СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 544.022:546.661

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ОКСИСУЛЬФАТА ЕВРОПИЯ Eu2O2SO4

© 2019 г. Ю. Г. Денисенко^{1, 2,} *, Н. О. Азарапин¹, Н. А. Хритохин¹, О. В. Андреев¹, С. С. Волкова¹

¹Тюменский государственный университет, Россия, 625003 Тюмень, ул. Володарского, 6 ²Тюменский индустриальный университет, Россия, 625000 Тюмень, ул. Володарского, 38

*e-mail: yu.g.denisenko@gmail.com Поступила в редакцию 22.11.2017 г. После доработки 18.01.2018 г. Принята к публикации 04.07.2018 г.

По данным порошковой рентгеновской дифракции определена кристаллическая структура оксисульфата европия. Соединение кристаллизуется в моноклинной сингонии. Параметры элементарной ячейки: a = 13.6952(1), b = 4.1929(4), c = 8.1393(2) Å, $\beta = 107.455(4)^{\circ}$, пр. гр. C2/c. Выделены три основных элемента структуры (атомы Eu, тетраэдры SO₄, атомы μ -O) и проанализировано их координационное окружение. Представлены оригинальные структурные элементы: неограниченные винтовые цепочки, состоящие из трехшапочных тригональных призм [EuO₉]; заключенные в кубы из атомов европия сульфатные тетраэдры [(SO₄)Eu₈]; неограниченные цепочки, состоящие из тетраэдров [OEu₄]. Обосновано расщепление полос поглощения, отвечающих колебаниям сульфатных групп в ИК-спектре.

Ключевые слова: оксисульфат европия, кристаллическая структура, координационное окружение, метод Ритвельда, нетипичные структурные элементы, инфракрасная спектроскопия **DOI:** 10.1134/S0044457X19010045

введение

Оксисульфаты редкоземельных элементов (**P3Э**) имеют набор достаточно интересных магнитных свойств. Так, оксисульфид гадолиния $Gd_2O_2SO_4$ является двумерным гейзенберговским антиферромагнетиком [1, 2].

Легированные оксисульфаты $(Ln_{1-x}Ln'_x)_2O_2SO_4$ перспективны в качестве высокоэффективных люминофоров при возбуждении ультрафиолетовым или рентгеновским излучением. Данные люминофоры обладают как повышенной термической стабильностью, так и эффективными воспроизводимыми характеристиками люминесценции [3–7].

Наличие в оксисульфатах серы как окислительно-восстановительного центра определяет их потенциальное применение в качестве катализаторов процесса конверсии водяного газа [8, 9], твердооксидных топливных элементов и батарей [10, 11], материалов для хранения газообразного кислорода [12–14].

Оксисульфаты образуются при разложении соединений РЗЭ, содержащих в своем составе хотя бы одну сульфатную группу: $Ln_2(SO_4)_3$ [15–18], $Ln_2(OH)_4SO_4$ [19, 20], $Ln_2(OH)_2CO_3SO_4$ [21]. Также оксисульфаты можно получить разложением органических сульфонатов различного строения [14]. Прямой метод синтеза заключается в температурной обработке оксидов в атмосфере оксида серы(IV) и кислорода [22].

Оксисульфат европия, по данным [23], кристаллизуется в ромбической сингонии, пр. гр. *Рттт.* Однако детальное рассмотрение структуры (индицирование методом Ритвельда) указывает на то, что модель ромбической элементарной ячейки не способна адекватно описать имеющиеся структурные элементы и их реальное расположение.

Цель настоящей работы — уточнение кристаллической структуры оксисульфата европия, анализ координационного окружения всех элементов структуры и их взаимосвязи.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Оксисульфат европия $Eu_2O_2SO_4$ получали разложением сульфата европия(III) $Eu_2(SO_4)_3$ при 1000°С в атмосфере аргона в течение 25 ч:

$$Eu_2(SO_4)_2 \rightarrow Eu_2O_2SO_4 + 2SO_2 + O_2.$$

Сульфат европия синтезировали из раствора $Eu(NO_3)_3$, полученного растворением Eu_2O_3 (99.995%) в концентрированной азотной кислоте (х. ч.), путем осаждения концентрированной серной кислотой (ос. ч. 15-3).

