УДК 621.382.323

# МОДЕЛИРОВАНИЕ ХАРАКТЕРИСТИК КНИ КМОП НАНОТРАНЗИСТОРОВ С АССИМЕТРИЧНЫМ ПОЛНОСТЬЮ ОХВАТЫВАЮЩИМ ЗАТВОРОМ

# © 2020 г. Н.В. Масальский\*

Федеральное государственное учреждение Федеральный научный центр Научно-исследовательский институт системных исследований Российской АН, Нахимовский просп., 36, корп. 1, Москва, 117218 Россия

\**E-mail: volkov@niisi.ras.ru* Поступила в редакцию 05.02.2020 г. После доработки 19.03.2020 г. Принята к публикации 19.03.2020 г.

Рассматривается подход для сквозного моделирования электрофизических характеристик низколегированных суб 25 нм КНИ КМОП транзисторов с ассиметричным полностью охватывающим затвором, который состоит из двух последовательно соединенных материалов с разной работой выхода. Подход включает последовательное вычисление 3D распределения потенциала в рабочей области, расчет вольтамперных характеристик и для базового логического вентиля — инвертора вычисление статической и динамической характеристики. В рамках рассматриваемого подхода анализируется влияния отношения длин областей затвора с разной работой выхода на все ключевые характеристики устройств — транзисторов и логических вентилей на их основе. Показано, что логические элементы могут эффективно функционировать при напряжении питания 0.8 В, что является предпосылкой для создания низковольтной схемотехники.

*Ключевые слова:* КНИ КМОП нанотранзистор, ассиметричный затвор, 3D распределение потенциала, вольт-амперные характеристики, инвертор, низкое напряжение питания

DOI: 10.31857/S0544126920050063

# введение

Дальнейший рост эффективности кремниевых интегральных схем напрямую связан с использованием новых транзисторных архитектур [1, 2]. В настоящей работе для решения представленной проблемы анализируется возможность использования КМОП нанотранзисторов с ассиметричным полностью охватывающим затвором, выполненных по КНИ технологии [1-4]. В рассматриваемой структуре затвор состоит из двух последовательно соединенных материалов М1 и М2 с различными работами выхода. В такой конфигурации из-за "скачка" поверхностного потенциала пик электрического поля у стока существенно снижается, что позволяет достигать одновременно и подавления короткоканальных эффектов (ККЭ) и снижения эффекта горячих носителей [5-8]. Преимуществом данной конструкции является то, что она позволяет компенсировать влияние эффекта roll-off порогового напряжения и другие паразитные механизмы. Такая концепция апробирована на нескольких планарных архитектурах. Эффективность такой конструкции заметна для низколегированных рабочих областей [9]. Когда общее число носителей велико, то потенциала "скачка" не достаточно для эффективного подавления эффекта горячих носителей

[5, 8]. Исследование возможности применения концепции комбинированного затвора для транзисторных структур с полностью охватывающим затвором представляет интерес из-за их более превосходящих свойств (по быстродействию, потребляемой мощности, миниатюризации) по сравнению с аналогичными планарными структурами [2, 10].

Функциональная схема КНИ КМОП нанотранзистора с полностью охватывающим затвором, выполненным из двух разных материалов, приведена на рис. 1. В данном случае на подложке КНИ (кремний на изоляторе), которая не показана на рисунке, расположены исток (поз. 1), сток (поз. 2), рабочая область (поз. 3) длиной  $L_g$  и радиусом *R* и подзатворный окисел (поз. 4) с толщиной  $t_{ox}$ . Затвор транзистора состоит из двух частей М1 и М2 с длиной  $L_I$  и  $L_{II}$ , соответственно, с разными работами выхода. При этом выполняется условие  $L_I + L_{II} = L_g$ .

В настоящей работе рассматривается подход для сквозного моделирования электро-физических характеристик суб 25 нм КНИ КМОП транзисторов с ассиметричным полностью охватывающим затвором. Электрофизические характеристики прототипов транзисторов вычисляются начиная



**Рис. 1.** Схема КНИ КМОП транзистора с полностью охватывающим затвором из двух материалов: *1* – исток; *2* – сток; *3* – кремниевая рабочая область; *4* – подзатворный окисел.

