ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123.2;546.33.175;546.657

СТЕКЛООБРАЗОВАНИЕ В СИСТЕМЕ AICl₃-(CH₃)₂SO-H₂O

© 2019 г. И. А. Кириленко^{1, *}, Л. И. Демина², В. П. Данилов¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ²Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр-т, 31, корп. 5, Москва, 119991 Россия

> *E-mail: iakirilenko@mail.ru Поступила в редакцию 12.03.2019 г. После доработки 29.03.2019 г. Принята к публикации 15.04.2019 г.

Впервые в системе $AlCl_3-(CH_3)_2SO-H_2O$ обнаружено явление стеклообразования, определены границы области стеклообразования и получено стекло состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$. Исследованы ИК-спектры стеклообразующих растворов в границах области стеклообразования и стекло состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$. Сделан вывод о вхождении (CH_3) $_2SO$ в первую координационную сферу иона алюминия через атом кислорода. Проведено калориметрическое исследование стекла состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ и определена его температура стеклования $T_g = -32.3^{\circ}C$.

Ключевые слова: стеклообразование, водородные связи, ИК-спектры, стекло, хлорид алюминия, диметилсульфоксид, вода

DOI: 10.1134/S0044457X19100076

ВВЕДЕНИЕ

Явление стеклообразования широко распространено в водно-электролитных и водно-неэлектролитных системах, и установление границ области стеклообразования в этих системах позволяет выделить область концентраций, растворы которой отличаются особым строением и силой водородных связей [1]. Актуальность работы заключается в значимости решения двух важных проблем: поиска новых составов для криопротекторов (одним из важнейших является диметилсульфоксид $(CH_3)_2SO)$ [2—6] и разработки методов получения алюминия электролизом солей алюминия в органических растворителях [7].

Настоящее исследование является продолжением работы [2], посвященной изучению конкуренции между диметилсульфоксидом и водой двумя универсальными растворителями — за вхождение в первую координационную сферу иона алюминия в неорганических солях алюминия с сохранением стеклообразного состояния. В работе [2] показано, что в системе $Al_2(SO_4)_3-(CH_3)_2SO-H_2O$ для стекла состава $Al_2(SO_4)_3 \cdot 3H_2O \cdot 8(CH_3)_2SO$ возможна полная замена молекул воды в первой координационной сфере иона алюминия на молекулы (CH₃)₂SO. Возникает вопрос: возможен ли аналогичный вариант при замене сульфата алюминия на хлорид алюминия. Интерес к хлориду алюминия обусловлен возможностью его использования при получении алюминия электролизом безводной соли в органическом растворителе, но наличие воды в первой координационной сфере алюминия в $AlCl_3 \cdot 6H_2O$ препятствует этому процессу, поэтому замена молекул воды в первой координационной сфере алюминия на органическое соединение может способствовать решению данной проблемы [7].

В связи с этим представляется целесообразным рассмотреть систему $AlCl_3-(CH_3)_2SO-H_2O$ с позиций конкуренции между такими сильными донорами, как (СН₃)₂SO и Н₂O, за вхождение в первую координационную сферу иона алюминия при сохранении стеклообразного состояния. Различные методы исследований показывают, что в жидком (СН₃)₂SO имеются агрегаты цепочечного строения, обусловленные кислородными связями [8, 9]. При смешивании с водой выделяется большое количество теплоты и смесь становится вязкой. Считается, что это обусловлено разрушением цепочечной структуры на основе кислородных связей и образованием новой, тоже цепочечной структуры, включающей водородные и кислородные связи. Известно [10], что силы взаимодействия между молекулами (CH₃)₂SO и воды в 1.5 раза больше, чем между молекулами воды.

Известно, что в бинарных системах $AlCl_3-H_2O$ и $(CH_3)_2SO-H_2O$, входящих в состав тройной системы $AlCl_3-(CH_3)_2SO-H_2O$, обнаружено явление стеклообразования.

