ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2019, том 64, № 1, с. 72-81

ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 537.872;537.874

РАСЧЕТ ПАРАМЕТРОВ ФУЛЛЕРЕНА НА ОСНОВЕ РЕАЛИЗОВАННОГО ОДНОМЕРНОГО МЕТОДА ПОИСКА СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ФУНКЦИЙ В ОДНОМЕРНЫХ КЛАСТЕРАХ ПЛАНАРНОЙ, ЦИЛИНДРИЧЕСКОЙ И СФЕРИЧЕСКОЙ ГЕОМЕТРИИ

© 2019 г. Н. В. Юдина^{1,} *, Н. Р. Садыков¹

¹Снежинский физико-технический институт НИЯУ МИФИ, Россия, Челябинская обл., 456776 Снежинск, ул. Комсомольская, 8 *e-mail: y_natalya@mail.ru Поступила в редакцию 01.03.2018 г. После доработки 24.04.2018 г. Принята к публикации 04.07.2018 г.

На основе реализованного алгоритма рассчитаны собственные значения и собственные функции кластеров с планарной, цилиндрической и сферической геометрией с произвольными профилями потенциальной энергии. Проведено сравнение результатов численного и аналитического решений для кластеров различной геометрии. Предложенный алгоритм поиска собственных значений и собственных функций кластеров имеет степенную скорость сходимости решения к искомой собственной функции и совпадает со скоростью сходимости в модифицированном методе Виландта. На основе алгоритма вычислен геометрический потенциал от величины радиуса гигантского фуллерена для состояния с орбитальным моментом *l* = 0. Результаты расчетов хорошо совпадают с теоретически полученными данными.

Ключевые слова: математическое моделирование, уравнение Шредингера, собственные значения и собственные функции, двухслойная разностная схема, квантовая яма, гетероструктуры, нанотрубки, фуллерены, геометрический потенциал

DOI: 10.1134/S0044457X19010215

введение

В физике существует большое число задач, в которых необходимо знать собственные значения и собственные функции мод различных замкнутых систем. В качестве таких систем могут выступать кластеры (квантовые точки), которые имеют размеры масштаба нанометра и планарную, цилиндрическую и сферическую геометрию. Существуют оптические системы, такие как оптические резонаторы, волноводы, в частности световоды [1, 2]. В роли оптического резонатора на основе наноструктур могут служить гигантские фуллерены [3, 4] или нанотрубки. В случае резонаторов нужно знать собственные значения частоты, а в случае волноводов – постоянную распространения.

Для описания движения коллективизированных электронов в кластерах на основе наноструктур можно использовать одноэлектронное приближение — приближенный метод нахождения волновых функций и энергетических состояний квантовой системы со многими электронами. В основе одноэлектронного приближения лежит предположение, что квантовую систему можно описать как систему отдельных электронов, движущихся в усредненном потенциальном поле, которое учитывает взаимодействие как с ядрами атомов, так и с другими электронами. Волновая функция многоэлектронной системы в одноэлектронном приближении выбирается в детерминанте Слейтера в виде определенного набора функций [5, 6], зависящих от координат одной частицы и являющихся собственными функциями одноэлектронного гамильтониана с усредненным потенциалом.

В случае оптических резонаторов в зависимости от размеров систем существуют маломодовые и многомодовые системы. Если размеры систем соизмеримы с длиной волны излучения или длиной волны де Бройля, то реализуется маломодовая система, а если характерные размеры системы значительно больше длины волны, то реализуется многомодовая система. Исключение из этого правила наблюдается, например, в удлиненных нанотрубках, где малые поперечные размеры по отношению к продольной длине нанотрубок приводят к эффекту замедления, в результате чего длина волны излучения, соответствующая частоте первого резонанса, на два порядка больше длины нанотрубок. В качестве оптических резонаторов на основе наноструктур можно использовать, например, гигантские фуллерены [3, 4] или диэлектрические нанотрубки [7]. В таких системах существуют моды с резонансными частотами и собственными функциями. Системами, в которых реализовано большое число методов, позволяющих определить собственные значения (постоянные распространения) и собственные функции (векторы) мод, можно назвать диэлектрические волноводы, в частности световоды [1, 2]. Сами волноводы являются, по сути, резонаторами в поперечном к оси волновода направлении, а в продольном направлении спектр непрерывный. Среди приближенных методов особо следует выделить приближение Гаусса ([1], стр. 289), где собственная функция аппроксимируется функцией Гаусса, а размер данной моды (в световодах называют пятном моды) находится из условия минимума (в световодах – из условия максимума) собственного значения моды. Другой приближенный метод, который используется в волноводах, — это эквивалентный ступенчатый профиль показателя преломления [8, 9] (в световодах показатель преломления выполняет функцию потенциальной энергии). Другим часто используемым методом определения собственных значений и собственных функций является модифицированный метод Виландта (метод обратных итераций со сдвигом [10, 11]). Применительно к световодам в работах [12, 13] описан метод определения собственных значений и собственных векторов на основе решения разностного уравнения, аппроксимирующего нестационарное скалярное волновое уравнение (уравнение типа Шредингера). В работе [14] для кластеров с одномерной (планарной) геометрией изложен метод определения собственных значений и собственных векторов на основе решения разностного уравнения, аппроксимирующего уравнение Шредингера.

Логическим продолжением результатов работы [14] является рассмотрение кластеров со сферической и цилиндрической геометрией. Цилиндрическая геометрия соответствует нанотрубкам, а сферическая – фуллеренам [15, 16]. С таких позиций фуллерены обсуждались во многих работах [17, 18]. Гигантские фуллерены [19] являются перспективными материалами, которые еще не нашли технологического применения. В отличие от них, нанотрубки могут быть использованы как наноскопические электронные эмиттеры [20] или одномерные волокна [21]. Гигантские фуллерены перспективны как системы, способные совершать колебания по аналогии с заряженными каплями жидкости. В этой ситуации нанометровые размеры значительно повышают частоту резонансных колебаний, что представляет интерес с точки зрения ложных мишеней. В отличие от фуллеренов, размеры капелек не могут быть меньше одного микрометра из-за относительно большого значения вязкости воды [22–25]. Сами фуллерены могут образовывать кластеры, состоящие из нескольких молекул фуллеренов. В этом случае, согласно капельной модели, свободная энергия кластера в растворе кроме объемной имеет поверхностную составляющую [26, 27], т.е. сами кластеры будут вести себя как нанокапли.

