемым размером и малой размерной дисперсией [14–16]. Сульфиды  $Ag_2S$ , CdS, Cu<sub>2</sub>S, Hg<sub>2</sub>S, PbS, ZnS почти не растворимы в воде (их произведения растворимости составляют от  $10^{-24}$  до  $10^{-50}$ ), поэтому водные растворы, используемые для осаждения сульфидов, включая  $Ag_2S$ , являются, как правило, пересыщенными по соответствующему сульфиду. Однако взаимосвязь пересыщения с размером синтезированных наночастиц  $Ag_2S$  до сих пор никем не обсуждалась.

В настоящей работе обобщены параметры гидрохимического осаждения сульфида серебра в виде нанокристаллических порошков и коллоидных растворов с разным размером наночастиц и впервые сопоставлен размер наночастиц сульфида серебра с пересыщением реакционных смесей, использованных для синтеза.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Порошки и коллоидные растворы сульфида серебра  $Ag_2S$  синтезировали химическим осаждением из водных растворов нитрата серебра  $AgNO_3$ , сульфида натрия  $Na_2S$  и цитрата натрия  $Na_3C_6H_5O_7$  ( $Na_3Cit$ ). Синтез проводили при температуре 298 К в темноте. Цитрат натрия не образует комплексов

с серебром, но при синтезе играет роль стабилизатора (стабилизирующего агента — stabilizing agent), предотвращающего рост наночастиц. Цитрат натрия является электростатическим стабилизатором. Ион цитрата  $C_6H_5O_7^{3-}$  имеет три отрицательно заряженных иона кислорода O<sup>-</sup>. При введении цитрата в водный раствор с частицами сульфида серебра ионы цитрата закрепляются на поверхности частиц одним из ионов O<sup>-</sup>, тогда как другие два отрицательно заряженных иона направлены в раствор. В результате вокруг каждой частицы сульфида серебра образуется отрицательно заряженный цитратный слой, препятствующий объединению сульфидных частиц и стабилизирующий их размер [17–19].

Поскольку в водных растворах с малым содержанием ионов  $S^{2-}$  цитрат натрия может восстанавливать ионы  $Ag^+$  с образованием наночастиц металлического серебра, для осаждения сульфида серебра без примеси Ag использовали реакционные смеси с небольшим относительным избытком сульфида натрия  $Na_2S$ . Осаждение нанокристаллического сульфида серебра происходит в темноте в нейтральной среде при pH ~ 7 по следующей реакционной схеме:

$$2AgNO_3 + Na_2S \xrightarrow{Na_3C_6H_5O_7} \rightarrow Ag_2S \downarrow + 2NaNO_3.$$
(1)

Для получения коллоидных растворов и нанопорошков без примеси Ag синтез проводили при небольшом избытке  $0.01 \ge \delta \ge 0.5$  сульфида натрия, т.е. в реакции (1), записанной со стехиометрическими коэффициентами, на каждые две молекулы AgNO<sub>3</sub> приходилась не одна, а  $(1 + \delta)$  молекул Na<sub>2</sub>S. С учетом этого при синтезе концентрации ионов сульфида S<sup>2–</sup> и серебра Ag<sup>+</sup> связаны соотношением:  $C_{S^{2-}} = (1 + \delta) C_{Ag^+}/2$ .

Величину рН растворов контролировали рН-метром Hanna Instruments<sup>™</sup> HI73127. Для приготовления исходных растворов и синтеза наночастиц использовали бидистиллированную воду с рН 6.7–6.9. Концентрации реагентов при синтезе коллоидных растворов сульфида серебра настолько малы, что изменение рН водных растворов по сравнению с рН нейтрального растворителя (воды) находится в пределах ошибки измерения рН-метра.

Для синтеза использовали предварительно приготовленные полностью равновесные водные растворы AgNO<sub>3</sub>, Na<sub>2</sub>S и Na<sub>3</sub>Cit. Сначала к 50 мл раствора нитрата серебра приливали 50 мл раствора цитрата натрия (стабилизатора), затем полученный раствор смешивали со 100 мл раствора Na<sub>2</sub>S. При сливании реагентов реакционная смесь быстро (в течение нескольких секунд) чернеет, указывая на образование раствора, пересыщенного по содержанию сульфида серебра. Затем частицы  $Ag_2S$  оседают, и раствор в течение 30—60 мин становится прозрачным. Для полноты сульфидизации осадок в течение суток находился в растворе. Осажденный порошок  $Ag_2S$  не менее 4 раз промывали дистиллированной водой методом декантации, фильтровали и сушили на воздухе при 323 К.

