АКТИВНЫЕ ИНТЕГРАЛЬНЫЕ ФИЛЬТРЫ ВЕРХНИХ ЧАСТОТ

© 2022 г. С. Ш. Рехвиашвили*

Институт прикладной математики и автоматизации КБНЦ РАН, ул. Шортанова, 89А, Нальчик, КБР, 360000 Россия *E-mail: rsergo@mail.ru Поступила в редакцию 20.04.2022 г.

После доработки 12.05.2022 г. Принята к публикации 12.05.2022 г.

Предложены и теоретически исследованы структуры приборов на основе полевого транзистора с изолированным затвором и биполярного транзистора. Главной конструктивной особенностью приборов является то, что электроды стока и коллектора выполнены в виде МОП-конденсаторов. Изготовление приборов не требует изменений в стандартных технологических маршрутах. Построены распределенные эквивалентные схемы приборов, учитывающие их конструктивно-технологические особенности. Разработаны SPICE-модели приборов и на численных примерах проведена идентификация параметров этих моделей. Рассмотренные приборы являются элементарными фильтрами верхних частот и имеют широкие перспективы применения в аналоговой электронике.

Ключевые слова: фильтр верхних частот, МОП-транзистор, биполярный транзистор, многостоковый транзистор, многоколлекторный транзистор, эквивалентная электрическая схема, сквозное моделирование

DOI: 10.31857/S0544126922050076

1. ВВЕДЕНИЕ

Фильтр верхних частот (ФВЧ) применяется для выделения в аналоговых сигналах высокочастотных составляющих [1], что востребовано, например, в ВЧ- и СВЧ-электронике, а также при обработке радио- и аудиосигналов и видеоизображений. Последовательное включение ФВЧ с фильтром низких частот (ФНЧ) позволяет создавать полосовой и режекторный фильтры. Важные функциональные свойства ФВЧ, кроме того, заключаются в возможности устранения с его помощью постоянной составляющей сигналов и согласование различных каскадов по нагрузке, обеспечивая связь между ними по переменному току. Конденсаторы в соответствующих схемах принято называть разделительными или блокировочными. Известно, что на заданной частоте эффективную связь по переменному току в данном случае можно достичь при условии, если нагрузочное сопротивление будет значительно превышать реактивное сопротивление конденсатора. Поэтому для работы с высокоомными нагрузками возможно применение конденсаторов с малыми значениями емкости, что позволяет изготавливать их в интегральном виде.

По планарно-эпитаксиальной или изопланарной технологии интегральные конденсаторы изготавливаются в основном в виде *p*–*n*-переходов транзисторных структур и МОП-структур [2]. Главными недостатками интегральных конденсаторов на биполярных транзисторных структурах являются невысокие значения емкости и добротности. Кроме того, нелинейная зависимость барьерной и диффузионной емкостей от напряжения в таких конденсаторах не во всех случаях является желательной. Указанные недостатки отсутствуют в МОП-конденсаторах. Следует отметить, что наиболее важное применение МОП-конденсаторы в настоящее время находят в приборах с зарядовой связью и оптических сенсорах [3, 4].

Целью настоящей статьи является разработка конструкций, физико-топологическое и схемотехническое моделирование полевой и биполярной интегральных транзисторных структур, электроды стока и коллектора которых изготовлены в виде МОП-конденсаторов. Такие транзисторные структуры, по существу, выполняют функцию элементарных активных звеньев ФВЧ. Приборы работают только в режиме по переменному току, поэтому статические характеристики для них отсутствуют. Их прототипом в СВЧ-электронике в определенном смысле можно назвать пролетный клистрон [5]. В данном случае области истока/эмиттера и стока/коллектора транзисторных структур выступают в роли входного и выходного резонаторов, а области канала/базы - в роли дрейфового пространства клистрона. Предлагаемые в статье транзисторные структуры имеют перспективы применения в виде дискретных компонентов, а также в

Рис. 1. Структура прибора на основе МОП-транзистора.

качестве усилительных, согласующих, выходных и сенсорных элементов в составе полевых и биполярных интегральных схемах. В статье все расчеты проводятся в приближении равномерно легированных областей. Предполагается, что в приборах содержится выходной МОП-конденсатор размером 100×100 мкм.