В настоящей работе предлагается применить результаты работы [14] к кластерам сферической и цилиндрической геометрии, например, определить собственные значения фуллеренов в зависимости от радиуса, начиная от фуллеренов С₆₀ и заканчивая гигантскими фуллеренами [19].

Алгоритм поиска собственных значений и собственных функций в потенциальных полях различной геометрии

Выпишем нестационарное уравнение Шредингера:

$$i\hbar\frac{\partial\Phi}{\partial t} = -\frac{\hbar^2}{2m_e}\Delta\Phi + U\Phi = 0, \tag{1}$$

где m_e — масса электрона, \hbar — постоянная Планка, U — потенциальная энергия, являющаяся функцией одной координаты. Лапласианы Δ в одномерной декартовой, цилиндрической или сферической системе координат имеют вид:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} -$$
(2a)

декартова система координат;

$$\Delta = \frac{1}{\rho} \frac{\partial}{\rho} \left(\rho \frac{\partial}{\rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} -$$
(26)

цилиндрическая (артезианская) система координат;

$$\Delta = \frac{1}{r^2} \frac{\partial}{r} \left(r^2 \frac{\partial}{r} \right) + \frac{1}{r^2} \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} + \frac{1}{\sin \theta} \frac{\partial}{\theta} \left(\sin \theta \frac{\partial}{\theta} \right) \right] -$$
(2B)

сферическая система координат.

Представим волновые функции из (1) для случаев, когда потенциальная энергия имеет планарную, цилиндрическую и сферическую геометрию, определяющую эволюцию квантовой системы, в виде произведения медленно меняющихся амплитуд и быстро осциллирующих функций от экспоненты:

$$\Phi(t, x, z) = \Psi_{\text{plan}}(t, x) \exp\left[-i\tilde{E}t/\hbar + i\left(p_z/\hbar\right)z\right] - (3a)$$

декартова система координат;

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 1 2019

$$\Phi(t,\rho,z) = = \Psi_{\text{cyl}}(t,\rho) \exp\left[-i\tilde{E}t/\hbar + im\phi + i(p_z/\hbar)z\right] -$$
(36)

цилиндрическая система координат;

$$\Phi(t, r, \varphi, \theta) =$$

$$= \Psi_{\rm sph}(t, r) P_l(\cos \theta) \exp\left[-i\tilde{E}t/\hbar + im\varphi\right] -$$
(3B)

сферическая система координат.

В уравнении (36) *m* – магнитное квантовое число, в (3в) $P_l^m(\zeta)$ – присоединенные полиномы Лежандра от переменной $\zeta = \cos \theta$, *l* – орбитальное квантовое число.

Подставив (2) и (3) в (1), получим нестационарное уравнение Шредингера в кластерах с разной геометрией потенциальной энергии

$$i\hbar \frac{\partial \Psi_{\text{plan}}(t,x)}{\partial t} = -\frac{\hbar^2}{2m_e} \frac{\partial^2 \Psi_{\text{plan}}}{\partial x^2} + U(x)\Psi_{\text{plan}} - \quad (4a)$$

декартова система координат;

$$i\hbar \frac{\partial \Psi_{\text{cyl}}(t,\rho)}{\partial t} = -\frac{\hbar^2}{2m_e} \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) - \frac{m^2}{\rho^2} \right] \Psi_{\text{cyl}} + U(\rho) \Psi_{\text{cyl}} -$$
(46)

цилиндрическая система координат;

$$i\hbar \frac{\partial \Psi_{\rm sph}(t,r)}{\partial t} =$$

$$= -\frac{\hbar^2}{2m_e} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{l(l+1)}{r^2} \right] \Psi_{\rm sph} + \qquad (4B)$$

$$+ U(r) \Psi_{\rm sph} -$$

сферическая система координат.

Уравнение (4в) в результате преобразования

$$\Psi_{\rm sph} = \Psi_{\rm sph}^{(1)}(t,r) / \sqrt{r}$$
 (5)

легко сводится к уравнению (4б)

$$i\hbar \frac{\partial \Psi_{\rm sph}^{(1)}(t,r)}{\partial t} =$$

$$= -\frac{\hbar^2}{2m_e} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) - \frac{\left(l + 1/2\right)^2}{r^2} \right] \Psi_{\rm sph}^{(1)} + U(r) \Psi_{\rm sph}^{(1)}.$$
(6)

Планарная геометрия. Сначала рассмотрим квантовую систему с планарной геометрией. Уравнение (4а) с соответствующими начальными и краевыми условиями запишем в операторном виде:

$$i\hbar \frac{\partial \Psi_{\text{plan}}}{\partial t} = \delta \hat{H} \Psi_{\text{plan}}, \quad \delta \hat{H} = \hat{H} - E\hat{I},$$

$$-\frac{L}{2} \le x \le \frac{L}{2}, \quad \Psi_{\text{plan}} \left(t, x = \pm \frac{L}{2} \right) = 0, \quad (7)$$

$$\Psi_{\text{plan}}(t = 0, x) = f(x),$$

где $\hat{H} = -[\hbar^2/(2m_e)]\Delta_{\perp} + U$ является оператором Гамильтона, $\Delta_{\perp} = \partial^2/\partial x^2$, $E = \tilde{E} - p_z^2/(2\hbar)$. Введем для уравнения (7) на отрезках $-L/2 \le x \le L/2$ и $0 \le t \le t_0$ равномерную сетку

$$\omega_{h} = \begin{cases} x_{i} = ih - L/2, & i = 0, 1, 2, ..., & i_{\max}, & h = L/i_{\max}, (8) \\ t_{j} = j\tau, & j = 0, 1, 2, ..., & j_{\max}, & \tau = t_{0}/j_{\max}, \end{cases}$$