В системе $(CH_3)_2SO-H_2O$ [11] границы области стеклообразования простираются от 13.5 до 31.5 мол. % $(CH_3)_2SO$, что соответствует соотношению $(CH_3)_2SO$: H_2O от 1.0: 6.5 до 1.0: 2.2. В границах области стеклообразования вблизи состава $(CH_3)_2SO \cdot 2H_2O$ наблюдаются экстремумы на концентрационных зависимостях ряда физико-химических свойств растворов: теплоты смешения [12], вязкости [13], диэлектрической проницаемости [14]. В работе [15] отмечаются аномальные явления, связанные с особенностями рассеяния света водными растворами $(CH_3)_2SO$, входящими в границы области стеклообразования системы $H_2O-(CH_3)_2SO$.

Стеклообразующие растворы системы $(CH_3)_2SO-H_2O$ при нагревании от температур жидкого азота до комнатной проходят через кристаллизацию, о чем свидетельствуют данные термического анализа [11]. Сам $(CH_3)_2SO$ (безводный) не стеклуется. В границах области стеклообразования значение T_g (температура стеклования) изменяется незначительно (от -132 до -124°C).

Область стеклообразования в системе $AlCl_3-H_2O$ невелика — от 3 до 6 мол. % $AlCl_3$, что соответствует соотношению $AlCl_3: H_2O$ от 1: 32 до 1: 16. T_g в границах области стеклообразования изменяется в интервале температур от -135 до $-105^{\circ}C$ [16].

Поскольку в работе [2] обнаружено явление стеклообразования в системе $Al_2(SO_4)_3$ — $(CH_3)_2SO-H_2O$ и установлено вхождение диметилсульфоксида в первую координационную сферу иона алюминия, интересно сравнить ее с системой $AlCl_3$ — $(CH_3)_2SO-H_2O$ на предмет сходства и различия в способности к стеклообразованию, а также рассмотреть формирование первой координационной сферы иона алюминия лигандами $(CH_3)_2SO$ и H_2O при сохранении стеклообразующей способности образцов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали $AlCl_3 \cdot 6H_2O$ "ч. д. а." и $(CH_3)_2SO$ марки Aldrich (99.9%). Стеклообразующие составы 1, 2, 3 готовили смешением заданных количеств хлорида алюминия и воды с дальнейшим замораживанием полученных растворов в жидком азоте по методике [16]. Синтез стеклообразующих образцов с меньшим содержанием воды проводили методом испарения насыщенных водных растворов в открытых контейнерах при температуре не выше $100^{\circ}C$ (для $(CH_3)_2SO$ $T_{\text{кип}} = 189^{\circ}C$) по методике, описанной в работе [17].

ИК-спектры образцов регистрировали в интервале $4000-550~{\rm cm^{-1}}$ методом нарушенного полного внутреннего отражения на ИК-Фурьеспектрометре NEXUS фирмы NICOLET с ис-

пользованием приставки MIRacle фирмы PIKE-Technologies с алмазным кристаллом.

Калориметрические исследования выполняли на дифференциальном сканирующем калориметре DSC823°METLERToledo в атмосфере аргона при скорости изменения температуры 10 град/мин в диапазоне температур от -100 до 100°C.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Стеклообразование в системе $AlCl_3$ — $(CH_3)_2SO$ — H_2O обнаружено впервые. Все растворы, входящие в границы области стеклообразования, при комнатной температуре представляют собой бесцветные прозрачные растворы разной степени вязкости. При охлаждении в жидком азоте они застывают в прозрачные стекла. При изъятии из жидкого азота замороженные стеклообразующие растворы в ходе нагревания переходят из стеклообразного состояния в раствор через кристаллизацию.

Область стеклообразования в этой тройной системе простирается непрерывно от области стеклообразования в бинарной системе AlCl-H₂O на соответствующей стороне треугольника составов через тройную систему $AlCl_3-(CH_3)_2SO-H_2O$ до области стеклообразования в бинарной системе $(CH_3)_2SO-H_2O$ на другой стороне треугольника (рис. 1). Впервые область стеклообразования, непрерывно пересекающая все поле треугольника составов, установлена в тройных водно-солевых системах [18]. Учитывая выводы работы [18], такая непрерывность области стеклообразования в данной системе, по-видимому, может быть обусловлена взаимозаменой молекул воды и $(CH_3)_2SO$ в полимерных структурах стеклообразующих составов, образованных посредством водородных связей.