2. МОП-ТРАНЗИСТОР

Структура прибора на основе МОП-транзистора с индуцированным каналом *n*-типа представлена на рис. 1. Исток (S) и затвор (G) имеют типовую структуру и топологию. Сток представляет собой объединенные воедино МОП-конденсатор на n^+ -слое (D1) и омический контакт (D2). Изготовление такой структуры не требует никаких изменений стандартных технологических маршрутов. Эквивалентная электрическая схема прибора, построенная на основе известной модели Шихмана-Ходжеса [6, 7], и предлагаемое условное графическое обозначение приведены на рис. 2.

Проведем идентификацию параметров эквивалентной электрической схемы. Удельная емкость слоя диоксида кремния

$$C_{ox} = \frac{\varepsilon_0 \varepsilon}{h},\tag{1}$$

где ε_0 – электричекая порстоянная, $\varepsilon(SiO_2) = 3.9$ – относительная диэлектрическая проницаемость диоксида кремния, h = 0.05 мкм – толщина слоя. Для удельной емкости получается значение $C_{ox} = 6.9 \times 10^{-4} \, \Phi/\text{M}^2$. Пороговое напряжение определяется по формуле [7, 8]:

$$V_T = V_{FB} + 2\varphi_B + \frac{\sqrt{4\varepsilon_0 \varepsilon q N_A \varphi_B}}{C_{ox}}, \qquad (2)$$

$$V_{FB} = \Phi_M - \chi - \frac{E_g}{2q} - \varphi_B,$$
$$\varphi_B = \frac{kT}{q} \ln\left(\frac{N_A}{n_i}\right),$$

МИКРОЭЛЕКТРОНИКА том 51 № 5 2022

где q – заряд электрона, k – постоянная Больцмана, T – темпрература, ε (Si) = 11.9 эВ – относительная диэлектрическая проницаемость кремния, $\Phi_M = 4.1$ эВ и $\chi = 4.05$ эВ – работа выхода электрона из металла (алюминий) и энергия электронного сродства полупроводника (кремний), $E_g = 1.12$ эВ – ширина запрещенной зоны кремния, $V_{FB} = -0.93$ эВ – напряжение плоских зон, $N_A = 10^{17}$ см⁻³ – уровень легирования подложки, $n_i = 10^{10}$ см⁻³ – концентрация собственных носителей заряда в кремнии при комнатной температуре, $\varphi_B = 0.42$ эВ – поверхностный потенциал подложки. Таким образом, для порогового напряжения получается значение $V_T = 2.35$ В. Удельная крутизна затвора

$$K_p = \frac{\mu_n C_{ox} W}{L},\tag{3}$$

где W и L – ширина и длина канала, $\mu_n = 300 - 700 \text{ см}^2/(\text{B c})$ – подвижность электронов в области канала для кремниевых транзисторов [8, с.53]. При W/L = 100 из (3) получаем верхнюю оценку $K_p = 5 \times 10^{-3} \text{ A/B}^2$.

Перейдем к расчету сопротивлений и емкостей областей с учетом структуры и топологии прибора. Встроенные сопротивления областей стока и исто-ка рассчитваются по формуле интегрального резистора

$$R = R_s \left(k_1 + k_2 \right), \tag{4}$$

где $R_s = 27.6$ Ом/квадрат — поверхностное сопротивление, k_1 — коэффициент формы резистора, k_2 — коэффициент, учитывающий растекание тока в контактах. Электрофизические параметры областей: уровень легирования областей истока и стока $N_D = 10^{19}$ см⁻³; подвижность электронов при заданных уровнях легирования $\mu_n = 113.4$ см²/(В с); глубина залегания *p*—*n*-перехода $x_j = 2$ мкм. Подвижность электронов вычислялась по модели [9]. По аналогии с низкоомным полосковым резисто-

Рис. 2. Эквивалентная схема прибора на основе МОП-транзистора и его условное графическое обозначение.

ром [2, с. 42] для встроенных сопротивлений областей S и D1 имеем одну контакнтую площадку $(k_2 = 0.08)$ и для области D2 имеем две контактные площадки $(k_2 = 2 \times 0.08 = 0.16)$. Согласно предлагаемой эквивалентной схеме, сопротивление стока складывается из двух составляющих, относящих-ся к областям D1 и D2. Удельная барьерная емкость при нулевом смещении расчитывается по формуле

$$C_{pn} = \sqrt{\frac{q\varepsilon_0 \varepsilon N_A N_D}{(N_A + N_D) \phi_0}},$$
(5)

$$\varphi_0 = \frac{kT}{q} \ln\left(\frac{N_A N_D}{n_i^2}\right),\tag{6}$$

где $\phi_0 = 0.95 \ 9B$ – контактная разность потенциалов. Для рассматриваемого случая получается значение $C_{pn} = 3.84 \times 10^{-4} \ \Phi/M^2$.