и аппроксимируем нестационарное уравнение Шредингера (7) двухслойной разностной схемой с весом $0 \le \sigma \le 1$:

$$\frac{\Psi^{j}(i) - \Psi^{j-1}(i)}{\tau} =$$

$$= -\frac{i}{\hbar} \delta \hat{A} \Big(\sigma \Psi^{j}(i) + (1 - \sigma) \Psi^{j-1}(i) \Big), \qquad (9)$$

$$\Psi^{j}(i = 0) = 0, \quad \Psi^{j}(i = i_{\max}) = 0, \quad \Psi^{j=0}(i) = f_{i},$$

где $\Psi^{j}(i) = \Psi_{\text{plan}}(t = t_{j}, x = x_{i})$ – сеточная функция, $\delta \hat{A}$ – разностный аналог дифференциального оператора $\delta \hat{H} = \hat{H} - E\hat{I}$

$$\delta \hat{A} \Psi^{j}(i) = \\ = \left(-\frac{\hbar^{2}}{2m_{e}} \frac{\Psi^{j}(i-1) - 2\Psi^{j}(i) + \Psi^{j}(i+1)}{h_{x}^{2}} + U_{i} \Psi^{j}(i) \right) - \\ - E \Psi^{j}(i).$$

Покажем, что при численном решении разностной схемы (9), аппроксимирующей нестационарное уравнение Шредингера (7), можно реализовать алгоритм поиска собственных значений и собственных функций. Будем искать решение разностного уравнения (9) по аналогии с методом разделяющихся переменных:

$$\Psi^{j}(i) = \sum_{\alpha} C_{\alpha}^{j} F_{\alpha}(i), \quad \delta \hat{A} F_{\alpha} = \delta E_{\alpha} F_{\alpha}, \quad (11)$$

где $\delta E_{\alpha} = (E_{\alpha} - E); E_{\alpha}, F_{\alpha}$ – разностные аналоги собственного значения и собственного вектора оператора Гамильтона \hat{H} . Подставив (11), в случае неявной разностной схемы [28] получим выражение для коэффициентов разложения:

$$C_{\alpha}^{j} = C_{\alpha}^{j-1} / (1 - i\tau \delta E_{\alpha} / \hbar).$$
⁽¹²⁾

Выберем *E* таким образом, чтобы для искомой α -моды выполнялось условие $|E - E_{\alpha}| < |E - E_{\beta}|$, где $\alpha \neq \beta$. Последнее означает, что амплитуда C_{α}^{j} для β -моды убывает быстрее, чем амплитуда C_{α}^{j} искомой α -моды. Если на каждой итерации численное решение уравнения (7) нормировать на постоянную величину, то через определенное

число итераций решение с заданной точностью

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 1 2019

совпадет с собственным вектором α -моды. Таким образом, на основе численного решения нестационарного скалярного волнового уравнения (1) можно осуществить поиск собственных значений и собственных векторов мод в одномерном кластере с планарной геометрией. Для этого нужно аппроксимировать нестационарное уравнение Шредингера (7) неявной двухслойной разностной схемой с весом $\sigma = 1$.

Цилиндрическая и сферическая геометрия. Результат, аналогичный равенству (12), получается для квантовых точек с цилиндрической и сферической геометрией. Поскольку случай потенциальной энергии со сферической геометрией (4в) сводится к случаю потенциальной энергии (6) с цилиндрической геометрией по аналогии с уравнением (4б), рассмотрим только алгоритм поиска собственных функций и собственных значений для потенциальной энергии с цилиндрической геометрией (4б).

Уравнение (4б) с соответствующими начальными и краевыми условиями запишем в операторном виде

$$i\hbar \frac{\partial \Psi_{\text{cyl}}(t,\rho)}{\partial t} = \delta \hat{H} \Psi_{\text{plan}}, \quad \delta \hat{H} = \hat{H} - E\hat{I},$$

$$0 \le \rho \le \rho_{\text{max}}, \quad \Psi_{\text{cyl}}(t,\rho = \rho_{\text{max}}) = 0,$$

$$\Psi_{\text{cyl}}(t = 0,\rho) = f(\rho), \quad \Psi_{\text{cyl}}(t,\rho = 0) = 0, \quad (13)$$

если $m \ne 0, \quad \partial \Psi_{\text{cyl}}(t,\rho = 0)/\partial \rho = 0,$
если $m = 0,$

где $\hat{H} = -\left[\hbar^2/(2m_e)\right]\Delta_{\perp} + U(\rho)$ является оператором Гамильтона, $\Delta_{\perp} = \rho^{-1}\partial(\rho\partial/\partial\rho)/\partial\rho$, $E = \tilde{E} - p_z^2/(2\hbar)$. В (13) выбор первого или второго краевого условия зависит от магнитных квантовых чисел *m* (при *m* = 0 нужно использовать второе краевое условие, а при *m* \neq 0 – первое краевое условие).

В случае потенциальной энергии со сферической геометрией уравнение (6) в операторном виде с краевыми условиями будет совпадать с уравнением (13), кроме случаев:

$$E = E, \ \rho \to r, \ U \to U(r), \ 0 \le r \le r_{\max}, \Psi_{\rm sph}(t, r = 0) = 0, \ \Psi_{\rm sph}(t, r_{\max} = 0) = 0, \ (14) l = 0, 1, 2, ...$$

Введем для уравнений (13) и (14) на отрезках $0 \le \xi \le \xi_{max}$ и $0 \le t \le t_0$ равномерную сетку:

$$\begin{aligned}
& \Theta_h = \\
&= \begin{cases} \xi_i = ih_{\xi}, \quad i = 0, 1, 2, \dots, \quad i_{\max}, \quad h_{\xi} = R/i_{\max}, \quad (15) \\
& t_j = j\tau, \quad j = 0, 1, 2, \dots, \quad j_{\max}, \quad \tau = t_0/j_{\max},
\end{aligned}$$

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 1 2019

где в случае цилиндрической системы координат $\xi = \rho, h_{\xi} = h_{\rho}$, а в случае сферической системы координат $\xi = r, h_{\xi} = h_{r}$.