Были исследованы ИК-спектры трех стеклообразующих растворов, входящих в границы области стеклообразования: $\mathbf{1} - 20$ мас. % AlCl₃, 15 мас. % (CH₃)₂SO, 65 мас. % H₂O; $\mathbf{2} - 15$ мас. % AlCl₃, 25 мас. % (CH₃)₂SO, 60 мас. % H₂O; $\mathbf{3} - 10$ мас. % AlCl₃, 40 мас. % (CH₃)₂SO, 50 мас. % H₂O.

Анализ ИК-спектров этих растворов (рис. 2) позволяет выделить в составе образцов по крайней мере два разных функциональных типа молекул воды. Широкая полоса $v_1(OH)$ с максимумом при $3356 \, \mathrm{cm}^{-1}$ относится к валентным колебаниям ОН-групп молекул воды, не входящих в первую координационную сферу иона Al^{3+} . Полоса $v_2(OH)$ в области более низких частот с максимумом при $2958 \, \mathrm{cm}^{-1}$ характеризует валентные колебания ОН молекул воды, непосредственно связанных с ионом Al^{3+} (аналогичная полоса в спектре $\mathrm{AlCl}_3 \cdot 6\mathrm{H}_2\mathrm{O}$ $\mathrm{v}(OH) = 2993 \, \mathrm{cm}^{-1}$). Уширенные полосы средней интенсивности при $2501 \, \mathrm{u} \, 2087 \, \mathrm{cm}^{-1}$ описывают

Рис. 1. Границы области стеклообразования в системе $AlCl_3-(CH_3)_2SO-H_2O.*-$ стеклообразующий образец, о — кристалл.

сложную систему водородных связей, осуществляющих взаимодействие между молекулами воды гидратной оболочки иона алюминия и молекулами (CH₃)₂SO. Полоса деформационных колебаний молекул воды $\delta(H_2O)$ в спектрах образцов $1{-}3$ несколько уширена и имеет два подмаксимума: $1635~{\rm cm}^{-1}$ для координированных молекул, как в спектре $AlCl_3 \cdot 6H_2O$, и $1642~{\rm cm}^{-1}$ для гидратных молекул воды, не входящих в первую координационную сферу иона алюминия.

Интенсивность полос, характеризующих колебания молекул воды, уменьшается от раствора 1 к 3. Одновременно увеличивается интенсивность полос, описывающих колебания молекул $(CH_3)_2SO$. Следует отметить, что полоса v(S=O) в спектрах образцов 1-3 (1006 см $^{-1}$) смещается в низкочастотную область относительно v(S=O) свободного (CH₃)₂SO (1042 см $^{-1}$). Величина смешения $\Delta v(S=O)$ 36 см⁻¹ в спектрах образцов **1**–3 соответствует значению $\Delta v(S=O)$ в спектре раствора (СН₃)₂SO в воде. Это является подтверждением того, что молекулы (СН₃)₂SO образуют водородные связи с молекулами воды гидратной оболочки иона алюминия. Молекулы (CH₃)₂SO в спектрах 1-3 характеризуются также полосами ν (CH₃) при 3003 и 2923 см⁻¹ (на фоне ν ₂(OH)), δ (CH₃) при 1436 и 1406 см⁻¹, δ (HCS) при 1319 см⁻¹ и v(CS) при 706 см⁻¹.

Поскольку полоса v(S=O) при $1042~cm^{-1}$ [19], описывающая колебания свободного $(CH_3)_2SO$, в спектрах стеклообразующих растворов отсутствует, можно предположить, что молекулы $(CH_3)_2SO$ участвуют в строении этих растворов. Исходя из составов этих растворов, в которых на одну молекулу хлорида алюминия приходится от 24 до 30 молекул воды, можно заключить, что молекулы $(CH_3)_2SO$ не входят в первую сферу алюминия.

Для выяснения возможности вхождения $(CH_3)_2SO$ в первую координационную сферу иона алюминия была предпринята попытка получить стеклообразные образцы с меньшим содержанием воды в области, прилегающей к бинарной системе $AlCl_3-(CH_3)_2SO$. Как и в работе [2], полу-

Рис. 2. ИК-спектры: a — образец **1**, δ — образец **2**, θ — образец **3**.

