ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 546.62+546.56+546.57

КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ МОЛЕКУЛЯРНЫХ СТРУКТУР МЕТАЛЛОКЛАСТЕРОВ Al₂Cu₃ И Al₂Ag₃ МЕТОДОМ DFT

© 2019 г. Д. В. Чачков^{1, 2}, О. В. Михайлов^{1, 2, *}

¹Казанский национальный исследовательский технологический университет, Россия, 420015 Казань, ул. К. Маркса, 68 ²Казанское отделение Межведомственного суперкомпьютерного центра РАН — филиал Научно-исследовательского института системных исследований РАН, Россия, 420111 Казань, ул. Лобачевского, 2/31 *e-mail: ovm@kstu.ru Поступила в редакцию 10.04.2017 г. После доработки 16.04.2018 г. Принята к публикации 04.07.2018 г.

С использованием гибридного метода функционала плотности (DFT) в приближении OPBE/TZVP и программы Gaussian 09 рассчитаны геометрические параметры молекулярных структур алюминий-медных и алюминий-серебряных металлокластеров стехиометрического состава Al₂Cu₃ и Al₂Ag₃. Установлено, что каждый из этих металлокластеров может существовать в восьми структурных модификациях, значительно различающихся по устойчивости и геометрическим параметрам. Приведены длины связей, валентные и торсионные (двугранные) углы для каждой из этих модификаций.

Ключевые слова: алюминий, медь, серебро, металлокластер **DOI:** 10.1134/S0044457X19010033

ВВЕДЕНИЕ

Среди наночастиц, содержащих элементные металлы, особый интерес представляют те, которые состоят из двух и более различных *p*-и *d*-элементов и для которых теоретически можно ожидать появления новых свойств, не присущих наночастицам, состоящим из атомов металлов одной разновидности. К числу интересных объектов подобного типа относятся *p*,*d*-гетероядерные металлокластеры, содержащие в качестве *р*-металла алюминий, а в качестве d-металла медь и серебро и имеющие важное практическое значение. Ранее [1] методом функционала плотности в варианте **OPBE/TZVP** нами был проведен квантово-химический расчет основных параметров молекулярных структур (длин связей металл-металл, валентных и торсионных (двугранных) углов) алюминийжелезных металлокластеров стехиометрического состава Al₂Fe₃. Представляло также интерес изучить, как при одном и том же стехиометрическом составе природа другого металла оказывает влияние на число возможных модификаций металлокластера и их взаимную устойчивость. В качестве объектов исследования нами выбраны металлокластеры стехиометрического состава Al₂Cu₃ и Al₂Ag₃, в состав которых помимо алюминия входят d-элементы І группы Периодической системы Д.И. Менделеева. Выбор именно пятиатомных кластеров связан с тем, что двух- и трехатомные металлокластеры с точки зрения структурной химии не представляют особого интереса ввиду тривиальности их структур, тетраядерные кластеры дают относительно малый набор модификаций, не позволяющий проследить влияние природы металла на их общее количество, специфику и относительную устойчивость. Насколько нам известно, квантово-химические расчеты структур алюминий-медных и алюминий-серебряных металлокластеров, в частности пятиатомных указанного выше состава, с использованием метода функционала плотности до сих пор не проводились; в связи с этим настоящая работа посвящена выявлению возможных структур вышеуказанных химических соединений.

МЕТОД РАСЧЕТА

Использовали метод функционала плотности (DFT), сочетающий негибридный функционал OPBE [2, 3], который в случае соединений 3*p*- и 3*d*-элементов дает достаточно точное соотношение энергетической стабильности высокоспинового и низкоспинового состояний и надежно характеризует основные геометрические параметры молекулярных структур указанных соединений [3–7], и стандартный расширенный валентно-рас-