от расчета 3D распределения потенциала в рабочей области являющегося решением уравнения Пуассона в цилиндрических координатах. На основании полученного для каждого прототипа распределения потенциала рассчитываются его вольт-амперные характеристики. На заключительном этапе для базового логического вентиля – инвертора – вычисляются его статическая и динамическая характеристики. В рамках рассматриваемого подхода анализируется влияния отношения длин областей затвора с разной работой выхода на все ключевые характеристики устройств – транзисторов и логических вентилей на их основе. Реализация такой процедуры весьма эффективна для формирования элементной базы для перспективных интегральных микросхем.

#### 1. РАСПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА

Рассмотрим квазиклассическую задачу (в приближении зарядового разделения (ПЗР)) определения распределения потенциала в цилиндрической рабочей области рассматриваемой КНИ структуре [2, 10]. В предположении, что кремниевая рабочая область транзистора однородно легирована, и влияние фиксированных окисных зарядов на ее электростатику пренебрежимо мало, то распределение потенциала в ней может описываться с учетом симметрии по координате  $\Theta$  решением 2D уравнения Пуассона следующего вида [10, 11]:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\varphi_{i}(r,z)\right) + \frac{\partial^{2}}{\partial z^{2}}\varphi_{i}(r,z) = \frac{qN_{A}}{\varepsilon_{S}},$$
(1)

где  $\varphi_i(r, z)$ ) — электростатический потенциал в каждой зоне (I и II) рабочей области, q — заряд электрона,  $\varepsilon_S$  — диэлектрическая проницаемость рабочей области (диэлектрическая проницаемость кремния),  $N_A$  — концентрация легирования рабочей области.

Решение (1) ищется при следующих граничных условиях.

1. Электрическое поле на границе затвор-окисел непрерывно для обеих областей

$$\frac{\varepsilon_{ox}}{t_{ox}}(U_g - U_{FB_i} - \varphi_{s_i}(R, z)) = \varepsilon_S \frac{\partial \varphi(r, z)}{\partial r}\Big|_{r=R}$$
$$\frac{\varepsilon_{ox}}{t_{ox}}(U_g - U_{FB_i} - \varphi_{s_i}(R, z)) = \varepsilon_S \frac{\partial \varphi(r, z)}{\partial r}\Big|_{r=R}$$

2. Поверхностный потенциал на поверхности двух разнородных материалов затвора на затворе непрерывный

$$\varphi_{s_1}(r, L_1) = \varphi_{s_2}(r, L_1)$$

3. Электрическое поле на поверхности двух материалов затвора непрерывно

$$\frac{\partial \varphi_{s_1}(r,z)}{\partial x}\Big|_{z=L_1} = \frac{\partial \varphi_{s_2}(r,z)}{\partial x}\Big|_{z=L_1}.$$

МИКРОЭЛЕКТРОНИКА том 49 № 5 2020

 Потенциал на краю рабочей области со стороны истока

$$\varphi_{s_1}(r,0) = U_{bi}.$$

5. Потенциал на краю рабочей области со стороны стока

$$\varphi_{s_2}(r, L_g) = U_{bi} + U_{ds},$$

где  $\phi(r, z)|_{r=R} = \phi_{s_i}(z)$  – поверхностный потенциал под областями I и II соответственно,  $\varepsilon_{ox}$  – диэлек-

трическая проницаемость подзатворного окисла,  $t_{ox}$  — толщина подзатворного окисла затвора,  $U_g$  — напряжение на затворе,  $U_{FBi}$  — напряжение плоских зон,  $U_{bi}$  — встроенная разность потенциалов,  $U_{ds}$  — напряжение сток-исток. Напряжения плоских зон для областей I и II (см. рис. 1) на затворе будут различны, только из-за разной работы выхода [12].

Следует отметить, что такая постановка задачи позволяет получить аналитическое решение (1) в параболическом приближении [5, 13, 14].

Для модельных расчетов выбран прототип КНИ КМОП нанотранзистора с затвором из двух материалов с разной работой выхода М1 и М2. Значения ключевых параметров прототипа приведены в табл. 1. Такие значения топологических параметров выбраны исходя из условий их минимизации и одновременного подавления ККЭ и избежания влияния квантово-механических эффектов и, в перспективе, для обеспечения высокого уровня тока транзистора [15].