Нанокристаллические порошки  $Ag_2S$  с размером частиц  $\leq 60$  нм осаждали из реакционных смесей с концентрацией  $AgNO_3$  и  $Na_2S$  50 и 25 ммоль/л соответственно (табл. 1). Концентрация  $Na_3Cit$  составляла от 5 до 100 ммоль/л. Увеличение концентрации  $Na_3Cit$  приводит к уменьшению размера частиц  $Ag_2S$ . Нанопорошок  $Ag_2S$  с размером частиц < 20 нм осадить не удалось, так как наночастицы размером  $\leq 20$  нм образуют стабильный коллоидный раствор и не оседают в нем на протяжении нескольких лет. Такие стабильные коллоидные растворы сульфида серебра были получены из реакционных смесей 8–19 с содержанием нитрата серебра  $\leq 2.5$  ммоль/л.

Рентгенодифракционные измерения осажденных порошков проводили в интервале углов 20 =  $= 20^{\circ} - 95^{\circ}$  с шагом  $\Delta(2\theta) = 0.02^{\circ}$  на дифрактометре Shimadzu XRD-7000 в Си $K_{\alpha 1,2}$ -излучении. Время сканирования в каждой точке составляло 10 с. Структуру синтезированных порошков сульфида серебра уточняли с помощью программного пакета X'Pert HighScore Plus [20]. Средний размер (D) частиц (более точно – средний размер областей когерентного рассеяния) в полученных нанопорошках сульфида серебра находили методом Вильямсона-Холла по уширению дифракционных отражений, используя зависимость приведенного уширения отражений  $\beta^*(2\theta) = [\beta(2\theta)\cos\theta]/\lambda$  от вектора рассеяния  $s = (2\sin\theta)/\lambda$  [21, 22]. Для определения уширения  $\beta(2\theta)$  экспериментальную ширину на половине высоты FWHM<sub>ехр</sub> каждого дифракционного отражения сравнивали с инструментальной функцией разрешения FWHM<sub>R</sub> дифрактометра, предварительно измеренной на стандартном образце гексаборида лантана LaB<sub>6</sub> (NIST Standart Reference Powder 660a) с периодом решетки a = 0.415692 нм. В хорошо отожженном гомогенном крупнозернистом порошке LaB<sub>6</sub> со средним размером частиц 5 мкм отсутствуют причины, вызывающие физическое уширение дифракционных отражений (малый размер частиц, микронапряжения, негомогенность), и наблюдается только инструментальное уширение дифракционных отражений.

Для изучения микроструктуры, размера частиц и элементного химического состава порошков  $Ag_2S$  использовали сканирующий электронный микроскоп JEOL-JSM LA 6390 с энергодисперсионным рентгеновским анализатором JED 2300 Energy Dispersive X-ray Analyzer и просвечивающий

| Вид сульфида<br>серебра | Nº | Концентрация реагентов<br>в реакционной смеси, ммоль /л |                   |                     | $S_{\rm sp},{\rm m}^2/{ m r}$ | <i>D</i> , нм            |           |                           |       |
|-------------------------|----|---------------------------------------------------------|-------------------|---------------------|-------------------------------|--------------------------|-----------|---------------------------|-------|
|                         |    |                                                         |                   |                     |                               | в осажденных<br>порошках |           | в коллоидных<br>растворах |       |
|                         |    | AgNO <sub>3</sub>                                       | Na <sub>2</sub> S | Na <sub>3</sub> Cit |                               | БЭТ                      | рентген   | ДРС                       | ПЭМ   |
| Крупнокри-              | 1  | 50                                                      | 200               | 0                   | $0.82\pm0.02$                 | 1008                     | _         | _                         | _     |
| сталлический<br>порошок | 2  | 50                                                      | 500               | 5                   | $1.6\pm0.1$                   | 515                      | _         | _                         | —     |
|                         | 3  | 50                                                      | 100               | 25                  | $1.9\pm0.1$                   | 430                      | _         | _                         | _     |
|                         | 4  | 50                                                      | 50                | 100                 | $5.1\pm0.1$                   | 163                      | $85\pm7$  | _                         | —     |
| Наночастицы             | 5  | 50                                                      | 25.5              | 12.5                | $14.9\pm0.2$                  | $56\pm5$                 | $46\pm8$  | $55\pm10$                 | _     |
|                         | 6  | 50                                                      | 25.4              | 25                  | $19.0\pm0.2$                  | $44 \pm 5$               | $43\pm 6$ | $60\pm10$                 | _     |
|                         | 7  | 50                                                      | 25.1              | 100                 | $15.6\pm0.2$                  | $53\pm5$                 | $49\pm8$  | $66 \pm 10$               | —     |
| Квантовые               | 8  | 0.3125                                                  | 0.165             | 5                   | -                             | Нет осадка               |           | $2.3 \pm 1$               | 2-3   |
| точки                   | 9  | 0.3125                                                  | 0.168             | 2.5                 | _                             | »                        |           | $2.7 \pm 1$               | 2-3   |
|                         | 10 | 0.3125                                                  | 0.170             | 1                   | _                             | »                        |           | $3.1 \pm 1$               | 2-4   |
|                         | 11 | 0.625                                                   | 0.313             | 5                   | _                             | »                        |           | $4.2\pm2$                 | 3-4   |
|                         | 12 | 0.625                                                   | 0.325             | 3.75                | _                             | »                        |           | $5.6\pm2$                 | 5-6   |
|                         | 13 | 2.5                                                     | 1.30              | 1                   | _                             | »                        |           | $8.0\pm2$                 | 8-10  |
|                         | 14 | 1.25                                                    | 0.635             | 1.25                | _                             | »                        |           | $8.2\pm2$                 | 8-10  |
|                         | 15 | 0.625                                                   | 0.330             | 2.5                 | _                             | »                        |           | $9.2\pm2$                 | 8-10  |
|                         | 16 | 0.625                                                   | 0.335             | 1.25                | _                             | »                        |           | $10.0\pm2$                | 9-11  |
|                         | 17 | 2.5                                                     | 1.35              | 2.5                 | _                             | »                        |           | $15.0\pm3$                | 11-12 |
|                         | 18 | 0.625                                                   | 0.350             | 15                  | _                             | »                        |           | $16.0\pm4$                | 10-12 |
|                         | 19 | 1.25                                                    | 0.630             | 7.5                 | -                             | »                        |           | $17.0 \pm 5$              | 12-15 |