Ниже приведена программа моделирования переходных процессов в усилительном каскаде с общим истоком.

* MOS HIGH PASS FILTER (SPICE CODE) X1 2 3 1 0 0 DEVICE R1 2 0 100K R2 3 4 3K VIN 1 0 AC 3 SIN(0 3 5MEG 0 0 0) VS 4 0 10 .TRAN 0.1N 500N .PLOT TRAN V(2) V(3) .SUBCKT DEVICE DRAIN1 DRAIN2 GATE SOURCE SUBSTRATE RD1 1 2 30 RD2 2 DRAIN2 7 CD 2 DRAIN1 7P M1 1 GATE SOURCE SUBSTRATE MOSFET .MODEL MOSFET NMOS(L=1U W=100U TOX=50N KP=5E-3 VTO=2.35 + RS=5 CBS=1.75P CBD=5.74P UO=700 NSUB=1E17 PHI=0.46) .ENDS .END

Встроенные сопротивления и емкости областей истока и стока рассчитывались с учетом заданных топологических размеров транзистора. Основной методический прием при составлении SPICE-макромодели прибора заключается в том, что сопротивления стока RD1 и RD2 исключены из модели МОП-транзистора и вместе с емкостью CD вынесены во внешнюю цепь. На рис. 3 приведены результаты схемотехнического моделирования. Эти результаты показывают, что на выходе каскада могут быть получены усиленные переменные положительные и отрицательные напряжения.

3. БИПОЛЯРНЫЙ ТРАНЗИСТОР

Прибор на основе биполярного n-p-n-транзистора со структурой, соответствующей стандартной планарно-эпитаксиальной технологии, представлен на рис. 4. Эмиттер (Е) и база (В) имеют типовую структуру и топологию. Коллектор представляет собой n-эпитаксиальный, n^+ -скрытый слой и n^+ -диффузионный слой с контактом виде МОП-конденсатора на n^+ -слое (С1) и омическим контактом (С2). Эквивалентная электрическая схема, построенная на основе упрощенной модели Гуммеля-Пуна [10], и предлагаемое условное графическое обозначение прибора приведены на рис. 5.

Проведем идентификацию параметров эквивалентной электрической схемы. Будем рассчитывать только те параметры, которые относятся к нормальному активному режиму работы транзистора. Для высоколегированных транзисторных областей целесообразно принимать во внимание эффект сужения запрещенной зоны [8, с. 155]. Уменьшение ширины запрещенной зоны кремния можно учесть в рамках простой логарифмической модели [11, с. 40]:

$$\Delta E_g = \Delta E_{g0} \ln \left(\frac{N_s}{N_0} \right), \tag{7}$$

где $N_S = N_A + N_D$ – суммарная концентрация донорной и акцепторной легирующей примеси, $N_0 = 10^{17}$ см⁻³, $\Delta E_{g0} = 0.018$ эВ. Используя теорию биполярного транзистора с числами Гуммеля [8, с. 137–141], с учетом (7) получаем следующую формулу для коэффициента передачи тока в схеме с общим эмиттером

Рис. 3. Переходной процесс в усилительном каскаде с общим истоком: *1* – входной сигнал; *2* – выходной сигнал с конденсатора; *3* – выходной сигнал с резистора.

МИКРОЭЛЕКТРОНИКА том 51 № 5 2022

Рис. 4. Структура прибора на основе биполярного транзистора.

Рис. 5. Эквивалентная схема прибора на основе биполярного транзистора и его условное графическое обозначение.

$$\beta_F = \frac{G_E}{G_B} = \frac{N_{DE} x_E \mu_{nB}}{N_{AB} x_B \mu_{pE}} \left(\frac{N_{SB}}{N_{SE}}\right)^{\gamma},$$

$$\gamma = \frac{\Delta E_{g0}}{kT},$$
(8)