Если аппроксимировать нестационарное уравнение Шредингера (13) двухслойной разностной схемой с весом $0 \le \sigma \le 1$ по аналогии с уравнением (9):

$$\frac{\Psi^{j}(i) - \Psi^{j-1}(i)}{\tau} =$$

$$= -\frac{i}{\hbar} \delta \hat{A} \Big(\sigma \Psi^{j}(i) + (1 - \sigma) \Psi^{j-1}(i) \Big),$$

$$\Psi^{j}(i = 0) = 0, \quad \text{если} \quad m \neq 0,$$

$$\Psi^{j}(i = 0) = \Psi^{j}(i = 1), \quad \text{если} \quad m = 0,$$

$$\Psi^{j}(i = i_{\text{max}}) = 0, \quad \Psi^{j=0}(i) = f_{i},$$
(16)

то несложно получить выражение для коэффициентов разложения (12), где $\Psi^{j}(i) = \Psi_{\text{plan}}(t = t_{j}, x = x_{i})$ – сеточная функция, $\delta \hat{A}$ – разностный аналог дифференциального оператора $\delta \hat{H} = \hat{H} - E\hat{I}$:

$$\delta \hat{A} \Psi^{j}(i) =$$

$$= -\frac{\hbar^{2}}{2m_{e}} \left[\frac{\Psi^{j}(i-1) - 2\Psi^{j}(i) + \Psi^{j}(i+1)}{h_{\xi}^{2}} + \frac{\Psi^{j}(i+1) - \Psi^{j}(i)}{h_{\xi}} \right] + (U_{i} - E) \Psi^{j}(i).$$
(17)

Из (12) следует, что на основе численного решения нестационарного скалярного волнового уравнения (13) можно реализовать поиск собственных значений энергии и собственных функций в кластерах планарной, цилиндрической и сферической геометрии с произвольными профилями потенциальной энергии. Для этого нужно аппроксимировать нестационарное уравнение Шредингера (13) неявной двухслойной разностной схемой (16) с весом $\sigma = 1$.

Результаты численных расчетов

В данной работе рассмотрим потенциальные энергии с прямоугольным и параболическим профилями.

Цилиндрическая геометрия. Сначала для кластера с цилиндрической геометрией рассмотрим потенциальную энергию с усеченным прямоугольным профилем

c---

$$U(\rho) = \begin{cases} U_0, & 0 \le \rho \le \rho_1, \\ 0, & \rho_1 < \rho < \rho_{\max}. \end{cases}$$
(18)

где $\rho_1 = 10$ нм — радиус потенциальной ямы, $U_0 = -1$ эВ. В табл. 1 для потенциальной ямы (18) с прямоугольным профилем приведены собственные значения энергии $E_{n,m}$ для мод цилиндрической геометрии, где индексы *n*, *m* означают радиальное и магнитное квантовые числа. На рис. 1 приведены нормированные на единицу расчетные зависимости распределения плотности вероятностей $|\Psi_{n,m}|^2$ для мод с радиальными квантовыми числами n = 0, 1, 2,... и квантовыми магнитными числами m = 0, 1, 10. Маркеры соответствуют аналитическим решениям:

$$\Psi_{n,m} = \\ = C_{n,m} \begin{cases} J_m(G_{n,m}\rho)/J_m(G_{n,m}\rho_1), & 0 \le \rho \le \rho_1, \\ K_m(V_{n,m}\rho)/K_m(V_{n,m}\rho_1), & \rho_1 < \rho \le \rho_{\max}, \end{cases}$$
(19)

где $J_m(x)$ и $K_m(x)$ — функция Бесселя первого рода и модифицированная функция Бесселя второго рода порядка *m* соответственно; $G_{n,m} = \sqrt{2m_e (E_{n,m} - U_0)/\hbar^2}, \quad V_{n,m} = \sqrt{2m_e |E_{n,m}|/\hbar^2};$ $C_{n,m}$ — постоянная величина, определяемая из условия нормировки.

Теперь для кластера цилиндрической геометрии рассмотрим потенциальную энергию с усеченным параболическим профилем:

$$U(\rho) = \begin{cases} U_0 \Big[1 - (\rho/\rho_1)^2 \Big], & 0 \le \rho \le \rho_1, \\ 0, & \rho_1 < \rho < \rho_{\max}, \end{cases}$$
(20)

где $\rho_1 = 10$ нм — радиус потенциальной ямы, $\rho_{\text{max}} = 20$ нм, $U_0 = -1$ эВ.

Таблица 1. Расчетные собственные значения энергии $E_{n,m}$ мод в цилиндрическом кластере с усеченным прямоугольным профилем потенциальной энергии при m = 0, 1, 10

Радиальное квантовое число <i>n</i>	$E_{n,m=0},\mathbf{\mathfrak{B}}$	<i>Е_{п,m=1}</i> , эВ	$E_{n,m=10}, \Im \mathbf{B}$
0	-0.9979011	-0.9946777	-0.9244389
1	-0.9888978	-0.9821201	-0.8774323
2	-0.9726663	-0.9623668	-0.8246898
11	-0.5058124	-0.4674406	-0.0553076
12	-0.4195657	-0.3786773	_
15	-0.1240625	-0.0773766	_
16	-0.0170065	—	—

В табл. 2 для потенциальной ямы (20) с усеченным параболическим профилем приведены собственные значения энергии *E_{n,m}* для различных мод цилиндрической геометрии.

На рис. 2 приведены нормированные на единицу расчетные зависимости распределения плотности вероятности $|\Psi_{n,m}|^2$ для мод с радиальными квантовыми числами n = 0, 1, 2, ... и квантовыми магнитными числами m = 0, 1, 10 для потенциальной энергии с неограниченным параболическим профилем

$$U(\rho) = U_0 \left[1 - \left(\rho / \rho_1 \right)^2 \right].$$
 (21)

Рис. 1. Зависимость нормированных волновых функций $|\Psi_{n,m}|^2$ от радиуса ρ в квантовой яме цилиндрической геометрии с прямоугольным профилем потенциальной энергии (18). Кривые *1, 2, 3* соответствуют модам с радиальными квантовыми числами n = 0, 1, 2, ... Кривые на рис. 1а, 1б, 1в отвечают модам с магнитными квантовыми числами m = 0, 1, 10 соответственно. Маркеры , • и • соответствуют аналитическим решениям (19).