**Таблица 1.** Состав реакционных смесей, удельная поверхность *S*<sub>sp</sub> порошков, средний размер *D* частиц сульфида серебра в порошках и коллоидных растворах

электронный микроскоп JEOL JEM-2010, на котором методом просвечивающей электронной микроскопии (ПЭМ) определяли размер наночастиц сульфида серебра в коллоидных растворах.

Элементный химический состав синтезированных порошков сульфида серебра определяли также методом рентгеновской флуоресцентной спектроскопии (РФС) на рентгенофлуоресцентном спектрометре S4 EXPLORER (Bruker). Все измерения проводили в вакууме в режиме высокой чувствительности с автоматическим подбором фильтров для возбуждающего излучения. Для измерений использовали таблетки диаметром 18 мм, спрессованные из исследуемого порошка на подложке из амидного воска Licowax C micropowder. Количественное содержание серебра и серы как основных элементов находили по интенсивности линий  $\operatorname{Ag} K_{\alpha 1}$  и  $\operatorname{S} K_{\alpha 1}$  с энергиями 22.16292 и 2.30784 кэВ, а также линий *K*<sub>α2</sub> и *K*<sub>β1</sub> серебра и серы. Содержание других элементов определяли по интенсивностям линий  $K_{\alpha 1}$ ,  $K_{\alpha 2}$  и  $K_{\beta_1}$  этих элементов.

Средний размер частиц Ag<sub>2</sub>S оценивали также по величине удельной поверхности синтезирован-

ных порошков ( $S_{sp}$ ) как  $D = 6/\rho S_{sp}$  ( $\rho = 7.25$  г см<sup>-3</sup> – плотность сульфида серебра). Величину удельной поверхности находили экспериментально методом Брунауэра–Эммета–Теллера (**БЭТ**) на анализаторе удельной поверхности Gemini VII 2390t Surface Area Analyzer.

Размер D наночастиц Ag<sub>2</sub>S непосредственно в коллоидных растворах определяли методом динамического рассеяния света (ДРС) на приборе Zetasizer Nano ZS (Malvern Instruments Ltd) при температуре 298 K с использованием He-Ne-лазера. Для воспроизводимости результатов размер частиц в каждом растворе измеряли не менее трех раз.

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно результатам РФС, содержание серебра и серы в порошках сульфида серебра составляет 79.5  $\pm$  0.5 и 12.0  $\pm$  0.5 мас. % соответственно, что отвечает сульфиду серебра  $Ag_{2.00 \pm 0.06}S_{1.00 \pm 0.03}$  (рис. 1). Синтезированные порошки содержат также от 0.3 до 0.5 мас. % Na, источником которого является адсорбированный поверхностью порошков цитрат натрия Na<sub>3</sub>Cit, и ~7.5



**Рис. 1.** Рентгенофлуоресцентный анализ нанопорошка сульфида серебра. Показаны линии  $SK_{\alpha 1}$  и Ag $K_{\alpha 1}$ , зафиксированные при съемке в режиме высокой чувствительности с фильтром CuLiF200. Интенсивности и энергии приведены в логарифмической шкале.