Рентгеноспектральный анализ (РСпА) проводили на растровом электронном микроскопе JEOL

	Спектр	Eu	0	S	Итог
Спектр 1	Спектр 1	70.36	22.21	7.43	100
Lucida 197	Спектр 2	70.34	22.23	7.43	100
Спектр 3	Спектр 3	70.35	22.23	7.42	100
	Спектр 4	70.37	22.22	7.41	100
	Спектр 5	70.36	22.21	7.43	100
	Средн.	70.36	22.22	7.42	100
Спектр 4	Теорет.	70.36	22.22	7.42	100

Рис. 1. Электронно-микроскопический снимок порошка оксисульфата европия Eu₂O₂SO₄ с указанием точки определения элементного состава, приведенного в таблице справа.

Рис. 2. Дифрактограмма оксисульфата европия после уточнения структуры.

JSM 6510 LV. Точность установления элементного состава $\pm 0.2\%$.

Рентгенофазовый анализ выполняли на дифрактометре Bruker D2 Phaser с линейным детектором Lynxeye (Cu K_{α} -излучение, Ni-фильтр). Структура уточнена методом Ритвельда в программе DIFFRAC.TOPAS. В качестве исходной структурной модели использовали данные изоструктурного соединения La₂O₂SO₄. Для визуализации кристаллической структуры и ее основных элементов использовали пакет программ Diamond 3. **Инфракрасную спектроскопию** проводили на ИК-Фурье-спектрометре ФСМ 1201. Образец для исследования готовили в виде таблетки с прокаленным бромидом калия.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По данным РСпА, распределение элементов в образце, полученном при разложении сульфата европия, соответствует стехиометрической фазе $Eu_2O_2SO_4$. Данные, полученные в разных точках образца, сопоставимы по значениям (рис. 1).

Рис. 3. Перспективные проекции структуры соединения $Eu_2O_2SO_4$ (а) и строение зигзагообразных цепочек $[EuO_9]_n$ (б).

Дифрактограмма оксисульфата европия проиндицирована в моноклинной сингонии (рис. 2). Кристаллографические параметры и основные межатомные расстояния приведены в табл. 1 и 2 соответственно.

Структура образована чередующимися катионными $[Eu_2O_2^{2+}]_n$ и анионными слоями, состоящими из изолированных тетраэдров $[SO_4]^{2-}$. Оба слоя параллельны плоскости (100) (рис. 3а). Все атомы европия занимают идентичные кристаллографические позиции и координированы девятью атомами кислорода: пять атомов О принадлежат монодентатно связанным сульфатным группам, остальные атомы О мостиковые. Координированный полиэдр европия – трехшапочная тригональная призма (**TTII**). Две шапки, соприкасаясь реб-

Таблица 1. Кристаллографические параметры оксисульфата европия $Eu_2O_2SO_4$

Параметр	Значение		
M	431.9894		
Сингония	Моноклинная		
Пр. гр.	C2/c		
Ζ	4		
<i>a,</i> Å	13.6952(1)		
<i>b,</i> Å	4.1929(4)		
<i>c,</i> Å	8.1393(2)		
β, град	107.455(4)		
$V, Å^3$	467.38		
$ρ_{\rm BMY}$, $Γ/cM^3$	6.46		
<i>Т</i> , К	120		
R(F), %	6.16		
$R_{wp}, \%$	5.91		
$R_p, \%$	4.63		

Рис. 4. Строение катионной сетки, образуемой сочленением тетраэдров [OEu₄].