Структура	$Al_2Cu_3(I)$	Al_2Cu_3 (II)	Al_2Cu_3 (III)	Al_2Cu_3 (IV)
	Длинн	ы связей металл-метал	л, пм*	1
Al1Al2	271.1	(338.3)	259.0	271.2
Al1Cu1	244.1	244.1	241.3	247.9
Al1Cu2	254.2	244.9 244.0		263.9
Al1Cu3	244.1	244.1	244.0	263.9
Al2Cu1	244.1	244.1	(400.8)	(409.8)
Al2Cu2	254.2	244.9	244.8	248.2
Al2Cu3	244.1	244.1	244.8	248.2
Cu1Cu3	(384.1)	(351.9)	247.6	248.0
Cu2Cu3	243.1	247.0	263.8	233.0
Cu1Cu2	243.1	247.0	247.6	248.0
]	Валентные углы, град*	*	I
Cu1Al1Cu2	58.3	60.7	61.4	57.9
Cu1Al2Cu2	58.3	60.7	(35.8)	(34.3)
Cu1Al1Al2	56.3	(46.1)	106.5	104.2
Cu1Al2Al1	56.3	(46.1)	(35.3)	(35.9)
Cu2Al1Al2	57.8	(46.3)	58.2	55.2
Cu2Al2Al1	57.8	(46.3) 57.9		60.9
Al1Cu1Al2	67.4	87.7 (38.3)		(39.9)
Al1Cu2Al2	64.4	87.4	64.0	63.9
Al1Cu3Al2	67.4	87.7	64.0	63.9
Cu1Al1Cu3	103.7	92.2	61.4	57.9
Cu1Al2Cu3	103.7	92.2	(35.8)	(34.3)
Cu1Cu3Cu2	(37.8)	(44.6)	57.8	62.0
Cu2Al1Cu3	58.3	60.7	65.4	52.4
Cu2Al2Cu3	58.3	60.7	65.2	56.0
Cu1Cu2Cu3	(104.4)	90.9	57.8	62.0
	Торсион	ные (двугранные) углы	и, град***	I
Cu1Al2Al1Cu3	-142.0	(-177.6)	(39.5)	(32.5)
Cu2Al2Al1Cu3	-71.0	(-88.8)	79.0	65.0
Cu1Cu3Cu2Al1	(38.6)	(53.3)	71.1	65.8
Cu1Cu3Cu2Al2	(-38.6)	(-53.3)	149.1	138.7
Cu1Al1Al2Cu2	142.0	(88.8)	39.5	32.5
Cu1Cu2Al1Al2	67.5	(55.8)	135.1	142.0
Cu1Cu2Al2Al1	-67.5	(-55.8)	(-39.0)	-34.0
Cu2Cu3Al2Al1	-70.0	(-56.0)	66.3	72.8
Структура	Al ₂ Cu ₃ (V)	Al ₂ Cu ₃ (VI)	Al ₂ Cu ₃ (VII)	Al ₂ Cu ₃ (VIII)
	Длинн	ы связей металл-метал	л, пм*	1
Al1Al2	278.1	267.6	256.0	256.9
Al1Cu1	242.8	254.4	248.9	234.2
Al1Cu2	242.8	247.1	(405.3)	240.9
Al1Cu3	242.8	254.4	249.9	240.9
Al2Cu1	242.8	254.4	244.5	(472.7)
Al2Cu2	242.8	247.1	238.3	244.0

Таблица 1. Длины связей металл-металл, валентные и торсионные углы в молекулярных структурах кластеров Al₂Cu₃