мас. % примесного кислорода, также адсорбированного поверхностью сульфидных порошков. Длительный высоковакуумный отжиг порошков уменьшал содержание адсорбированного кислорода до 1.5–2.0 мас. %.

Рентгенограммы порошков сульфида серебра Ag<sub>2</sub>S, осажденных из реакционных смесей 2 и 6 (табл. 1), показаны на рис. 2 как пример. Размер D частиц крупнокристаллических порошков 1-3 находили по величинам измеренных удельных поверхностей  $S_{sp}$ , составивших от ~0.82 до ~1.61 м<sup>2</sup>/г. Для уточнения кристаллической структуры крупнокристаллического порошка использовали рентгенограмму 2 (рис. 2). Из количественного уточнения рентгенограммы 2 и сравнения с данными [23] следует, что наблюдаемые дифракционные отражения соответствуют однофазному моноклинному (пр. гр.  $P2_1/c$ ) стехиометрическому сульфиду серебра со структурой акантита  $\alpha$ -Ад<sub>2</sub>S. Найденные на основе экспериментальных дифракционных данных параметры кристаллической решетки крупнокристаллического моноклинного акантита  $\alpha$ -Ag<sub>2</sub>S равны: a = 0.42264(2), b = 0.69282(3),c = 0.95317(3) HM,  $\beta = 125.554(2)^{\circ}$ .

По данным энергодисперсионного рентгеновского анализа, содержание Ag и S в просушенном крупнокристаллическом порошке сульфида серебра со средним размером частиц ~500 нм составляет 86.8  $\pm$  0.4 и 12.9  $\pm$  0.1 мас. % соответственно. В пределах ошибки измерений это соответствует стехиометрическому сульфиду Ag<sub>2</sub>S и согласуется с данными РФС.

Рентгенограммы нанопорошков сульфида серебра со средним размером частиц от ~40 до ~50 нм, осажденных из реакционных смесей 5, 6 и 7, сходны между собой. Как пример на рис. 2 показана рентгенограмма нанопорошка 6. Количественное

уточнение рентгенограмм нанопорошков проводили с учетом варьирования заполнения кристаллографических позиций атомами серебра и серы, что позволило заметно повысить сходимость. По результатам ууточнения структуры нанопорошков сульфида серебра и сравнения с данными [24], наблюдаемый набор дифракционных отражений соответствует моноклинному (пр. гр.  $P2_1/c$ ) сульфиду серебра, причем координаты атомов Ад и S и параметры элементарной ячейки нанопорошков близки к таковым для крупнокристаллического сульфида Ag<sub>2</sub>S. Однако степень заполнения кристаллографических позиций 4е атомами серебра Ag(1) и Ag(2) в нанопорошках оказалась несколько <1. В частности, для нанопорошка 6 степень заполнения позиций 4е атомами серебра Ag(1) и Ag(2) равна ~0.97 и ~0.96 соответственно. Это означает, что наночастицы сульфида серебра с размером менее ~50-60 нм содержат вакантные узлы в металлической подрешетке, являются нестехиометрическими и имеют состав ~Ag<sub>1,93</sub>S. Факторы сходимости Ритвельда составили: R<sub>1</sub>  $(R_{\rm B}) = 0.0555, R_{\rm p} = 0.1165, \omega R_{\rm p} = 0.1431.$  Согласно выполненному расчету, нанокристаллический порошок состава Ag<sub>1.93</sub>S имеет моноклинную (пр. гр.  $P2_1/c$ ) структуру типа акантита со следующими параметрами элементарной ячейки: а = = 0.4234(3), b = 0.6949(3), c = 0.9549(5) HM,  $\beta =$ = 125.43(6)°. Видно, что параметры элементарных ячеек крупнокристаллического и нанокристаллического моноклинных сульфидов серебра немного отличаются.

Выполненное уточнение рентгенограмм показало, что нанопорошки являются нестехиометрическими и имеют состав от  $Ag_{1.93}S$  до  $Ag_{1.97}S$ . Дифракционные отражения нанопорошков уширены, вследствие чего близко расположенные отражения перекрываются. На вставке к рентге-



**Рис. 2.** Рентгенограммы порошков сульфида серебра, осажденных из реакционных смесей 2 и 6 (табл. 1). Крупнокристаллический порошок 2 со средним размером частиц ~500 нм имеет стехиометрический состав  $Ag_2S$ . Нанопорошок 6 со средним размером частиц ~43 нм является нестехиометрическим и имеет состав  $Ag_{1.93}S$ . Оба порошка имеют моноклинную (пр. гр.  $P2_1/c$ ) структуру типа акантита. Рентгенограммы записаны в излучении Cu $K_{\alpha 1, 2}$ .