где G_E и G_B — числа Гуммеля для эмиттера и базы, $N_{DE} = 10^{19}$ см⁻³ и $N_{AB} = 5 \times 10^{17}$ см⁻³ — концентрации донорной и акцепторной легирующей примеси в эмиттере и базе, $x_E = 1.5$ мкм и $x_B = 0.5$ мкм толщины квазинейтральных областей эмиттера и базы, $\mu_{pE} = 68.7$ см²/(В с) и $\mu_{nB} = 112.5$ см²/(В с) подвижности неосновных носителей заряда (дырок и электронов) в эмиттере и базе, $\gamma = 0.7$ при T = 300 К. Как и в случае с МОП-транзистором, подвижность электронов и дырок рассчитывалась по модели [9]. При расчете сумарных концентраций примеси в эмиттере и базе и сопротивления коллектора учитывалось, что концентрация донорной легирующей примеси в эпитаксиальном слое составляет $N_{DC} = 10^{16}$ см⁻³. Таким образом, находим значение $\beta_F = 11.82$. Для плотности тока насыщения транзистора [8, с. 139] с учетом (7) получается формула

$$J_{S} = \frac{qn_{i}^{2}}{G_{B}} = \frac{kT\mu_{nB}n_{i}^{2}}{N_{AB}x_{B}} \left(\frac{N_{SB}}{N_{0}}\right)^{\gamma}.$$
(9)

МИКРОЭЛЕКТРОНИКА том 51 № 5 2022

Рис. 6. Переходной процесс в усилительном каскаде с общим эмиттером: *1* – входной сигнал; *2* – выходной сигнал с конденсатора; *3* – выходной сигнал с резистора.

С учетом всех указанных численных значений параметров $J_s = 5.83$ пА/см². Напряжение Эрли, характеризующее переключательные свойства транзистора, можно оценить по формуле

$$V_{AF} = \frac{qN_{AB}x_B}{C_{pn}}.$$
 (10)

Здесь C_{pn} — это удельная барьерная емкость коллекторного перехода, которая рассчитывается по (5). Расчет дает численное значение $V_{AF} = 306.81$ В. Необходимо отметить, что учет эффекта высокого уровня легирования для эмиттера и базы при $N_{SE}, N_{SB} > N_0$, который проявляется в сужении запрещенной зоны кремния ($E_g - \Delta E_g$), приводит к значительному уменьшению коэффициента усиления и увеличению тока насыщения транзистора. Удельные сопротивления эмиттера, базы и

коллектора равны соответственно 5.547×10^{-3} , 0.065 и 0.514 Ом см. Сопротивления и емкости областей рассчитывались по формулам (4) и (5) с учетом топологических размеров областей биполярного транзистора и направлений протекания токов в его структуре. В частности, учитывалось, что максимальный ток эмиттера взаимосвязан с геометрическим сопротивлением базы R_B , которое зависит от размеров эмиттера [8, с. 168]: $I_E(\max) \approx 1.6kT/q(1-\alpha_F)R_B$, где $\alpha_F = 0.922$. При расчете встроенных сопротивлений эмиттера и коллектора влияние контактных площадок не учитывалось, для базы учитывалась одна контактная площадка.

Ниже приведена программа моделирования переходных процессов в усилительном каскаде с общим эмиттером.

```
* BJT HIGH PASS FILTER (SPICE CODE)
X1 2 3 1 0 DEVICE
R1 4 3 3K
R2 2 0 100K
VIN 1 0 AC 1 SIN(0 1 5MEG 0 0 0)
VS 4 0 10
.TRAN 0.1N 500N
.PLOT TRAN V(2) V(3)
.SUBCKT DEVICE COLLECTOR1 COLLECTOR2 BASE EMITTER
CC COLLECTOR2 COLLECTOR1 7P
Q1 COLLECTOR2 BASE EMITTER BJT
.MODEL BJT NPN(BF=11.82 VAF=306.81 IS=0.1F CJE=1P CJC=0.15P
+ RE=0.1 RB=150 RC=10 VJE=0.995 VJC=0.815)
.ENDS
.END
```

В отличие от рассмотренного выше случая с МОП-транзистором, в SPICE-макромодели прибора сопротивление коллектора включено в модель биполярного транзистора. Это связано с тем, что тело коллектора, состоящее из эпитаксиального, скрытого и диффузионного контактного слоев, можно приближенно считать общим по отношению к выходным контактактам C1 и C2. Результаты схемотехнического моделирования приведены на рис. 6. Как и в предыдущем случае, эти результаты показывают, что на выходе каскада могут быть получены достаточно качественные усиленные переменные сигналы напряжения.