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 1 2019

Структура	$Al_2Cu_3(V)$	Al ₂ Cu ₃ (VI)	Al ₂ Cu ₃ (VII)	Al ₂ Cu ₃ (VIII)
Al2Cu3	242.8	254.4	245.3	244.0
Cu1Cu3	(344.8)	232.5	245.4	(449.3)
Cu2Cu3	(344.8)	(407.2)	(406.1)	261.2
Cu1Cu2	(344.8)	(407.2)	245.9	(449.4)
]	Валентные углы, град*	 *	I
Cu1Al1Cu2	90.5	108.6	(34.8)	142.1
Cu1Al2Cu2	90.5	108.6	61.2	(69.4)
Cu1Al1Al2	55.1	58.3	57.9	148.5
Cu1Al2Al1	55.1	58.3	57.9	(15.0)
Cu2Al1Al2	55.1	57.2	(33.5)	58.6
Cu2Al2Al1	55.1	57.2	110.1	57.4
Al1Cu1Al2	69.9	63.5	62.5	(16.5)
Al1Cu2Al2	69.9	65.6	(36.4)	64.0
Al1Cu3Al2	69.9	63.5	62.3	64.6
Cu1Al1Cu3	90.5	54.4	58.9	142.0
Cu1Al2Cu3	90.5	54.4	60.1	(69.4)
Cu1Cu3Cu2	(60.0)	(73.4)	(34.3)	(73.1)
Cu2Al1Cu3	90.5	108.6	(72.2)	(65.7)
Cu2Al2Cu3	90.5	108.6	114.2	64.7
Cu1Cu2Cu3	(60.0)	(33.2)	(34.2)	(73.1)
	Торсион	ные (двугранные) углы	I, град***	1
Cu1Al2Al1Cu3	120.0	65.0	71.0	(140.4)
Cu2Al2Al1Cu3	-120.0	-147.5	107.0	-78.9
Cu1Cu3Cu2Al1	(54.4)	(66.1)	(63.6)	(-10.8)
Cu1Cu3Cu2Al2	(-54.4)	(-66.1)	(130.1)	(-88.1)
Cu1Al1Al2Cu2	120.0	147.5	36.0	140.7
Cu1Cu2Al1Al2	(45.2)	(28.8)	(119.1)	(147.4)
Cu1Cu2Al2Al1	(-45.2)	(-28.8)	-35.3	(-10.1)
Cu2Cu3Al2Al1	(-45.3)	(-28.5)	(100.0)	-66.1

Таблица 1. Окончание

Примечание. Здесь и в табл. 3 в скобках указаны: *расстояния между двумя атомами, не образующими между собой химические связи; **величины углов, образуемых тремя атомами, из которых хотя бы одна пара атомов не связана между собой химическими связями, ***величины двугранных углов, образуемых четырьмя атомами, из которых по крайней мере одна пара атомов не связана между собой химическими связями.

Таблица 2.	Относительные эне	ргии различных	структур метал	ілокластеров А	l ₂ Cu ₂
		P P			- /

Обозначение структуры	Спиновая	Относительная энергия, кДж/моль	Число химических связей в структуре			
	мультиплетность основного состояния		Al–Al	Al–Cu	Cu–Cu	
$Al_2Cu_3(I)$	2	0.0	1	6	2	
Al_2Cu_3 (II)	4	144.1	0	6	2	
Al_2Cu_3 (III)	2	20.6	1	5	3	
Al_2Cu_3 (IV)	4	136.9	1	5	3	
$Al_2Cu_3(V)$	2	27.0	1	6	0	
Al_2Cu_3 (VI)	4	144.3	1	6	1	
Al ₂ Cu ₃ (VII)	2	40.1	1	5	2	
Al ₂ Cu ₃ (VIII)	2	67.6	1	5	1	