нограмме нанопорошка 6 показана оценка среднего размера D областей когерентного рассеяния по уширению неперекрывающихся дифракционных отражений (-1 0 2), (1 1 0), (-1 1 3), (-1 0 4), (0 3 1) и (0 1 4). Согласно этой оценке, в нанопорошке 6 средний размер D наночастиц равен 43 ± 6 нм. По аналогичным оценкам, в нанопорошках 5 и 7 сульфида серебра средний размер D наночастиц составляет 46 ± 8 и 49 ± 8 нм. Размер наночастиц сульфида серебра, найденный по уширению дифракционных отражений, хорошо согласуется с оценкой размера частиц методом БЭТ (табл. 1).

Средние размеры частиц, найденные методами рентгеновской дифракции и БЭТ, подтверждаются электронно-микроскопическими данными. В качестве примера на рис. 3 приведены изображения крупнокристаллического порошка 2 и нанопорошка 5, полученные с помощью сканирующей (СЭМ) и просвечивающей электронной микроскопии (ПЭМ) соответственно. Размер частиц в крупнокристаллическом порошке 2 составляет 400–500 нм, а в нанопорошке 5 – от 40 до 60 нм.

По данным ДРС, размер наночастиц  $Ag_2S$  в коллоидных растворах 8—19 не превышает 20 нм (рис. 4), и эти наночастицы можно рассматривать как квантовые точки, т.е. частицы, на полупроводниковых свойствах которых могут наблюдаться квантовые размерные эффекты.

ПЭМ-изображения коллоидных растворов 13 и 17, показанные как пример на рис. 5, а также приведенные в табл. 1 размеры наночастиц (по данным ПЭМ) подтверждают результаты ДРС-измерений размера наночастиц.

На просвет полученные коллоидные растворы в прямом проходящем свете являются светло-коричневыми и полностью прозрачными, но со стороны выглядят полупрозрачными и голубоватыми, что свидетельствует об их опалесценции. Наблюдаемая опалесценция растворов является следствием флуктуаций плотности, на которых рассеивается свет и которые обусловлены присутствием в растворах малых частиц размером <20 нм.

Стабильность полученных коллоидных растворов можно установить измерениями  $\zeta$ -потенциала наночастиц в растворе. Признаком электростатической стабильности коллоидных растворов являются абсолютные значения  $\zeta$ -потенциала, лежащие в пределах от  $-35 \pm 15$  до  $+35 \pm 15$  мВ. Измерения  $\zeta$ -потенциала и размера наночастиц методом ДРС показали, что через 3 сут после синтеза растворов 8–19 их  $\zeta$ -потенциал составлял от -45 до -28 мВ, а размер наночастиц был равен 2–13 нм. Через 100 сут после синтеза  $\zeta$ -потенциал и размер наночастиц Аg<sub>2</sub>S почти не изменились. Большая отрицательная величина  $\zeta$ -потенциала коллоидных растворов 8–19 и ее малое изменение при

(а) 2 мкм (б) 200 нм

**Рис. 3.** СЭМ-изображение крупнокристаллического порошка 2 (а) и ПЭМ-изображение нанопорошка 5 сульфида серебра (б).

длительном хранении растворов подтверждают их стабильность.

Сульфид серебра  $Ag_2S$  имеет одно из наименьших произведений растворимости  $K_{sp}$ , равное 6.3 × × 10<sup>-50</sup> при 298 К [25, 26]. Это в ~10<sup>23–28</sup> раз меньше, чем произведения растворимости сульфидов кадмия, свинца или цинка, равные 7.9 × 10<sup>-27</sup>, 2.5 × × 10<sup>-27</sup> и 2.5 × 10<sup>-22</sup> соответственно [25]. При такой ничтожной растворимости осаждение  $Ag_2S$ при достаточном содержании  $Na_2S$  в реакционной смеси происходит очень быстро, за несколько секунд.

Образование сульфида серебра возможно и действительно происходит, если его ионное произведение IP =  $a_{Ag^+}^2 a_{S^{2-}} = \gamma_{Ag^+}^2 C_{Ag^+}^2 \gamma_{S^{2-}} C_{S^{2-}}^2$  больше произведения растворимости  $K_{sp}$ . Из-за малой вели-



**Рис. 4.** Размерное распределение частиц сульфида серебра в коллоидных растворах 8–19, измеренное методом ДРС (табл. 1). Размер *D* представлен в логариф-мических координатах.