Рис. 3. ИК-спектры: $a - \text{AlCl}_3 \cdot 6\text{H}_2\text{O}$, $\delta - (\text{CH}_3)_2\text{SO}$, $\delta - \text{AlCl}_3 \cdot 2.9(\text{CH}_3)_2\text{SO} \cdot 4.8\text{H}_2\text{O}$, $\varepsilon - \text{AlCl}_3 \cdot 2.8(\text{CH}_3)_2\text{SO} \cdot 5.9\text{H}_2\text{O}$.

чить качественные стеклообразующие образцы в широкой области концентраций не удалось.

Получены стеклообразующие образцы общей формулы $AlCl_3 \cdot n(CH_3)_2SO \cdot mH_2O$, где n=2.6-4.1, m=3.7-5, которые в течение 3-5 сут теряют прозрачность. Однако среди них стекло состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ оказалось очень стабильным. Это стекло представляет собой прозрачный, слегка мягкий образец, при надавливании металлической палочкой на поверхность которого появляется небольшая вмятина, быстро исчезающая.

Невозможность получения качественного стеклообразного образца с бо́льшим содержанием $(CH_3)_2SO$ в первой координационной сфере алюминия, чем у состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$, хорошо согласуется с выводами работ [20-22], посвященных исследованию конкуренции между молекулами $(CH_3)_2SO$ и H_2O за вхождение в первую сферу. В работе [20] методом ЯМР исследована система $AlCl_3-(CH_3)_2SO-H_2O$ и установлено, что ионы алюминия в первой координационной сфере предпочтительно сольватируются молекулами воды, сделано заключение, что полная замена молекул воды на молекулы $(CH_3)_2SO$ невозможна из-за геометрии иона хлора.

Анализ ИК-спектров, представленных на рис. 3, показал, что молекулы $(CH_3)_2SO$, входящие в состав стекла, связаны с ионом Al^{3+} через атом кислорода. Об этом свидетельствует смещение в спектре стекла полосы v(S=O) в низкочастотную область до 995 см⁻¹. Согласно [19], частота валентных колебаний v(S=O) в комплексах, в кото-

рых (СН₃)₂SO входит в первую сферу атома металла через атом кислорода, соответствует интервалу частот валентных колебаний v(S=O) 915—1008 см⁻¹. Зафиксировано смещение в высокочастотную область и некоторых других полос в спектре стекла состава AlCl₃ · $2.9(CH_3)_2SO \cdot 4.8H_2O$ по сравнению со спектром свободного (CH₃)₂SO: v(CS) с 697 до 723 см $^{-1}$; δ (HCS) с 1310 до 1324 см $^{-1}$. Молекулы воды, не участвующие в образовании связи с $A1^{3+}$, характеризуются полосой v(OH) при 3320 cm^{-1} . Эти молекулы, по-видимому, участвуют в образовании водородных связей с молекулами воды первой координационной сферы иона алюминия и между собой. Согласно [23], эти водородные связи являются довольно сильными, характеризующимися в спектре уширенными полосами при 2465 и 2120 см⁻¹.

Наличие в стекле состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ как координированных с ионом Al^{3+} , так и некоординированных молекул воды приводит к уширению полосы $\delta(HOH)$ с расщеплением ее на подмаксимумы: 1635 см $^{-1}$ (координированные молекулы) и 1650 см $^{-1}$ (некоординированные молекулы).

На основании анализа ИК-спектра стекла состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ и выводов работ [19—24] можно заключить, что в стекле этого состава в первую координационную сферу иона алюминия входят и молекулы (CH_3) $_2SO$ (координируются через атом кислорода), и молекулы воды.

Было проведено наблюдение за состоянием стекла $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ во времени. Ос-

Рис. 4. Термограммы стекла состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$.