щепленный базис TZVP, описанный в [8, 9]. Для расчета кластеров Al₂Ag₃ использовали базис QZP [10-12] и программу Gaussian 09 [13]. Как и в [1, 14–16], соответствие найденных стационарных точек минимумам энергии во всех случаях доказывалось расчетом вторых производных энергии по координатам атомов; при этом все равновесные структуры, соответствовавшие точкам минимума на поверхностях потенциальной энергии, имели лишь вещественные положительные значения частот. Расчет параметров молекулярных структур при мультиплетностях, отличных от 1, всегда проводили неограниченным методом (UHF); при мультиплетности 1 – ограниченным методом (RHF). При мультиплетности 1 применяли также расчет неограниченным методом в сочетании с опцией GUESS = Mix; полученные в этом случае результаты всегда были аналогичны результатам, полученным с использованием ограниченного метода. Все квантово-химические расчеты проведены в Казанском отделении Межведомственного суперкомпьютерного центра РАН – филиале Научно-исследовательского института системных исследований РАН (http://kbjscc.knc.ru).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Проведенное нами квантово-химическое моделирование структур алюминий-медных и алюминий-серебряных металлокластеров с указанным выше химическим составом выявило возможность существования восьми форм как для металлокластера Al₂Cu₃, так и для металлокластера Al₂Ag₃ (рис. 1, 2). Структурные данные для Al₂Cu₃ представлены в табл. 1, из которой видно, что в 7 структурах реализуется прямая валентная связь Al-Al; единственным исключением является структура Al₂Cu₃ (II). Также в семи из восьми структур, за исключением структуры Al_2Cu_3 (V), имеется одна связь Си-Си и как минимум пять связей Al-Cu. Рассматриваемые нами металлокластеры обладают значительным числом связей металл-металл (от семи до девяти), причем в трех из восьми модификаций их число лишь на единицу меньше максимального их количества в соединениях типа Al₂M₃ (10) (М – металл). Относительные энергии этих структур представлены в табл. 2. Как видно из приведенных данных, наиболее устойчивой оказывается модификация Al₂Cu₃ (I), общее число связей металл-металл в которой равно 9. Характерно, что эта модификация обладает не самой высокой спиновой мультиплетностью (4), а более низкой (2); при этом модификации со спиновой мультиплетностью 4, а именно Al_2Cu_3 (II), Al_2Cu_3 (IV) и Al_2Cu_3 (VI), имеют и значительно бо́льшие полные энергии, чем модификации со спиновой мультиплетностью 2.

Молекулярные структуры всех найденных нами модификаций металлокластера Al₂Ag₃ представлены на рис. 2, основные структурные данные этих модификаций – в табл. 3. При сопоставлении рис. 1 и 2 видно большее структурное разнообразие модификаций этого металлокластера по сравнению со своим "медным" аналогом. Следует отметить, что среди металлокластеров Al₂Ag₃ имеются две практически компланарные модификации: Al_2Ag_3 (III) и Al_2Ag_3 (VII), которые в числе возможных модификаций кластеров Al₂Cu₃ не наблюдаются. В первой невалентные углы Ag1Al2Ag2 (123.3°), Al2Ag2Ag3 (113.8°), Ag2Ag3Ag1 (63.4°) и Ag3Ag1Ag2 (60.5°) в сумме дают 360.0°, что соответствует плоскому четырехугольнику, а угол Ag3Al1Ag2, равный 178.6°, почти не отличается от 180°. Во второй невалентные углы Ag3Ag1Ag2 (57.6°), Ag1Ag2Al2 (64.7°), Ag2Al2Ag3 (115.7°) и Al2Ag3Ag1 (121.8°) в сумме дают 358.8°, что соответствует практически плоскому четырехугольнику, а угол Ag1Al1Ag2 равен 177.0°, что также очень близко к 180°. Модификация Al₂Ag₃ (I) напоминает модификации Al_2Cu_3 (V) и Al_2Cu_3 (VI), но в отличие от последних в ней отсутствует связь Al-Al (рис. 1, 2). Остальные модификации в той или иной степени напоминают тригональную бипирамиду или близкую к ней геометрическую фигуру, в которой отсутствует одно или даже большее число ребер (рис. 2). "Гетероядерные" химические связи Al-Ag имеются в структурах всех модификаций Al₂Ag₃, в то время как каждая из "гомоядерных" связей Al-Al и Ag–Ag присутствует лишь в шести структурах из восьми. Относительные энергии всех найденных нами модификаций Al₂Ag представлены в табл. 4. Как видно из приведенных данных, наиболее устойчивой в энергетическом отношении является модификация Al_2Ag_3 (I), имеющая в основном состоянии столь же низкую спиновую мультиплетность (2), что и наиболее устойчивая модификация металлокластера Al₂Cu₃ (I). Эта наиболее энергетически выгодная модификация металлокластера Al₂Ag₃ содержит только химические связи Al-Ag и характеризуется наименьшим количеством связей металл-металл (6) по сравнению с остальными модификациями. Среди теоретически возможных модификаций Al₂Ag₃ имеется модификация Al_2Ag_3 (III) со спиновой мультиплетностью 6, подобных которой среди модификаций металлокластера Al_2Cu_3 не обнаружено. Следует сказать, что эта модификация обладает и наибольшей полной энергией по сравнению с остальными разновидностями данного металлокластера.