ром, формируют плоскость, состоящую из четырех атомов кислорода. ТТП в координационном многограннике деформирована из-за различия в длинах связей Eu–O. Одна из связей Eu–O сушественно длиннее других (d(Eu-O(3)) = 3.1554(6) Å), вследствие этого КЧ европия принято как 8 + 1. Соединяясь, координационные многогранники образуют зигзагообразные 1D-цепочки вдоль направления c (рис. 36). Каждый мостиковый атом кислорода, находясь в состоянии sp^3 -гибридизации, связан с четырьмя атомами европия, в результате чего образуются тетраэдры [OEu₄]. Данные тетраэдры, последовательно попарно связываясь друг с другом, образуют зигзагообразные 1D-цепочки, которые, соединяясь между собой, образуют 2D-сетки (рис. 4).

Связь	d, Å	Преобразование координат атомов О	Связь	d, Å	Связь	$d, \mathrm{\AA}$
Eu–O(1)	2.2960(1)	<i>x</i> , <i>y</i> , <i>z</i>	S-O(2)	2 × 1.520(1)	O(2)–O(2)	2.359(2)
	2.3059(7)	0.5 - x, -0.5 + y, 0.5 - z	S-O(3)	2 × 1.433(2)	O(2)–O(3)	2.419(3)
	2.3183(3)	0.5 - x, 1.5 - y, -z			O(2)–O(3)	2.421(4)
	2.3454(2)	x, -1 + y, z				
Eu–O(2)	2.5622(1)	-1 + x, y, z				
	2.5651(1)	1 - x, 1 - y, -z				
Eu–O(3)	3.1554(7)	0.5 - x, -0.5 + y, 0.5 - z				
	2.7272(6)	<i>x</i> , <i>y</i> , <i>z</i>				
	2.7055(4)	x, 1-y, -0.5+z				

Таблица 2. Межатомные расстояния в структуре $Eu_2O_2SO_4$

Рис. 5. Координация сульфатного тетраэдра атомами европия (а) и расщепление полос в ИК-спектре (в), вызванное различной координацией сульфатных тетраэдров к атомам европия (б).

1500

Слои $[Eu_2O_2]_n$ и цепочки тетраэдров $[OEu_4]$ являются настолько прочными элементами структуры, что сохраняются в процессе восстановления $Eu_2O_2SO_4$ до Eu_2O_2S . В структуре Eu_2O_2S при наложении слоев, состоящих из цепочек тетраэдров $[EuO_4]$, происходит образование тетраэдрических пустот [24].

В координации атомов кислорода групп SO_4^{2-} участвуют атомы европия. Сульфатный тетраэдр окружен восемью атомами Еu по вершинам почти идеального куба (рис. 5а). На расстоянии 3.115 Å от двух атомов кислорода располагаются допол-

нительные атомы европия, также участвующие в координации сульфатного тетраэдра, хотя и значительно слабее ("двухшапочный куб"). Таким образом, КЧ сульфатных групп принято как 8 + 2. Все сульфатные тетраэдры в структуре занимают одинаковые кристаллографические позиции. Однако данные ИК-спектроскопии (рис. 5в) указы-

1000

v, см⁻¹

500

вают на наличие трех сортов групп SO_4^{2-} — полосы поглощения, отвечающие валентным и деформационным колебаниям сульфатного тетраэдра, расщеплены на три составляющие. Действительно, детальное рассмотрение координации иона

Eu³⁺ показывает, что сульфатные тетраэдры по-разному обращены к центру координации и образуют наборы сульфатных групп трех сортов (рис. 5б).