нованием для этого послужило наблюдаемое в работе [2] свойство стекла состава $Al_2(SO_4)_3 \cdot 3H_2O \cdot 8(CH_3)_2SO$ поглощать воду из воздуха. В течение двух месяцев прозрачный, мягкий, но не теряющий форму образец стекла $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ превратился в очень вязкую, прозрачную, с едва заметной подвижностью субстанцию, отвечающую составу $AlCl_3 \cdot 2.8(CH_3)_2SO \cdot 5.9H_2O$, что породило вопрос, как адсорбированная из воздуха вода проявится в VK-спектре.

Для ответа на этот вопрос был получен ИКспектр стеклообразующего состава AlCl₂ $\cdot 2.8(CH_3)_2SO \cdot 5.9H_2O$ (рис. 3г) и проведено его сравнение с ИК-спектром стекла состава AlCl₃ · $\cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ (рис. 3в). Очевидно, что ИК-спектры обоих образцов практически идентичны. Различие наблюдается только в низкочастотной области спектра и выражается в четко разрешаемых крутильных колебаниях воды, что, по-видимому, связано с ослаблением межмолекулярных связей [25, 26], обусловленным уменьшением вязкости по причине адсорбции воды из воздуха исследуемым образцом. В ИК-спектре это выражается появлением узких полос внеплоскостных деформационных колебаний воды при 879, 816, 791 см $^{-1}$ в спектре стекла состава AlCl₃. $\cdot 2.8 \, (CH_3)_2 SO \cdot 5.9 H_2 O$, тогда как в спектре образца состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ имеется одна уширенная полоса при 828 см^{-1} .

Таким образом, изменений в первой координационной сфере иона алюминия при сравнении спектров стеклообразующих составов $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ и $AlCl_3 \cdot 2.8(CH_3)_2SO \cdot 5.9H_2O$ не наблюдается, следовательно, увеличе-

ние количества воды в образце на одну молекулу, не приводит к существенным изменениям в составе координационной сферы атома алюминия.

Было проведено калориметрическое исследование стекла состава AlCl₃ · 2.9(CH₃)₂SO · 4.8H₂O. На рис. 4 представлена кривая нагревания в диапазоне температур от -100 до 100°C. На термограммах образца наблюдаются два термических эффекта. Первый – "ступенька теплоемкости", второй — эндотермический эффект после 40° C, связанный с испарением воды. После первого нагрева образец потерял 2.35% массы, при этом температура стеклования для второго нагрева увеличилась на 10° С ($T_{g1} = -32,3^{\circ}$ С, а $T_{g2} = -23^{\circ}$ С). Второй нагрев привел к потере массы на 1.43%. Таким образом, исходя из поставленной задачи по определению $T_{\rm g}$ нативного образца, можно сделать заключение, что интервал стеклования -35.5...-29.0°С, а $T_{\rm g} = -32.3$ °С. Отсутствие на кривой нагревания эффекта кристаллизации свидетельствует о стабильности стекла состава AlCl₃ · $\cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ к кристаллизации [1].

Большая разница в температурах стеклования $(T_{\rm g})$ образца состава ${\rm AlCl_3\cdot 2.9(CH_3)_2SO\cdot 4.8H_2O}$ $(T_{\rm g}=-32.3)$ и стеклообразующих растворов бинарных систем ${\rm AlCl_3-H_2O}$ и $({\rm CH_3)_2SO-H_2O}$ ($T_{\rm g}=-105...-135^{\circ}{\rm C}$) свидетельствует, очевидно, о сильном влиянии иона алюминия на силу водородных связей, отвечающих за явление стеклообразования в системе ${\rm AlCl_3-(CH_3)_2SO-H_2O}$.

Интересно отметить, что величина изменения теплоемкости стекла состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ при $T_g = -32^{\circ}C$ (0.490 Дж⁻¹ K) много выше аналогичных значений для ряда аморфных

полимеров. По данным MettlerToledo, где приведены типичные величины изменения теплоемкости аморфных полимеров C_2H_3Cl , $C_{27}H_{22}O_4S$ и $C_{16}O_8H_{14}$ (0.27—0.34 Дж ^{-1}K), их температура стеклования составляет от 80 до 225°C. Таким образом, можно предположить, что сила водородных связей, отвечающих за строение стекла состава $AlCl_3 \cdot 2.9(CH_3)_2SO \cdot 4.8H_2O$ значительно выше связей, отвечающих за строение приведенных для сравнения аморфных полимеров.