ЗАКЛЮЧЕНИЕ

Говоря об общих структурных моментах рассматриваемых здесь алюминий-медных и алюми-

Рис. 1. Молекулярные структуры металлокластеров Al_2Cu_3 .

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 64 № 1 2019

Рис. 2. Молекулярные структуры металлокластеров Al₂Ag₃.

Структура	$Al_2Ag_3(I)$	Al_2Ag_3 (II)	Al ₂ Ag ₃ (III)	Al ₂ Ag ₃ (IV)
	Длин	ны связей металл-метал	ил, пм*	1
Al1Al2	(282.4)	(337.6)	260.9	279.8
Al1Ag1	257.2	252.8	258.0	257.2
Al1Ag2	257.2	267.4	273.5	257.2
Al1Ag3	257.2	267.4	252.5	271.1
Al2Ag1	257.2	252.8	254.7	257.2
Al2Ag2	257.2	267.4	260.4	257.2
Al2Ag3	257.2	267.4	(444.2)	271.1
Ag1Ag3	(372.5)	(372.1)	(510.5)	281.4
Ag2Ag3	(372.5)	264.2	269.7	281.4
Ag1Ag2	(372.5)	(372.3)	(453.4)	(421.8)
	I	Валентные углы, град*	*	1
Ag1Al1Ag2	92.8	91.4	117.1	110.2
Ag1Al2Ag2	92.8	91.4	123.3	110.2
Ag1Al1Al2	(56.7)	(48.1)	58.8	57.1
Ag1Al2Al1	(56.7)	(48.1)	60.0	57.1
Ag2Al1Al2	(56.7)	(50.9)	58.3	57.1
Ag2Al2Al1	(56.7)	(50.9)	63.3	57.1
Al1Ag1Al2	66.6	83.8	61.2	65.9
Al1Ag2Al2	66.6	78.3	58.4	65.9
Al1Ag3Al2	66.6	78.3	(30.6)	62.1
Ag1Al1Ag3	92.8	91.3	178.6	64.3
Ag1Al2Ag3	92.8	91.3	(89.6)	64.3
Ag1Ag3Ag2	(60.0)	(69.3)	(69.3) (62.4)	
Ag2Al1Ag3	92.7	59.2	61.6	64.3
Ag2Al2Ag3	92.7	59.2	(33.7)	64.3
Ag1Ag2Ag3	(60.0)	(69.2)	(85.8)	(41.5)
	Торсио	нные (двугранные) угль	и, град***	I
Ag1Al2Al1Ag3	(120.0)	(140.4)	179.8	-77.7
Ag2Al2Al1Ag3	(-120.0)	(-79.1)	(-0.1)	77.7
Ag1Ag3Ag2Al1	(52.7)	(46.6)	(0.1)	-38.8
Ag1Ag3Ag2Al2	(-52.7)	(-46.6)	(0.0)	38.8
Ag1Al1Al2Ag2	(120.0)	(140.5)	(-180.0)	155.4
Ag1Ag2Al1Al2	(46.4)	(28.3)	(0.0)	(21.8)
Ag1Ag2Al2Al1	(-46.4)	(-28.3)	(0.1)	(-21.8)
Ag2Ag3Al2Al1	(-46.5)	(-62.5)	(-179.8)	65.5
Структура	$Al_2Ag_3(V)$	Al ₂ Ag ₃ (VI)	Al ₂ Ag ₃ (VII)	Al ₂ Ag ₃ (VIII)
	Длин	ны связей металл-метал	ил, пм*	l
Al1Al2	270.7	261.2	276.7	261.3
Al1Ag1	272.4	254.3	252.4	245.4
Al1Ag2	260.1	262.1	255.9	253.6
Al1Ag3	271.8	262.0	259.0	253.6
Al2Ag1	271.6	(409.6)	(460.8)	(486.4)

Таблица 3. Длины связей металл-металл, валентные и торсионные углы в молекулярных структурах кластеров Al₂Ag₃