чины произведения растворимости реакционные смеси, использованные для получения порошков и коллоидных растворов с квантовыми точками сульфида серебра, являются пересыщенными по





**Рис. 5.** ПЭМ-изображения коллоидных растворов 17 (а) и 13 (б) (табл. 1).

сульфиду серебра. Величину пересыщения  $\Delta_{ss}$ , характеризующую превышение ионного произведения соединения над его произведением растворимости, определяют как

$$\Delta_{ss} = \mathrm{IP}/K_{sp} = \gamma_{\mathrm{Ag}^{+}}^{2} C_{\mathrm{Ag}^{+}}^{2} \gamma_{\mathrm{S}^{2-}} C_{\mathrm{S}^{2-}}^{2} / K_{\mathrm{sp}}.$$
 (2)

Если ионная сила *I* раствора больше нуля (I > 0), то при расчете ионного произведения нужно учитывать коэффициенты активности  $\gamma_i$  соответствующих ионов. Модель учета взаимодействия ионов развита в работе [27]. В ней показано, что коэффициенты  $\gamma_i$  представляют как

$$\ln \gamma_i = \ln \gamma_i^{\text{DH}} + \sum_j \varepsilon_{i,j}(I)m_j + \sum_j \sum_k c_{ijk}m_jm_k + ...,$$
(3)

где m — моляльная концентрация,  $\ln \gamma_i^{DH} \sim -z_i^2 A I^{1/2}$ ,  $\gamma_i^{DH}$  — коэффициент активности, полученный по уравнению Дебая—Хюккеля,  $z_i$  — заряд иона, A — const;  $\varepsilon_{ij}(I)$  и  $c_{ijk}$  — коэффициенты разложения, первый из которых зависит, а второй не зависит от ионной силы раствора. Однако для большинства ионов коэффициенты  $\varepsilon_{ij}(I)$  и  $c_{ijk}$  не известны, поэтому реально использовать теоретическое выражение (3) для оценки коэффициентов активности невозможно.

Активность ионов серебра, т.е. долю незакомплексованных ионов серебра, способных вступать в реакцию с ионами серы, можно оценить, используя константы нестойкости разных комплексных форм серебра. В отечественной и зарубежной справочной литературе по аналитической химии нет сведений об образовании комплексов ионов серебра с ионами цитрата. Но в водных растворах серебро образует моно-, ди- и тригидроксокомплексы Ag(OH), Ag(OH)<sub>2</sub><sup>1-</sup> и Ag(OH)<sub>3</sub><sup>2-</sup> с константами нестойкости K (pK = -lgK):  $K_{11} = \frac{[Ag(OH)]}{[Ag^+][OH^-]} = 5 \times 10^{-3}, K_{12} = \frac{[Ag(OH)_2^{1-}]}{[Ag^+][OH^-]^2} = 1 \times$ × 10<sup>-4</sup> и  $K_{13} = \frac{[Ag(OH)_3^{2-}]}{[Ag^+][OH^-]^3} = 6.3 \times 10^{-6} (pK_{11} = 2.3, pK_{12} = 4.0, pK_{13} = 5.2)$  [25]. Образование гидроксокомплексов снижает количество свободных ионов  $Ag^+$  в растворе. Если  $C_{Ag,\Sigma} = [Ag^+] +$ +  $[Ag(OH)] + [Ag(OH)_2^{1-}] + [Ag(OH)_3^{2-}]$  есть суммарная концентрация всех растворимых форм серебра (свободных ионов серебра и его гидроксокомплексов). то с учетом констант нестойкости

$$C_{Ag,\Sigma} = = [Ag^+] \{ 1 + K_{11} [OH^-] + K_{12} [OH^-]^2 + K_{13} [OH^-]^3 \}.$$
 (4)

В нейтральной среде  $[OH^-] = [H^+] = 10^{-7}$ , поэтому заменяя в (4) концентрации  $[OH^-]$  на  $[H^+]$ получим, что в соответствии с (4) концентрация ионов серебра  $[Ag^+]$ , участвующих в образовании  $Ag_2S$ , равна

$$[Ag^{+}] = \frac{C_{Ag,\Sigma}}{1 + K_{11}[H^{+}] + K_{12}[H^{+}]^{2} + K_{13}[H^{+}]^{3}}.$$
 (5)

Поскольку осаждение нанокристаллического сульфида серебра происходит в нейтральной среде при pH 7, из (5) получим, что концентрация  $[Ag^+] = C_{Ag^+} \approx C_{Ag,\Sigma}.$ 

В водных растворах ионы серы существуют в форме S<sup>2–</sup>, HS<sup>–</sup> и H<sub>2</sub>S. Согласно диаграмме ионных равновесий в системе S<sup>2–</sup>–H<sub>2</sub>O, представленной в электронном виде в [28], в области рН 7 долевая концентрация  $C_{S^{2-}}$  ионов S<sup>2–</sup> составляет ~0.01 от  $C_{S,\Sigma}$ .

Серебро не образует комплексов с цитратом, поэтому в данной работе в уравнении (2) для перехода от концентраций  $C_{Ag^+}$  и  $C_{S^{2-}}$  к активностям свободных ионов Ag<sup>+</sup> и S<sup>2-</sup> использовали справочные значения коэффициентов активности.