Таблица 2. Расчетные собственные значения энергии $E_{n, m}$ мод в цилиндрическом кластере с усеченным параболическим профилем потенциальной энергии при m = 0, 1, 10

Радиальное квантовое число <i>n</i>	<i>Е_{п,m=0}</i> , эВ	<i>Е_{п,m=1}</i> , эВ	$E_{n,m=10}, \Im \mathbf{B}$
0	-0.9604573	-0.9215710	-0.5717307
1	-0.8809992	-0.8428653	-0.4935699
2	-0.8019526	-0.7644005	-0.4155191
7	-0.4098642	-0.5992311	-0.0279636
8	-0.3319192	-0.2969502	_
11	-0.0993000	-0.0659888	—
12	-0.0249368	—	_

Маркеры соответствуют аналитическим решениям $|\Psi_{nm}|^2$, где

$$\Psi_{n,m}(\rho) = \\ = CL_n^{|m|} \left(2\xi \sqrt{\left| \frac{m_e U_0}{2\hbar^2 \rho_1^2} \right|} \right) \xi^{|m|/2} \exp\left(-\xi \sqrt{\left| \frac{m_e U_0}{2\hbar^2 \rho_1^2} \right|} \right), \quad (22) \\ E_{n,m} = U_0 + \frac{2\hbar^2}{m_e} \sqrt{\left| \frac{m_e U_0}{2\hbar^2 \rho_1^2} \right|} \left(2n + |m| + 1 \right),$$

где $n = 0, 1, 2, 3, \dots, m = 0, \pm 1, \pm 2, \pm 3, \dots$

Хорошее совпадение аналитических решений (22) с расчетными кривыми объясняется тем, что нижние уровни энергии $E_{n,m}$ (n = 0, 1, 2, ...) для потенциальной энергии с неограниченным параболическим профилем (21) с точностью до девятого знака после запятой совпадают с уровнями энер-

гии для потенциальной энергии с усеченным параболическим профилем (20).

Сферическая геометрия. По аналогии с предложенным и реализованным в предыдущем разделе алгоритмом поиска собственных значений и собственных функций мод для кластера с цилиндрической геометрией реализован аналогичный алгоритм со сферической геометрией с произвольными профилями потенциальной энергии. Для этого использовали уравнение Шредингера (4в), записанное в сферической системе координат.

В качестве иллюстрации реализованного алгоритма рассмотрена потенциальная энергия в форме сферического слоя с внутренним и внешним радиусами *b*, *a*. Такой потенциал аппроксимирует потенциал фуллерена ([6], стр. 346)

$$U(r) = \begin{cases} 5V, & 0 \le r < b, \\ 0, & b \le r \le a, \\ V, & a < r \le r_{\max}, \end{cases}$$
(23)

где $V = 2|E_F|$, $r_{max} = 3a$, $E_F = -6.4 \ \Im B$ – уровень Ферми.

Из полученных расчетов следует, что при a = 0.487 нм, b = 0.222 нм при фиксированных значениях орбитального момента при l = 0 существуют два стационарных радиальных состояния $\tilde{n} = 1$ и 2 (величина $n = \tilde{n} - 1$ выполняет роль радиального квантового числа), при остальных *l* только одно стационарное радиальное состояние. Орбитальный момент для стационарных состояний может принимать только пять значений: l = 0, 1, 2, 3, 4. В табл. 3 для потенциальной энергии (23) приведены расчетные собственные значения энергии $E_{n=0,l}$ мод при l = 0, 2, 4.

Рис. 2. Зависимость нормированных волновых функций $|\Psi_{n,m}|^2$ от радиуса ρ в квантовой яме цилиндрической геометрии с усеченным параболическим профилем потенциальной энергии (20). Кривые *1, 2, 3* соответствуют модам с радиальными квантовыми числами *n* = 0,1,2,.... Кривые на рис. 2а, 2б, 2в отвечают модам с магнитными квантовыми числами *m* = 0,1,10 соответственно. Маркеры **■**, • и **▼** соответствуют аналитическим решениям (22).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 1 2019

На рис. 3 приведена зависимость нормированной функции $\left|\overline{R}_{n=0}(r)\right|^2$, которая является радиальфункций $\Psi_{n=0/2}$ ной частью волновых $= \overline{R}_{n=0}(r)P_{l}^{m}(\theta)\exp(im\phi)$, от радиуса *r* квантового сферического слоя (в фуллерене), где радиальная часть удовлетворяет условию нормировки:

$$\int_{0}^{r_{\max}} \left|\overline{R}_{n=0}(r)\right|^2 r^2 dr = 1.$$

Кривые 1, 2, 3 на рис. 3 соответствуют модам с ралиальными квантовыми числами l = 0.2.4. На вставке приведена зависимость потенциальной энергии (23) с усеченным прямоугольным профилем.

Планарная геометрия. Результаты расчетов по реализованному алгоритму поиска собственных значений и собственных функций в кластерах с планарной геометрией приведены в работе [14], где в качестве примера рассмотрены потенциальные энергии прямоугольного профиля, усеченного параболического профиля и потенциальная яма со степенным профилем $\alpha = 1/3$. Полученные расчетные результаты хорошо совпадают с теоретическими данными.

Зависимость уровней энергии и собственных функций от радиуса фуллерена

Реализованный алгоритм поиска собственных значений и собственных функций позволяет получить численные оценки характеристики соединений, например зависимость уровней энергии и собственных функций фуллерена от их радиуса. На основе полученных результатов можно рассмотреть задачу сдвига и расщепления уровней энергии за счет деформации графеновых структур. Применительно к нанотрубкам такая задача рассмотрена в работе [29], в которой при баллистическом транспорте электронной волны в изогнутой нанотрубке электрон подвергается воздействию геометрического потенциала [30-33]. Теоретически получим и подтвердим с помощью расчетов зависимость уровней энергии от радиуса гигантских фуллеренов.