СПИСОК ЛИТЕРАТУРЫ

- 1. Paul W. // J. Magn. Magn. Mater. 1990. V. 87. P. 23.
- Lian J., Sun X., Li X. // Mater. Chem. Phys. 2011.
 V. 125. P. 479. doi 10.1016/j.matchemphys.2010.10.029
- Shoji M., Sakurai K. // J. Alloys Compd. 2006. V. 426. № 1. P. 244. doi 10.1016/j.jallcom.2005.12.110
- Kijima T., Shinbori T., Sekita M. et al. // J. Luminescence. 2008. V. 128. № 3. P. 311. doi 10.1016/j.jlumin.2007.07.018
- Srivastava A.M., Setlur A.A., Comanzo H.A. et al. // Optic. Mater. 2008. V. 30. № 10. P. 1499. doi 10.1016/ j.optmat.2007.09.003
- Porcher P., Svoronos D.R., Leskela M. et al. // J. Solid State Chem. 1983. V. 46. № 1. P. 101. doi 10.1016/ 0022-45968390130-5
- Lian J., Sun X., Liu Z. et al. // Mater. Res. Bull. 2009.
 V. 44. № 9. P. 1822. doi 10.1016/j.materresbull.2009.05.021
- Valsamakis I., Flytzani-Stephanopoulos M. // Appl. Catal., B. 2011. V. 106. № 1. P. 255. doi 10.1016/j.apcatb.2011.05.037
- Tan S., Paglieri S.N., Li D. // Catal. Commun. 2016. V. 73. P. 16. doi 10.1016/j.catcom.2015.10.007
- 10. *Loureiro F.J.A., Yang T., Stroppa D.G. et al.* // J. Mater. Chem. 2015. V. 3. № 24. P. 12636. doi 10.1039/C4-TA06640E
- Dixini P.V.M., Celante V.G., Lelis M.F.F. et al. // J. Power Sources. 2014. V. 260. P. 163. doi 10.1016/j.jpowsour.2014.03.006

- 12. *Zhang W., Arends I.W.C.E., Djanashvili K.* // J. Chem. Soc., Dalton Trans. 2016. V. 45. № 36. P. 14019. doi 10.1039/C6DT01667G
- Osseni S.A., Denisenko Yu.G., Fatombi J.K. et al. // J. Nanostruct. Chem. 2017. V. 7. P. 337. doi 10.1007/ s40097-017-0243-4
- 14. Zhang D., Kawada T., Yoshioka F. et al. // ACS Omega. 2016. V. 1. № 5. P. 789. doi 10.1021/acsomega.6b00262
- Andreev O.V., Denisenko Yu.G., Sal'nikova E.I. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 3. P. 296. doi 10.1134/S0036023616030025
- Denisenko Yu.G., Khritokhin N.A., Andreev O.V. et al. // J. Solid State Chem. 2017. V. 255. P. 219. doi 10.1016/j.jssc.2017.08.020
- Andreev P.O., Sal'nikova E.I., Kislitsyn A.A. // Russ. J. Phys. Chem. A. 2013. V. 87. № 9. P. 1482. doi 10.1134/ S0036024413080050
- Sal'nikova E.I., Andreev P.O., Antonov S.M. // Russ. J. Phys. Chem. A. 2013. V. 87. № 8. P. 1280. doi 10.1134/ S0036024413080207
- Liang J., Ma R., Geng F. et al. // Chem. Mater. 2010.
 V. 22. № 21. P. 6001. doi 10.1021/cm102236n
- 20. *Chen F., Chen G., Liu T. et al.* // Scientific reports. 2015. V. 5. P. 17934.
- 21. *Lian J., Liang P., Wang B. et al.* // J. Ceramic Process. Research. 2014. V. 15. № 6. P. 382.
- Xing T.H., Song L.X., Xiong J. et al. // Adv. Appl. Ceram. 2013. V. 112. № 8. P. 455. doi 10.1179/ 1743676113Y.0000000112
- Berdowski P.A.M., Van Mens R., Blasse G. //J. Lumin. 1985. V. 33. № 2. P. 147. doi 10.1016/0022-23138590013-4
- Biondo V., Sarvezuk P.W.C., Ivashita F.F. et al. // Mater. Res. Bull. 2014. V. 54. P. 41. doi 10.1016/j.materresbull.2014.03.008