На рис. 2 приведены результаты численного решения (1) для случая r = R при условии  $L_{I} = L_{II}$ .

Для иллюстрации влияния отношения  $L_{\rm I}$  и  $L_{\rm II}$  на распределение поверхностного потенциала  $\varphi_s(z)$ можно рассматривать только одномерный случай в силу симметрии по координатам r и  $\Theta$ . На рис. 3 приведены результаты расчета  $\varphi_s(z)$  для различных комбинаций длин  $L_{\rm I}$  и  $L_{\rm II}$ . Из представленных результатов видно, что по аналогии с планарной транзисторными архитектурами с ассиметрич-

Таблица 1. Параметры прототипа транзистора

| Параметр                          | значение             |  |
|-----------------------------------|----------------------|--|
| Lg, нм                            | 22                   |  |
| tox, нм                           | 1.2                  |  |
| R, нм                             | 3.5                  |  |
| $\Phi_{MS_1}, \Im B$              | 4.8                  |  |
| $\Phi_{MS_1}, \Im B$              | 4.4                  |  |
| N <sub>da</sub> ,cm <sup>-3</sup> | $5.0 \times 10^{20}$ |  |
| N <sub>A</sub> ,cm <sup>-3</sup>  | $1.0 \times 10^{15}$ |  |

ным затвором, по мере уменьшения  $L_1$  положение минимума поверхностного потенциала, лежащего под М1, смещается к истоку. Это вынуждает пик электрического поля в рабочей области смещаться больше к истоку. Также следует отметить, что при уменьшении  $L_1$  увеличивается эффективность экранировки, т.е. напряжение на стоке имеет очень незначительное влияние на ток стока после насыщения [15]. Минимумы поверхностного потенциала для этих трех случаев различаются. Это происходит, потому что, при росте  $L_1$  часть рабочей области, которой управляет затвор с большей работы выхода, также увеличивается.

Из полученных распределений легко получить значимую характеристику – распределение напря-



**Рис. 2.** Распределения поверхностного потенциала при  $U_{ds} = 0.1$  В при  $L_{I}: L_{II} = 1:1$ .



**Рис. 3.** Распределения фронтального поверхностного потенциала при  $U_{ds} = 0.1$  В вдоль рабочей области: при разных отношениях  $L_{I}$  и  $L_{II}$ :  $1 - L_{I}$ :  $L_{II} = 1 : 2$ ;  $2 - L_{I}$ :  $L_{II} = 1 : 1$ ;  $3 - L_{I}$ :  $L_{II} = 2 : 1$ .

женности электрического поля. Уместно сравнить распределения напряженности электрического поля вдоль рабочей области двух прототипов нанотранзисторов с разным типом затвора: с однородным и ассиметричным. Из их сопоставления можно сделать следующий вывод. Для обоих типов транзисторов характерно, что ближе к стоку напряженность поля резко возрастает — на последних десяти процентах длины оно возрастает в два раза. Тем не менее, пиковое электрическое поле у края рабочей области со стороны стока транзистора с ассиметричным затвором значительно меньше (практически в 2.5 раза), чем для транзистора с однородным затвором.

# 2. ПОПРАВКА К ПОРОГОВОМУ НАПРЯЖЕНИЮ

В квазиклассическом приближении выражение для порогового напряжения ( $U_{th}$ ) вытекает из выражения для минимального значения фронтального поверхностного потенциала [2, 8, 10]. Тогда, в общем случае выражение для  $U_{th}$  КНИ КМОП нанотранзистора с составным полностью охватывающим затвором имеет следующий вид:

$$U_{th} = U_{th \ long} - \Delta U_{th},\tag{2}$$

где  $U_{th\_long}$  — пороговое напряжение длинно-канального транзистора. Сдвиг порогового напряжения из-за ККЭ по аналогии с [15, 16] можно представить так:

$$\Delta U_{th} = 2\sqrt{u_0u_1} \exp\left(-\frac{L_1}{\sqrt{2\varepsilon_r t_S t_{ox}}}\right),$$
  
rde  $u_0 = U_{bi} - U_g - U_{FB}^{(1)} + \frac{\Delta U_{FB}}{2\left(1 + \frac{t_S}{2\varepsilon_r t_{ox}}\right)}, \quad u_1 = \frac{1}{2} \frac{\left(U_{bi} + U_{ds} - U_g - U_{FB}^{(11)}\right) \sinh\left(\frac{L_1}{l}\right) + u_0 \sinh\left(\frac{L_{II}}{l}\right)}{\cosh\left(\frac{L_1}{l}\right) \sinh\left(\frac{L_1}{l}\right) + \sinh\left(\frac{L_1}{l}\right) \cosh\left(\frac{L_{II}}{l}\right)}, \quad \Delta U_{FB} = U_{FB}^{(1)} - U_{FB}^{(11)}$ 