Чтобы получить такую закономерность, сведем задачу в центрально симметричной системе координат к задаче с одномерной (планарной) геометрией. Для этого введем новую переменную вдоль радиуса фуллерена

$$r = R + x \tag{24}$$

и преобразуем уравнение (4в) к виду:

Таблица 3. Расчетные собственные значения энергии $E_{n=0}$ / мод в сферическом кластере с усеченным прямоугольным профилем потенциальной энергии (фуллерен) (23) при *l* = 0, 2, 4

Номер радиальной моды <i>ñ</i>	$E_{n,l=0},$ $\Im \mathbf{B}$	<i>Е_{п,l=2}</i> , эВ	$E_{n,l=4},$ $\Im \mathbf{B}$
1	3.1460640	6.4966324702	10.7510325260
2	11.5326615	_	—

$$E\Psi_{\rm sph}(t,r) = \hat{H}_{0}\Psi_{\rm sph} + \hat{V}\Psi_{\rm sph},$$
$$\hat{H}_{1} = \hat{H}_{0} + \hat{V}_{1} + \hat{V}_{2},$$
$$\hat{H}_{0} = -\frac{\hbar^{2}}{2m_{e}} \left[\frac{\partial^{2}}{\partial x^{2}} - \frac{l(l+1)}{R^{2}} \right] + U(x),$$
$$\hat{V}_{1} = -\frac{\hbar^{2}}{m_{e}R} \frac{\partial}{\partial x},$$
$$\hat{V}_{2} = -\frac{\hbar^{2}}{2m_{e}} \left[\left(\frac{2}{R+x} - \frac{2}{R} \right) \frac{\partial}{\partial x} - \frac{l(l+1)}{(R+x)^{2}} + \frac{l(l+1)}{R^{2}} \right],$$

где \hat{V}_1 и \hat{V}_2 выполняют роль операторов возмущения, оператор $(\hat{H}_0 + \hbar^2 l(l+1)/(2m_e R^2))$ является оператором Гамильтона в случае плоского кластера (4а) (соответствует гигантскому фуллерену бесконечно большого радиуса). Второе слагаемое у оператора \hat{H}_0 приводит к сдвигу уровней энер-

гии с ненулевым орбитальным моментом на величину

$$\Delta E_0 = \hbar^2 l \left(l + 1 \right) / \left(2m_e R^2 \right).$$
(26)

Рис. 3. Зависимость нормированных волновых функ-

ций $|\Psi_{n=0,l}|^2$ от радиуса *r* квантовой ямы сферической геометрии. Кривые *1*, *2*, *3* соответствуют модам с радиальными квантовыми числами *l* = 0, 2, 4. На вставке приведена зависимость потенциальной энергии (23) с усеченным прямоугольным профилем.

Радиус фуллерена, нм	$E_{n=1, l=0}, \Im B,$ (a-b) = 0.1 HM	$E_{n=1, l=0}, \Im B,$ (a-b) = 0.265 HM	$E_{n=2, l=0}, $ эВ, (a-b) = 0.265 нм
7.5	10.0549963	3.1065967	11.4176258
6.5	10.0552773	3.1067955	11.4181894
5.5	10.0556603	3.1070677	11.4189614
4.5	10.0555087	3.1074631	11.4200830
3.5	10.0570827	3.1080897	11.4218613
2.5	10.0586462	3.1092334	11.4251098
1.5	10.0622875	3.1119743	11.4329220
0.357	10.3588863	3.1394207	11.5158371

Таблица 4. Зависимость уровней энергии от радиуса фуллерена

Оператор возмущения $\hat{V_1}$ приводит к деформации волновой функции (к смещению точки максимума вдоль радиуса) и дает поправку к энергии ΔE_1 основного состояния. Действительно, если представить волновую функцию Ψ_{sph} в виде произведения симметричной относительно точки x = 0 функции $\Psi_0(x)$ на функцию экспоненты

$$\Psi_{\rm sph}(x) = \Psi_0(x) \exp(-\kappa x), \qquad (27)$$

то из (25) получим

$$\kappa = -1/R, \quad \Delta E_1 = \hbar^2 / m_e R^2, \qquad (28)$$

где поправка к энергии ΔE_1 не зависит от радиального квантового числа *n*, т.е. зависит только от геометрических параметров фуллерена. Волновая функция Ψ_0 в (27) удовлетворяет уравнению

$$\left[-\frac{\hbar^2}{2m_e}\frac{\partial^2}{\partial x^2} + U(x)\right]\Psi_0(x) = E_{\infty}\Psi_0,$$
(29)

где знак "бесконечность" у энергии E_{∞} указывает на случай бесконечно большого фуллерена, что равносильно случаю плоского кластера (4а).

Теперь получим поправки к энергии стационарных состояний с учетом оператора возмущения \hat{V}_2 . При выполнении условия $x \ll R$ оператор \hat{V}_2 преобразуется к виду

$$\hat{V}_2 = \frac{\hbar^2}{m_e R^2} x \frac{\partial}{\partial x} - \frac{\hbar^2}{2m_e} \frac{l(l+1)}{R^2} \left(2\frac{x}{R} - 3\frac{x^2}{R^2} \right).$$
(30)

Из (30) видно, что второе слагаемое в операторе возмущения приводит к тому, что уровни энергии будут зависеть как от орбитального квантового числа *l*, так и от радиального квантового числа *n*. Но поскольку $\Psi_0(x)$ является четной функцией, то для гигантских фуллеренов второе слагаемое в операторе возмущения \hat{V}_2 будет порядка R^{-4} и этим слагаемым можно пренебречь. Первое слагаемое в операторе возмущения \hat{V}_2 не будет зави-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 1 2019

сеть от квантовых чисел *n*, *l*. Действительно, из уравнения (30) с учетом первого порядка теории возмущения получаем поправку к энергии [34]:

$$\Delta E_2 = V_{nn} =$$

$$= \int_{-\infty}^{\infty} \Psi_{\rm sph}^* \hat{V}_{2a} \Psi_{\rm sph} dx = -\hbar^2 / (2m_e R^2), \qquad (31)$$

где $\hat{V}_{2a} = (\hbar^2/m_e R^2) x(\partial/\partial x)$ (пренебрегаем вторым слагаемым в правой части (30)), *n* – номер уровня, V_n – матричный элемент оператора возмущения.