Ионная сила использованных растворов, оцененная как  $I = \frac{1}{2} \sum_{i} C_i z_i^2$ , где  $C_i$  – концентрация соответствующего иона, слабо меняется от 0.03 до 0.12 и в среднем составляет ~0.1. Согласно [25], при такой ионной силе коэффициенты активности равны:  $\gamma_{Ag^+} = 0.75$  и  $\gamma_{S^{2-}} = 0.38$ .

Величины пересыщения  $\Delta_{ss}$ , рассчитанные по уравнению (2) с учетом  $C_{Ag^+} \approx C_{Ag,\Sigma}, C_{S^{2-}} \approx 0.01 C_{S,\Sigma}$ ,  $\gamma_{Ag^+} = 0.75$  и  $\gamma_{S^{2-}} = 0.38$ , являются приближенными, но качественно показывают влияние пересыщения на размер частиц порошков и коллоидных растворов сульфида серебра. Зависимости размера (*D*) частиц коллоидных растворов и порошков сульфида серебра от пересыщения ( $\Delta_{ss}$ ) представлены на рис. 6 (пересыщение приведено в логарифмических координатах). Несмотря на большой разброс, видно, что увеличение размера частиц сульфида серебра происходит с ростом пересыщения реакционных смесей.

Влияние концентрации цитрата натрия как стабилизатора на размер частиц сульфида серебра отчетливо видно на коллоидных растворах с равной концентрацией AgNO<sub>3</sub> и меняющейся концентрацией цитрата натрия. Так, в растворах 11, 12, 15 и 16 (табл. 1) снижение концентрации Na<sub>3</sub>Cit от 5 до 3.75, 2.5 и 1.25 ммоль/л приводит к росту квантовых точек от 4.2 до 5.6, 9.2 и 10.0 нм вследствие уменьшения стабилизирующего эффекта цитрата натрия. То же самое наблюдается на кол-





25

20

15

10

5

0

D, HM

**Рис. 6.** Зависимость размера частиц сульфида серебра в коллоидных растворах (а) и порошках (б) от величины пересыщения  $\Delta_{ss}$  исходных реакционных смесей (пересыщение  $\Delta_{ss}$  представлено в логарифмических координатах).

лоидных растворах 8, 9 и 10. Таким образом, в области концентраций  $C_{\text{Na}_3\text{Cit}} \leq 5$  ммоль/л рост концентрации цитрата натрия в реакционной смеси способствует синтезу меньших по размеру частиц сульфида серебра.

## ЗАКЛЮЧЕНИЕ

Однофазные порошки сульфида серебра с моноклинной (пр. гр.  $P2_1/c$ ) структурой типа акантита  $\alpha$ -Ag<sub>2</sub>S синтезированы методом осаждения из водных растворов нитрата серебра, сульфида натрия и цитрата натрия. Постепенное изменение соотношения между концентрациями реагентов позволяет осаждать частицы Ag<sub>2</sub>S с заданным средним размером от ~1000 до 40–50 нм. Сульфид серебра с размером частиц >100 нм имеет стехиометрический состав Ag<sub>2</sub>S, а нанокристаллический сульфид серебра с размером частиц <60 нм содержит структурные вакансии в металлической подрешетке, т.е. является нестехиометрическим и имеет состав Ag<sub>1.93-1.97</sub>S.

Водные коллоидные растворы квантовых точек сульфида серебра с размером от 2—3 до 15—20 нм сохраняют стабильность более 3 лет.

Размер частиц сульфида серебра в порошках и коллоидных растворах связан с пересыщением исходных реакционных смесей по содержанию ионов серебра и серы. В области малых концентраций рост содержания цитрата натрия в реакционной смеси стабилизирует наночастицы и способствует синтезу меньших по размеру частиц сульфида серебра.

#### БЛАГОДАРНОСТЬ

Автор благодарит проф. В.Ф. Маркова за полезное обсуждение.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-73-20012) в Институте химии твердого тела УрО РАН.