— разность между напряжениями плоских зон,  

$$\varepsilon_r = \frac{\varepsilon_s}{\varepsilon_{ox}}$$
 — отношение диэлектрических проницае-  
мостей, *l* — характеристическая длина [2, 10].

Уравнение (2) применимо не во всех случаях. Простой вид поправки порогового напряжения обусловлен предположением, что  $L_{\rm I}$  и  $L_{\rm II}$  не сильно различаются. В случае значительного отличия значений  $L_{\rm I}$  и  $L_{\rm II}$  искажается связь между разнорабочими областями затвора, что приводит к нивелированию эффекта roll-off порогового напряжения.

МИКРОЭЛЕКТРОНИКА том 49 № 5 2020

Поэтому используется поправочный коэффициент, эмпирическое выражение для которого, имеет вид [16]:

$$\Omega = 1 - \frac{|L_{\rm I} - L_{\rm II}|}{\rho L_{\rm I}},\tag{3}$$

где  $\rho$  — подгоночный параметр, который зависит от отношения  $L_{\rm I}$  и  $L_{\rm II}$  и общей длины рабочей области. Нужно отметить, что, при  $L_{\rm I} = L_{\rm II}$ ,  $\Omega = 1$ . При уменьшении длины рабочей области и постоянном отношении  $L_{\rm I}$  и  $L_{\rm II}$  эффект roll-off порогового напряжения проявляется, хотя менее



**Рис. 4.** Зависимость нормированной поправки порогового напряжения от длины затвора: 1 – монозатвор;  $2 - L_1 : L_2 = 2 : 1; 3 - L_1 = L_2; 4 - L_1 : L_2 = 1 : 2.$ 

выражено, чем в случае классического КНИ КМОП нанотранзистора. Существенные отличия в пороговом напряжении начинают возникать примерно в суб 30 нм диапазоне длин рабочей области при отношении  $L_1$  и  $L_{II}$  более 3 : 1 (или 1 : 3). Очевидно, что такие топологии вряд ли представляют практический интерес в силу незначительного влияния на характеристики нанотранзисторных структур. Поэтому заключительное выражение для  $U_{th}$  имеет вид:

$$U_{th} = U_{th \ long} - \Omega \Delta U_{th}.$$
 (4)

Зависимость сдвига порогового напряжения от длины затвора для КМОП нанотранзистора с ассиметричным полностью охватывающим затвором для различных соотношений  $L_{\rm I}/L_{\rm II}$ , приведена на рис. 4.

Следует отметить, что ККЭ во всех случаях являются серьезным препятствием для масштабирования рабочей области. Наиболее сильно это проявляется для случаев  $L_1 < 2L_{II}$ , где влияние области М1 на распределение потенциала несущественно. С увеличением протяженности области М1 влияние эффекта roll-off уменьшается. С увеличением значения параметра  $L_I$  зависимость  $U_{th}(L_g)$  – сглаживается. В придельном случае отклонение порогового напряжения составляет 7.5 и 4% для отношения  $L_I : L_{II} = 1 : 1$  и  $L_I : L_{II} =$ = 2 : 1 соответственно.

#### 3. МОДЕЛЬ ТОКОВ В ТРАНЗИСТОРЕ

Для моделирования вольтамперных характеристик (**BAX**) использовалась сформулированная в рамках ПЗР модель [2, 10], с учетом модифицированного выражения для скорости насыщения и высокой полевой деградации. В данном случае ток транзистора определяется переносом подвижного заряда  $Q_m(r, z)$  и положением квази уровня Ферми  $\phi_F$ . Тогда выражение для тока в силу симметрии задачи по *r* и  $\Theta$  можно записать в виде [9, 15]

$$I_{ds} = -2\pi\mu_{eff}Q_m(r,z)\frac{\partial\phi_F}{\partial z}.$$
 (5)

Это выражение объединяет дрейфовую и диффузную компоненты тока. Значение тока получается двойным интегрированием выражения (5). В общем случае распределение зарядов можно записать так:  $n = n_i \exp\left(-\frac{q}{kT}(\varphi(r, z) - \varphi_F(r, z))\right)$ . Зависи-

мость подвижности от электрического поля имеет очень сложный характер. В нашем случае при моделировании используется модель "эффективной подвижности"  $\mu_{eff}$  Маттиссена [17].