Если сравнивать осциллограммы сигналов на рис. 3, 6, то можно прийти к выводу о том, что ФВЧ на основе биполярного транзистора является менее инерционным, и поэтому в целом более предпочтительным. Это объясняется тем, что диапазон рабочих частот полевого транзистора и имеющиеся в нем паразитные емкости замедляют процессы переключения на высоких частотах. Помимо этого, у полевого транзистора коэффициент передачи по напряжению меньше, чем у биполярного транзистора. Однако, по входной (управляющей) цепи ФВЧ на полевом транзисторе оказывается лучше, т.к. обладает большим входным сопротивлением.

ЗАКЛЮЧЕНИЕ

В настоящей статье предложены и теоретически исследованы транзисторные структуры, которые представляют собой активные звенья ФВЧ. Их отличительной оснобенностью является то, что выходные контакты реализованы в виде МОП-конденсаторов. Это, по сути дела, обеспечивает гальваническую развязку между истоком/эмиттером и стоком/коллектором. Приборы предназначены для обработки переменных сигналов и могут найти эффективное применение в качестве элементов антенных усилителей. детекторов и генераторов сигналов, умножителей частоты, сенсоров оптического излучения и др. Для увеличения выходной емкости представляется перспективным применение 3D-конденсаторов [12], которые могут изготавливаться с применением технологии глубокого реактивного ионного травления (Deep Reactive-Ion Etching, DRIE метод).

По работе можно сделать следующие основные выводы: 1) полевой и биполярный транзисторы, в которых в качестве электродов стока и коллектора используются МОП-конденсаторы, представляют собой активные фильтры высоких частот; 2) разработаны эквивалентные электрические схемы приборных структур и проведено их физико-топологическое и схемотехническое моделирование, причем параметры биполярного транзистора предложено рассчитывать с учетом эффекта высокого уровня легирования эмиттера и базы; 3) проведенные теоретические исследования позволяют рекомендовать приброры для промышленного изготовления.

Представляет большой интерес провести моделирование электрофизических характеристик транзисторных структур, которые представлены на рис. 1, 4, в режиме по переменному току путем прямого решения фундаментальной системы уравнений переноса носителей заряда, например, методом конечных элементов. Эта сложная задача требует отдельного рассматрения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tietze U., Schenk Ch., Schmid E.* Electronic Circuits: Design and Applications. Springer-Verlag, 1991.
- 2. Пономарев М.Ф., Коноплев Б.Г. Конструирование и расчет микросхем и микропроцессоров. М.: Высш. шк., 1986.
- 3. Zimmermann H.K. Integrated Silicon Optoelectronics. Berlin, Heidelberg: Springer-Verlag, 2010.
- 4. *Sze S.M., Lee M.-K.* Semiconductor Devices: Physics and Technology. Wiley, 2012.
- 5. Лебедев И.В. Техника и приборы сверхвысоких частот. Электровакуумные приборы СВЧ. Т. 2. М.: Высш. шк., 1972.
- Shichman H., Hodges D.A. Modeling and simulation of insulated-gate field-effect transistor switching circuits // IEEE Journal of Solid-State Circuits. 1968. V. 3. № 3. P. 285–289. https://doi.org/10.1109/JSSC.1968.1049902
- 7. Денисенко В.В. Компактные модели МОП-транзисторов для SPICE в микро- и наноэлектронике. М.: Физматлит, 2010.
- 8. *Ферри Д., Эйкерс Л., Гринич Э.* Электроника ультрабольших интегральных схем. М.: Мир, 1991.
- 9. Arora N.D., Hauser J.R., Roulston D.J. Electron and hole mobilities in silicon as a function of concentration and temperature // IEEE Transactions on Electron Devices. 1982. V. 29. № 2. P. 292–295. https://doi.org/10.1109/T-ED.1982.20698
- Gummel H.K., Poon H.C. An integral charge control model of bipolar transistors // Bell Syst. Tech. J. 1970. V. 49. № 5. P. 827–852. https://doi.org/10.1002/j.1538-7305.1970.tb01803.x
- 11. Тугов Н.М., Глебов Б.А., Чарыков Н.А. Полупроводниковые приборы. М.: Энергоатомиздат, 1990.
- Рехвиашвили С.Ш., Гаев Д.С., Бойко А.Н. Физикотопологическое моделирование объемной конденсаторной структуры с барьером Шоттки // Микроэлектроника. 2021. Т. 50. № 5. С. 384–389. [*Rekhviashvili S. Sh., Gaev D.S., Boyko A.N.* Physical and Topological Modeling of a Volume Condenser Structure with a Schottky Barrier // Russian Microelectronics. 2021. V. 50. № 5. Р. 347–352. https://doi.org/10.1134/S1063739721040090]