#### СПИСОК ЛИТЕРАТУРЫ

- Schaefer H.-E. Nanoscience. The science of the Small in Physics, Engineering, Chemistry, Biology and Medicine. Heidelberg–Dordrecht–N.Y.: Springer, 2010.772 p. https://doi.org/10.1007/978-3-642-10559-3
- Tang A., Wang Yu., Ye H. et al. // Nanotechnology. 2013. V. 24. № 35. P. 355602. https://doi.org/10.1088/0957-4484/24/35/355602
- Sadovnikov S.I., Gusev A.I. // J. Mater. Chem. A. 2017. V. 5. № 34. P. 17676. https://doi.org/10.1039/C7TA04949H
- Sadovnikov S.I., Rempel A.A., Gusev A.I. // Russ. Chem. Rev. 2018. V. 87. № 4. Р. 303. [Садовников С.И., Ремпель А.А., Гусев А.И. // Успехи химии. 2018. Т. 87. № 4. С. 303. dx.doi.org/10.1070/RCR4803locatt=label:RUSSIAN] https://doi.org/10.1070/RCR4803
- Zhang Y., Liu Y., Li C. et al. // J. Phys. Chem. C. 2014.
   V. 118. № 9. P. 4918. https://doi.org/10.1021/jp501266d
- Goel S., Chen F., Cai W. // Small. 2013. V. 10. № 4. P. 631. https://doi.org/10.1002/smll.201301174
- Shi X., Zheng S., Gao W. et al. // J. Nanopart. Res. 2014.
   V. 16. № 12. P. 2741. https://doi.org/10.1007/s11051-014-2741-3
- Sadovnikov S.I., Gusev A.I., Rempel A.A. // Russ. Chem. Rev. 2016. V. 85. № 7. Р. 731. [Садовников С.И., Гусев А.И., Ремпель А.А. // Успехи химии. 2016. Т. 85. № 7. С. 731. dx.doi.org/10.1070/RCR4594?locatt=label:RUSSIAN] https://doi.org/10.1070/RCR4594

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 10 2019

- 9. Sadovnikov S.I., Gusev A.I. // J. Alloys Compd. 2014. V. 610. P. 196. http://dx.doi.org/10.1016/j.jallcom.2014.04.220
- 10. Hoang H.Y., Akhmadullin R.M., Akhmadullina F.Yu. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 2. Р. 256. [Хоанг Х.И., Ахмадуллин Р.М., Ахмадуллина Ф.Ю. и др. // Журн. неорган. химии. 2018. № 2. С. 245. https://doi.org/10.7868/S0044457X18020174] https://doi.org/10.1134/S0036023618020109
- 11. Junod P. // Helv. Phys. Acta. 1959. V. 32. № 6-7. P. 567.
- Chen R., Nuhfer N.T., Moussa L. et al. // Nanotechnology. 2008. V. 19. № 45. P. 455604. https://doi.org/10.1088/0957-4484/19/45/455604
- Rempel A.A. // Russ. Chem. Rev. 2007. V. 76. № 5. Р. 435. doi.org/ [Ремпель А.А. // Успехи. химии. 2007. Т. 76. № 5. С. 474.] https://doi.org/10.1070/RC2007v076n05ABEH003674
- 14. *Марков В.Ф., Маскаева Л.Н., Иванов П.Н.* Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: Изд-во УрО РАН, 2006. 217 с. ISBN 5-7691-1766-4
- Kwon S.G., Hyeon T. // Accounts Chem. Res. 2008.
   V. 41. № 12. P. 1696. https://doi.org/10.1021/ar8000537
- Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. Р. 1303. [Панасюк Г.П., Козерожец И.В., Семенов Е.А. и др. // Журн. неорган. химии. 2018. № 10. С. 1286.] https://doi.org/10.1134/S0036023618100157

- Chen R., Nuhfer N.T., Moussa L. et al. // Nanotechnology. 2008. V. 19. № 45. Paper 455604. https://doi.org/10.1088/0957-4484/19/45/455604
- Xiong S., Xi B., Zhang K. et al. // Sci. Rep. 2013. V. 3. Paper 2177. https://doi.org/10.1038/srep02177
- Zhang W., Zhang L., Hui Z. et al. // Solid. State Ionics. 2000. V. 130. № 1–2. P. 111. https://doi.org/10.1016/S0167-2738(00)00497-5
- 20. X'Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
- 21. Williamson G.K., Hall W.H. // Act. Metal. 1953. V. 1. Nº 1. P. 22.
- Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2009. 416 с. ISBN 978-5-9221-0582-8
- Sadovnikov S.I., Gusev A.I., Rempel A.A. // Superlatt. Microstr. 2015. V. 83. P. 35. https://doi.org/10.1016/j.spmi.2015.03.024
- 24. Sadovnikov S.I., Gusev A.I., Rempel A.A. // Phys. Chem. Chem. Phys. 2015. V. 17. № 19. P. 12466. https://doi.org/10.1039/C5CP00650C
- 25. *Лурье Ю.Ю*. Справочник по аналитической химии. М.: Химия, 1967. 390 с.
- Patnaik P. Dean's Analytical Chemistry Handbook. N.Y.: McGraw-Hill, 2004. 1280 p. ISBN: 978-0071410601
- 27. Activity Coefficients in Electrolyte Solutions / Ed. Pitzer K.S. Boca Raton: CRC Press, 1991. P. 75.
- 28. http://www.novedu.ru/calc/fm-s.htm