На рис. 5 приведены результаты расчета ВАХ для представленного выше прототипа транзистора (см. табл. 1) при различных комбинациях длин  $L_{\rm I}$  и  $L_{\rm II}$ .

Отметим, что все приборы переходят в режим насыщения при низком напряжении (примерно 0.4 В)  $U_{ds}$ . Из сопоставления ВАХ следует, что максимальный ток транзистора соответствует случаю  $L_1 = 0.42L_g$ . Он незначительно (~3%) превосходит токи для отношения длин  $L_1 : L_{II} = 1 : 2$ ,  $3 - L_1 : L_{II} = 1 : 1$ . При этом относительно максимального тока транзистора с однородным затвором рост составляет уже 16%. И сами ВАХ отличаются, хотя и незначительно, чувствительностью к уровню затворного напряжения.



**Рис. 5.** ВАХ  $I_{ds}(U_{ds})$  при  $U_g = 0.8$  В при разных отношениях  $L_I$  и  $L_{II}$ :  $1 - L_I = 0.42L_g$ ;  $2 - L_I : L_{II} = 1 : 2$ ;  $3 - L_I : L_{II} = 1 : 1$ ;  $4 - L_I : L_{II} = 2 : 1$ ; 5 – монозатвор. Здесь кривые 2 и 3 практически совпадают.

В исследуемой архитектуре в общем случае ключевой ток транзистора (Ion) при прочих одинаковых технологических параметрах зависят от отношения длин каждой части затвора. Зависимость максимального тока от отношения  $L_{\rm I}/L_{g}$  приведена на рис. 6.

Из данной зависимости следует, что полученный максимум имеет ярко выраженный характер. Мы определим его как наилучший случай. В общем случае нет инструментов корректировки положения максимума тока для выбранных топологических параметров. Например, увеличение R требует соответствующего повышения длины рабочей области из-за ККЭ, что приводит к совершенно другим структурам, ВАХ которых не связаны с аналогичными характеристиками рассматриваемого прототипа. Изменение концентрации легирования N<sub>A</sub> на плюс/минус один порядок не изменяет положение максимума. А только увеличивает или уменьшает ток. Это изменение незначительное, зависимость  $I_{ds_{max}}(N_A)$  практически линейная, где  $I_{ds\_max} \cong \beta I_{ds\_max}^{(0)}$ , где  $I_{ds\_max}^{(0)}$  – максимальный ток





МИКРОЭЛЕКТРОНИКА том 49 № 5 2020

транзистора для  $N_A^{(0)} = 1.0 \times 10^{15} \text{ см}^{-3}$ , коэффициент масштабирования тока  $\beta = \log\left(\frac{N_A^{(0)}}{N_A}\right)$ . Дальнейшее увеличение концентрации  $N_A$  (выше  $1.0 \times 10^{17} \text{ см}^{-3}$ ) приводит резкому снижению прямого тока из роста влияния эффекта горячих носителей, так как. "скачка" потенциала не хватает для его компенсации. При уменьшении  $N_A$  (ниже  $1.0 \times 10^{13} \text{ см}^{-3}$ ) также происходит снижение тока из-за общего уменьшения числа носителей в рабочей области.

Для наилучшего случая по току насыщения приведем основные ВАХ прототипа нанотранзистора *n*-типа, которые представлены на рис. 7, где зависимость тока утечки отображается отдельным рисунком.

Представленный прототип характеризуется высоким током при низком напряжении питания (напряжении  $U_{ds}$ ). Очень важно, что при  $U_{ds} = 0.4$  В и  $U_g = 0.8$  В его ток составляет более 80% от максимального значения, что предполагает превосходные переключательные характеристики. Высокий ток Іоп напрямую приводит к уменьшению времени переключения вентиля даже при пониженном напряжении питания. Ток утечки рассматриваемого прототипа довольно низкий и не превышает 1 нА. Отношение максимального тока транзистора к максимальному току утечки составляет ~4 × 10<sup>5</sup>. Совокупность этих фактов указывает на возможность разработки эффективной схемотехники на данной транзисторной структуре.