В зависимости от выбираемой при расчетах ширины потенциального слоя может быть один или два стационарных уровня. В случае двух стационарных уровней для определения поправки к энергии нужно воспользоваться вторым порядком теории возмущения [34]:

$$\Delta E_{1}^{(2)} = |V_{12}|^{2} / (E_{1}^{(0)} - E_{2}^{(2)}),$$

$$\Delta E_{2}^{(2)} = |V_{12}|^{2} / (E_{2}^{(0)} - E_{1}^{(2)}).$$
(32)

С учетом уравнений (26), (28), (31) и (32) окончательно получим полную поправку к энергии:

$$\Delta E = \Delta E_0 + \Delta E_1 + \Delta E_2 + \Delta E_n^{(1)} =$$

= $\frac{\hbar^2}{2m_e R^2} + \frac{\hbar^2}{2m_e} \frac{l(l+1)}{R^2} + |V_{12}|^2 / (E_2^{(0)} - E_1^{(2)}).$ (33)

Для примера рассмотрим уровни энергий состояний с нулевым орбитальным моментом l = 0. В табл. 4 приведены собственные значения уровней энергии фуллерена при различных значениях радиуса R = (a + b)/2. Толщина потенциальных слоев равнялась (a - b) = 0.1 и 0.265 нм. В случае (a - b) = 0.1 нм при фиксированных значениях орбитального момента существует только одно стационарное радиальное состояние, а в случае (a - b) = 0.265 нм – два стационарных состояния. В табл. 4 приведены собственные значения стационарных состояний. Из (33) следует, что при выполнении условий l = 0, $(a - b)/R \ll 1$ основной уровень энергии можно представить в виде $E_{n=1,l=0} = E_{\infty} + \Delta E$, где $\Delta E = \hbar^2/(2m_e R^2)$. Это означает, что должно выполняться условие

$$E_{R} - E_{7.5} = \hbar^{2} / (2m_{e}) \Big[1 / R^{2} - (1 / R_{7.5})^{2} \Big], \qquad (34)$$

где $R_{7.5} = 7.5$ нм. В табл. 5 для фуллерена с толщиной потенциального слоя (a - b) = 0.1 нм приведены зависимости величин $(E_R - E_{7.5})$ от радиуса фуллерена, где E_R и $E_{7.5}$ означают уровень энергии стационарного состояния $E_{n=1,l=0}$ в фуллерене радиуса R и R = 7.5 нм соответственно. Результаты расчетов в табл. 5 (вторая колонка) были получены с помощью приведенных в табл. 4 (колонка 2) данных. Теоретические результаты (колонка 3) были рассчитаны с помощью уравнения (30), где в нашем случае l = 0.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работе рассмотрена и обоснована неявная двухслойная разностная схема для решения нестационарного волнового уравнения типа Шредингера. На основе этого подхода к решению волнового уравнения реализован численный алгоритм поиска собственных мод кластеров различных геометрий.

Данный алгоритм может быть также использован в качестве поиска собственных значений в оптических резонаторах, например, в гигантских фуллеренах [3, 19], нанотрубках, оптических волноводах (в частности, в световодах [12, 13]).

Реализованная программа может быть использована для моделирования процесса эволюции квантовой системы, причем в этом случае лучше использовать центральную схему (схема Кранка— Никольсона [28]). В частности, она применялась к сложным световодам (продольная координата в нестационарном волновом уравнении для световода выполняет роль времени в нестационарном уравнении Шредингера), состоящим из двух простых туннельно-связанных световодов. Такая задача может быть рассмотрена для сложных световодов с двумя параллельно расположенными сердцевинами. В этом случае возможен механизм перехода из одной сердцевины в другую. Эффект теоретически можно объяснить либо перекрестными помехами (в случае графена – за счет интеграла перескока) мод двух простых световодов. либо интерференцией двух направляемых мод (симметричной и антисимметричной) сложного световода, состоящего из двух сердцевин. В [35] численно промоделировано и теоретически доказано, что по аналогии со случаем сильной связи для синусоидально возмущенной сердцевины возможен механизм полной перекачки энергии

Таблица 5. Зависимость геометрического потенциала от радиуса фуллерена

$E_{R} - E_{7.5}, \Im B$	Результаты расчетов <i>E_R – E</i> _{7.5} , эВ	Теоретические результаты $E_R - E_{7.5},$ эВ
$E_{6.5} - E_{7.5}$	0.000281	0.000223
$E_{5.5} - E_{7.5}$	0.000664	0.000579
$E_{4.5} - E_{7.5}$	0.000510	0.001197
$E_{3.5} - E_{7.5}$	0.002086	0.002418
$E_{2.5} - E_{7.5}$	0.0036499	0.005385
$E_{1.5} - E_{7.5}$	0.0072912	0.016154
$E_{0.357} - E_{7.5}$	0.303890	0.296391

одной моды в энергию другой моды в случае, когда периодическое возмущение сердцевины световода меняется не по гармоническому закону (не по закону синуса или косинуса). Полученные результаты легко можно отнести и к кластерам.

Достоинством и одновременно недостатком реализованного алгоритма поиска собственных значений и собственных функций методом обратных итераций (модифицированный метод Виландта [36]) является возможность получить параметры только одного стационарного состояния (в световодах – направляемой моды). Данный алгоритм, в отличие от метода Ланцоша или QLили QR-алгоритма, хорошо использовать, когда нужно получить параметры небольшого числа стационарных состояний, но с очень хорошей точностью. Например, в световодах обратное значение групповой скорости волны пропорционально первой производной импульса (собственное значение) частоты (от энергии). Аналогичная ситуация возникла и была рассмотрена в данной работе применительно к гигантским фуллеренам: при больших значениях радиуса собственные значения энергии асимптотически стремятся к стационарному значению, что, в свою очередь, требует вычисления с высокой точностью собственных значений энергии. Из полученных результатов для фуллеренов с (a - b) = 0.1 нм и радиусами $R \ge 2.5$ нм (табл. 5) видно хорошее совпадение расчетных и теоретических данных (уравнение (30)). Отклонение от теоретических результатов при R < 2.5 нм объясняется тем, что при малых радиусах перестает выполняться условие $(a - b)/R \ll 1$. В этом случае нужно использовать оператор возмущения \hat{V}_2 исходя из равенства (4в), а не из равенства (30).