БЛАГОЛАРНОСТЬ

Аналитические измерения выполнены на оборудовании ЦКП ФМИВМ ИОНХ РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Программы фундаментальных научных исследований Президиума РАН № 37 "Фундаментальные основы создания металлических, керамических и композиционных конструкционных материалов с повышенным комплексом эксплуатационных характеристик".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Кириленко И.А.* Водно-электролитные стеклообразующие системы. М.: Красанд, 2016. 256 с.
- 2. *Кириленко И.А., Демина Л.И.* // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1. https://doi.org/10.1134/S0044457X18100100
- 3. *Buera M.P., Roos Y., Levine H. et al.* // Pure Appl. Chem. 2011. V. 83. № 8. P. 1567. https://doi.org/10.1351/PAC-REP-10-07-02
- Clegg J.S. // Comp. Biochem. Physiol. B. 2001. V. 128. P. 613.
- Shalaev E., Franks F. In Amorphous Food fnd Pharmaceutical Systems / Ed. Levine H. Cambridge, UK: RSC Publishing, 2002. P. 200.
- Солонина И.А., Родникова М.Н., Киселев М.Р. и др. // Журн. физ. химии. 2018. Т. 92. № 5. С. 751.
- Каблов В.Ф., Быкадоров Н.У., Жохова О.К. и др. // Вестн. Казанского технологического ун-та. 2013. Т. 16. № 1. С. 61.

- Кукушкин Ю.Н. // Соросовский образовательный журнал. 1997. № 9. С. 54.
- 9. *Белоусов В.П., Панов М.Ю.* Термодинамика водных растворов неэлектролитов. Л.: Химия, 1983. 265 с.
- Костяев А.А., Мартусевич А.К., Андреев А.А. и др. // Научное обозрение. Медицинские науки. 2016. № 6. С. 54.
- 11. *Rasmuussen D.H., Mackenzie A.P.* // Nature. 1968. V. 220. № 5174. P. 1315.
- 12. Белоусов В.П., Морачевский А.Г. Теплоты смешения жидкостей. Л.: Химия, 1970. 253 с.
- Рашковский Г.В., Овчинникова З.Ф., Пенкина Н.В. // Журн. прикл. химии. 1982. Т. 55. С. 1858.
- Koatze U., Brai M., Sholle H. et al. // J. Mol. Liq. 1990.
 V. 44. P. 197.
- 15. *Родникова М.Н., Захарова Ю.А., Солонина И.А. и др. //* Журн. физ. химии. 2012. Т. 86. № 5. С. 993.
- Angell C.A., Sare E.J. // J. Chem. Phys. 1970. V. 52.
 № 3. P. 1058.
- 17. *Kirilenko I.A.* // Russ. J. Inorg. Chem. 2017. V. 62. № 14. P. 1819. https://doi.org/10.1134/S00360236171140042
- Kirilenko I.A. // Russ. J. Inorg. Chem. 2018. V. 63. № 13.
 P. 1728.
 https://doi.org/10.1134/S0036023618130053
- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- 20. *Рындаревич С.Б.* Комплексообразование Al(III) в неводных растворах. Дис. ... канд. хим. наук. М., 1984.
- 21. *Frftello A.F., Lee R.E., Nishida V.M. et al.* // J. Chem. Phys. 1968. V. 48. № 8. P. 3705.
- Thovas S., Reynolds W.N. // Inorg. Chem. 1970. V. 9.
 № 1. P. 78.
- Юхневич Г.В., Коханов Е.Г. // Журн. прикл. спектроскопии. 1983. Т. 39. № 4. Р. 617.
- 24. Cotton F.A., Francis R., Horrocks W.D. // J. Phys. Chem. 1960. V. 64. № 10. P. 1534.
- 25. *Клементовская З.С., Носкова Т.А., Лященко А.К.* // Журн. физ. химия растворов. 2008. Т. 82. № 4. С. 668.
- Klemenkova Z.S., Kononova E.G. // J. Solution Chem. 2015. V. 44. P. 280. https://doi.org/10.1007/s10953-015-0300-x