# 4. ХАРАКТЕРИСТИКИ ИНВЕРТОРА НА НАНОТРАНЗИСТОРАХ С АСИММЕТРИЧНЫМ ПОЛНОСТЬЮ ОХВАТЫВАЮЩИМ ЗАТВОРОМ

Математическое ядро программы HSPICE [18] использовалось для моделирования характери-



**Puc. 7.** BAX  $I_{ds}(U_{ds})$ : (a)  $1 - U_g = 0.8$  B,  $2 - U_g = 0.6$  B,  $3 - U_g = 0.4$  B,  $4 - U_g = 0.2$  B; (6)  $U_g = 0$ .



Рис. 8. Статическая характеристика инвертора для наилучшего случая.

стик вентилей, на транзисторах полностью охватывающим затвором, схемотехнические модели которых были сформулированы по апробированной методике [19]. Отметим ключевую особенность таких инверторов. В данном случае радиусы рабочих областей должны быть одинаковы. В отличии от планарных архитектур, где стремятся уровнять токи *n* и *p* транзисторов за счет более большой ширины (практически двукратного превышения) транзистора *р*-типа, для рассматриваемых транзисторов такой подход неприемлем. Увеличение величины *R* неминуемо проводит к стремительному усилению ККЭ и, следовательно, к деградации всех характеристик инвертора. Для исследования влияние на статические характеристики инвертора соотношения длин  $L_{\rm I}$ :  $L_{\rm II}$  будем рассматривать симметричный инвертор на транзисторах с  $L_g = 22$  нм, R = 3.5 нм,  $t_{ox} = 1.2$  нм. Основные параметры транзисторов соответствующие наилучшему случаю приведены в табл. 2, а на рис. 8 приведена статическая характеристики инвертора на них.

Качественно острота передаточной характеристики является мерой того, насколько хорошо данная цепь может выполнять цифровые операции. Шумовые допуски в КМОП инверторе или любой другой инвертирующей цепи обычно определяются в терминах "единичного усиления", наличием точек в которых  $dU_{out}/dU_{in} = -1$ . Между ними оба транзистора *n*- и *p*-типов смещены в режим насыщения. Это область определяет величину величина усиления сигнала  $S = dU_{out}/dU_{in}$ . На рис. 9 приведена зависимость  $S(L_1)$  экстрагированная из расчетов статических характеристик инверторов с разными отношениями  $L_1 : L_{II}$ . При  $L_1 = 0.42L_g$  достигается максимальный коэффициент усиления.

Для того же прототипа с максимальным усилением  $S_{\text{max}}$  были рассчитаны статические характеристики, но для более низких напряжений питания. Так же определен коэффициент усиления. Результаты моделирования приведены на рис. 10.

Из представленных данных следует, что в диапазоне напряжений питания  $0.6 \le U_{ds} \le 0.8$  В параметр *S* практически не изменяется. Ниже 0.6 В начинается планомерное снижение зависимости *S*( $U_{ds}$ ), которое следует из-за существенного уменьшения токов обоих транзисторов.

На рис. 11 ниже приведена рассчитанная зависимость задержки переключения инвертора для наилучшего случая от напряжения питания.

Из представленных данных следует, что в диапазоне напряжений питания  $0.5 \le U_{ds} \le 0.8$  В задержка вентиля практически не изменяется и не

Таблица 2. Основные параметры *n*-и *p*-транзисторов

| Параметры                | <i>n</i> -пип | <i>р</i> -тип |
|--------------------------|---------------|---------------|
| Пороговое напряжение, мВ | 126           | -148          |
| Ток Ion, мкА             | 308           | -186          |
| Ток Ioff, nA             | 1.2           | 0.6           |

МИКРОЭЛЕКТРОНИКА том 49 № 5 2020









**Рис.** 11. Зависимость задержки инвертора от напряжения питания  $(U_{ds})$ .

превышает 1 пс. Существенный рост задержки начинается при  $U_{ds} = 0.45$  В.