Реализованный алгоритм, в принципе, можно применить к двумерным пространственным системам. Тридцать лет назад в силу малой мощности вычислительной техники это было невозможно, в настоящее время современные машины позволяют выполнить это без особых проблем.

ЗАКЛЮЧЕНИЕ

Реализованный алгоритм помог рассчитать собственные значения и собственные функции квантовых точек с планарной, шилиндрической и сферической геометрией с произвольными профилями потенциальной энергии. Полученные численные результаты сопоставлены с аналитическими решениями квантовых точек различной геометрии. Предложенный алгоритм поиска собственных значений и собственных функций квантовых точек имеет степенную скорость сходимости решений к искомым собственным функциям и совпадает со скоростью сходимости в модифицированном методе Виландта [36]. Для демонстрации возможностей алгоритма рассмотрен частный случай (орбитальный момент l = 0) актуальной залачи – вычисление геометрического потенциала при деформации графена. Результаты расчетов (табл. 5) хорошо совпадают с теоретически полученными данными (уравнение (33)) для фуллеренов с (a - b) = 0.1 нм и ралиусом $R \ge 2.5$ нм. При (a - b) = 0.1 нм существует только одно стационарное состояние при любых значениях *l* (табл. 4), при (a - b) = 0.265 нм – два стационарных состояния при l = 0 и одно при остальных значениях *l* (табл. 3).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Snyder A.W., Love J.D.* Optical Waveguide Theory. London, UK: Chapman and Hall, 1983. 738 p.
- 2. *Marcuse D*. Theory of Dielectric Optical Waveguites. N.Y.: Academ Press, 1974. 267 p.
- Lucas A.A., Henrard L., Lambin Ph. // Phys. Rev. 1994. V. 49. P. 2888.
- 4. *Henrard L., Lucas A.A., Lambin Ph.* // Astrophys. J., Part 1. 1993. V. 406. № 1. P. 92.
- 5. Slater J.C. // Phys. Rev. 1937. V. 51. P. 846.
- 6. Дьячков П.Н. Электронные свойства и применение нанотрубок. М.: БИНОМ. Лаборатория знаний, 2011. 488 с.
- 7. Slepyan G.Ya., Shuba M.V., Maksimenko S.A., Lakhtakia A. // Phys. Rev. B. 2006. V. 73. № 195416.
- 8. *Гурджи С.П., Каток В.Б.* // Радиотехника. 1989. № 3. С. 64.
- 9. Marcuse D. // J. Opt. Soc. Am. 1978. V. 68. № 1. P. 103.
- 10. Икрамов Х.Д. Несимметричная проблема собственных значений. М.: Наука, 1991. 240 с.

- 11. Парлетт Б. Симметричная проблема собственных значений. Пер. с англ. М.: Мир, 1983. 382 с.
- 12. Ардашева Л.И., Садыков Н.Р., Черняков В.Е. // Квантовая электроника. 1992. Т. 19. С. 903.
- 13. Афанасьев А.Н., Мялицин Л.А., Садыков Н.Р., Садыкова М.О. // Изв. ВУЗов. Физика. 2005. Т. 48. № 1. С. 11.
- Юдина Н.В., Садыков Н.Р. // Вестн. Национального исследовательского ядерного университета "МИФИ". 2017. Т. 6. № 6. С. 519.
- 15. *Ilyin V.V., Piotrovskii L.B.* // Reviews on Clinical Pharmacology and Drug Therapy. 2017. V. 15. № 2. P. 42. doi 10.17816/RCF15242-45
- 16. *Войтеховский Ю.Л., Степенщиков Д.Г. //* Вестник МГТУ. 2015. Т. 18. № 2. С. 228.
- 17. *Николаев А.В., Плахутин Б.Н.* // Успехи химии. 2010. Т. 79. № 9. С. 803.
- 18. Дьячков П.Н., Кузнецов Б.С. // Докл. Академии наук. 2004. Т. 395. № 1. С. 59.
- 19. *Henrard L., Lambin Ph.* // J. Phys. B: Atomic, Molecular and Optical Physics. 1996. V. 29. № 21. P. 5127.
- De Heer W.A., Chatelain A., Ugarte D. // Science. 1995. V. 270. P. 1179.
- 21. Hamada N., Sawada S., Oshiyama S. // Phys. Rev. 1992. V. 68. P. 1579.
- Григорьев А.И., Ширяева С.О., Жаров А.Н. Нелинейные осцилляции заряженной капли. Ярославль: ЯрГУ, 2006. 280 с.
- Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. // Журн. техн. физики. 2016. Т. 86. № 8. С. 68.
- Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. // Изв. РАН. МЖГ. 2016. № 3. С.158.
- 25. Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. // Журн. техн. физики. 2017. Т. 87. № 6. С. 914.
- 26. *Френкель Я.И*. Кинетическая теория жидкостей. Л.: Наука, 1975. 592 с.
- 27. Смирнов Б.М. // Успехи физ. наук. 1992. Т. 162. № 1. С. 119.
- 28. *Самарский А.А.* Теория разностных схем. М.: Наука, 1989. 616 с.
- 29. *Чаплик Ф.В.* // Письма в ЖЭТФ. 2004. Т. 80. № 2. С. 140.
- 30. Jensen H., Koppe H. // Ann. Phys. 1971. V. 63. P. 586.
- 31. R.C.T. da Costa. // Phys. Rev. 1981. V. 23. P. 586.
- 32. Entin V.V., Magaril L.I. // Phys. Rev. 2002. V. 66. P. 205308.
- 33. *Magaril L.I., Entin V.V.* // ZhETF. 2003. V. 123. № 4. P. 867.
- Landau L.D., Lifshitz E.M. Teoreticheskaja fizika. V. 3. M.: Fizmatlit, 2004. 800 p.
- 35. Дремов В.В., Садыков Н.Р. // Оптика и спектроскопия. 1996. Т. 80. № 5. С. 814.
- Wielandt H. // Mathematische Zeitschrift. 1944. V. 50. P. 93.