Структура	$Al_2Ag_3(V)$	Al_2Ag_3 (VI) Al_2Ag_3 (VII)		Al ₂ Ag ₃ (VIII)				
Al2Ag2	260.2	258.0 252.4		260.6				
Al2Ag3	272.3	258.1 254.4		260.7				
Ag1Ag3	265.1	283.6 273.0		(461.1)				
Ag2Ag3	(438.0)	(345.3)	(429.1)	(343.8)				
Ag1Ag2	(438.0)	284.2	(508.1)	(461.1)				
Валентные углы, град**								
Ag1Al1Ag2	110.6	66.8	177.0	135.0				
Ag1Al2Ag2	110.9	(43.4)	(85.6)	(68.7)				
Ag1Al1Al2	60.0	105.2	(121.1)	147.4				
Ag1Al2Al1	60.3	(36.8)	(28.0)	(15.8)				
Ag2Al1Al2	58.7	59.1	56.4	60.8				
Ag2Al2Al1	58.6	60.6	57.6	58.1				
Al1Ag1Al2	59.7	(38.0)	(31.0)	(16.8)				
Al1Ag2Al2	62.7	60.3	66.0	61.1				
Al1Ag3Al2	59.7	60.3	65.2	61.1				
Ag1Al1Ag3	58.3	66.6	64.5	135.0				
Ag1Al2Ag3	58.3	(43.3)	(30.2)	(68.7)				
Ag1Ag3Ag2	(72.4)	(52.6)	(89.8)	(68.1)				
Ag2Al1Ag3	110.8	82.4	112.9	85.3				
Ag2Al2Ag3	110.6	84.0	115.7	82.5				
Ag1Ag2Ag3	(35.2)	(52.5)	(32.5)	(68.1)				
Торсионные (двугранные) углы, град***								
Ag1Al2Al1Ag3	-68.3	(-50.1)	(2.0)	(129.1)				
Ag2Al2Al1Ag3	145.8	-100.3	-176.1	-101.9				
Ag1Ag3Ag2Al1	(-63.8)	(-73.7)	(-1.3)	(-9.0)				
Ag1Ag3Ag2Al2	(63.4)	(-158.0)	(-175.3)	(-95.2)				
Ag1Al1Al2Ag2	-145.8	-50.3	-178.2	129.1				
Ag1Ag2Al1Al2	(-31.3)	-126.2	(-32.3)	(143.7)				
Ag1Ag2Al2Al1	(31.5)	42.1	(-0.9)	(-13.1)				
Ag2Ag3Al2Al1	(30.8)	(-59.6)	(-3.6)	(-57.0)				

Таблица 3. Окончание

Таблица 4. Относительные энергии различных структур металлокластеров Al_2Ag_3

Обозначение структуры	Спиновая мультиплетность основного состояния	Относительная энергия, кДж/моль	Число химических связей в структуре			
			Al–Al	Al–Ag	Ag–Ag	
$Al_2Ag_3(I)$	2	0.0	0	6	0	
Al_2Ag_3 (II)	4	165.1	0	6	1	
Al ₂ Ag ₃ (III)	6	319.6	1	5	1	
Al ₂ Ag ₃ (IV)	2	18.6	1	6	2	
$Al_2Ag_3(V)$	4	145.5	1	6	1	
Al_2Ag_3 (VI)	2	29.9	1	5	2	
Al ₂ Ag ₃ (VII)	4	124.6	1	5	1	
Al ₂ Ag ₃ (VIII)	2	39.1	1	5	0	

ний-серебряных металлокластеров, отметим, что если для большинства "медных" характерно наличие нескольких связей металл-металл, образуемых одним и тем же атомом со своими "соседями" (рис. 1), то для "серебряных" эта тенденция выражена значительно слабее (рис. 2). В среднем число химических связей металл-металл в металлокластерах Al₂Cu₃ заметно больше, чем в металлокластерах Al₂Ag₃. Характерно, что наиболее устойчивые модификации рассматриваемых металлокластеров, а именно Al_2Cu_3 (I) и Al_2Ag_3 (I), внешне сушественно отличаются друг от друга. Для всех без исключения молификаций рассматриваемых металлокластеров характерны сравнительно высокие значения длин связей, превышающие 230 пм; при этом наиболее длинными оказываются связи Al-Al и Ag-Ag, наиболее короткими – связи Cu–Cu, а связи Cu–Al и Ag– Al по длине занимают промежуточное положение, что с учетом атомных радиусов химических элементов (143 пм (Al), 128 пм (Cu) и 145 пм (Ag)), входящих в состав Al_2Cu_3 (I) и Al_2Ag_3 , вполне ожилаемо. Валентные углы, образованные связями металл-металл, как правило, невелики и меньше 90°, аналогичная ситуация имеет место и для торсионных (двугранных) углов. Металлокластеры Al₂Cu₃ и Al₂Ag₃ обладают лишь одной плоскостью симметрии и (или) осью второго порядка; оси третьего порядка имеются лишь в металлокластерах Al_2Cu_3 (V) и Al_2Ag_3 (I) (в каждом из них есть еще по три оси второго порядка и четыре плоскости симметрии). Что же касается спиновой мультиплетности основного состояния рассматриваемых нами металлокластеров, то как в Al₂Cu₃, так и в Al₂Ag₃ имеет место достаточно отчетливо выраженная тенденция к образованию наиболее устойчивых модификаций с низкоспиновыми основными состояниями, что с учетом электронных конфигураций атомов меди $3d^{10}4s^1$ и серебра $4d^{10}5s^1$ представляется вполне естественным.

БЛАГОДАРНОСТЬ

Настоящая статья подготовлена при финансовой поддержке Министерства образования и науки РФ в рамках государственного задания № 4.5784.2017/8.9 на 2017–2019 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Михайлов О.В., Чачков Д.В.* // Журн. неорган. химии. 2017. Т. 62. № 3. С. 321 [*Mikhailov O.V., Chachkov D.V.* // Russ. J. Inorg. Chem. 2017. V. 62. № 3. P. 336. doi 10.1134/S0036023617030135].
- 2. *Hoe W.-M., Cohen A., Handy N.C.* // Chem. Phys. Lett. 2001. V. 341. № 1. P. 319.
- 3. *Perdew J.P., Burke K., Ernzerhof M.* // Phys. Rev. Lett. 1997. V. 78. № 7. P. 1396.
- 4. *Paulsen H., Duelund L., Winkler H. et al.* // Inorg. Chem. 2001. V. 40. № 9. P. 2201.
- Swart M., Groenhof A.R., Ehlers A.W., Lammertsma K. // J. Phys. Chem. A. 2004. V. 108. № 25. P. 5479.
- 6. Swart M., Ehlers A.W., Lammertsma K. // Mol. Phys. 2004. V. 102. № 23. P. 2467.
- 7. *Swart M.* // Inorg. Chim. Acta. 2007. V. 360. № 1. P. 179.
- Schaefer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571.
- Schaefer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829.
- Schaefer A., Horn H., Ahlrichs R. // J. Chem. Phys. 1992. V. 97. № 4. P. 2571.
- Schaefer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. № 8. P. 5829.
- Ceolin G.A., de Berrêdo R.C. // Theor. Chem. Acc. 2013. V. 132. № 4. P. 1339.
- 13. *Frisch M.J. et al.* Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford CT, 2009.
- Чачков Д.В., Михайлов О.В. // Журн. неорган. химин. 2012. Т. 57. № 7. С. 1056 [Chachkov D.V., Mikhailov O.V. // Russ. J. Inorg. Chem. 2012. V. 57. № 7. Р. 981. doi 10.1134/S0036023612070078].
- Чачков Д.В., Михайлов О.В. // Журн. неорган. химин. 2013. Т. 58. № 9. С. 1199 [*Chachkov D.V., Mikhai-lov O.V. //* Russ. J. Inorg. Chem. 2013. V. 58. № 9. P. 1073. doi 10.1134/S0036023613090052].
- 16. *Mikhailov O.V., Chachkov D.V.* // Inorg. Chim. Acta. 2013. V. 408. № 1. P. 246.