В совокупности можно предполагать, что логические элементы могут эффективно функционировать при напряжении питания 0.6 В, что яв-

МИКРОЭЛЕКТРОНИКА том 49 № 5 2020

ляется предпосылкой для создания низковольтной схемотехники Представленные результаты могут быть использованы для разработки СБИС с малой потребляемой мощностью.

# ЗАКЛЮЧЕНИЕ

Разработан подход сквозного моделирования низколегированных суб 25 нм КНИ КМОП транзисторов с ассиметричным полностью охватывающим затвором. Процедура моделирования включает расчет 3D распределения потенциала в рабочей области транзистора, на его основе вольтамперные характеристики и с их помощью статические и динамические характеристики логического вентиля инвертора.

Численно исследовано поведение потенциала в транзисторных структурах для различных конфигураций затвора. Полученные результаты показывают, что применение двух материалов с разной работой выхода для затвора приводит к эффективному подавлению коротко-канальных эффектов, в частности уменьшения эффекта roll-off, при соотношении длин данных областей в пользу зоны с меньшей работой выхода. Это связано с более эффективной "экранировкой" стока из-за "скачка" потенциала на границе раздела двух материалов. Пиковое электрическое поле у стока значительно (примерно в 2.5 раза) снижается по сравнению с аналогичной транзисторной структурой, но с монозатвором, что препятствует проявлению эффекта горячих носителей. Таким образом, применение двух материалов с разной работой выхода в затворе КНИ КМОП нанотранзисторов с полностью охватывающим затвором улучшает их ключевые электрофизические характеристики по сравнению с двух затворными полевыми транзисторами.

Применительно к суб 25 нм КНИ КМОП транзисторам с асимметричным полностью охватывающим затвором рассмотрен один из возможных подходов разработки маломощной электроники. Проанализирована возможность синтеза базового логического вентиля - инвертора. Исходя из полученных ВАХ и при помощи математического ядра программы HSPICE, численно исследованы статические и динамические характеристики инверторов с разными отношениями длин областей затвора, работа выхода которых отличаются. При выбранных технологических параметрах максимальное усиление инвертора больше 5 при напряжении питания 0.8 В. При снижении напряжения питания до 0.6 В коэффициент усиления практические не изменяется. Дальнейшее уменьшение питания приводит к его заметному снижению. Минимальная задержка переключения инвертора при напряжении питания 0.8 В реализуется для отношения длин 0.72 и составляет 0.9 пс. Для данного отношения длин задержка переключения инвертора при снижении напряжения питания до 0.5 В остается практически неизменной. В совокупности можно предполагать, что логические элементы могут эффективно функционировать при напряжении питания 0.6 В, что является предпосылкой для создания низковольтной схемотехники.

Работа выполнена в рамках Государственного задания ФГУ ФНЦ НИИСИ РАН № 0065-2019-0001 "Математическое обеспечение и инструментальные средства для моделирования, проектирования и разработки элементов сложных технических систем, программных комплексов и телекоммуникационных сетей в различных проблемно-ориентированных областях" (АААА-А19-119011790077-1).

## СПИСОК ЛИТЕРАТУРЫ

- Ferain I., Colinge C.A., Colinge J.P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors // Nature. 2011. V. 479. P. 310–316.
- 2. *Neamen D.* Semiconductor physics & devices: basic principles. N.Y., McGaw-Hill, 2011.
- Ghosh P., Haldar S., Gupta R.S., Gupta M. An analytical drain current model for dual material engineered cylindrical/surrounded gate MOSFET // Microelectronics J. 2012. V. 43.P. 17–24.
- Kumari V., Ravish A., Babbar I. A comparative analysis of double material double gate surround gate (DMDG-SG), double material triple gate surround gate (DMTG-SG) and triple material triple gate surround gate (TMTG-SG) MOSFETs // International Journal for Scientific Research & Development. 2014. V. 2. № 3. P. 141–148.
- Zhang L., Ma C., He J., Lin X., Chan M. Analytical solution of subthreshold channel potential of gate underlap cylindrical gate-all-around MOSFET // Solid State Electronics. 2010. V. 54. № 8. P. 806–808.
- 6. Cousin B., Reyboz M., Rozeau O., Jaud M.A., Ernst T., Jomaah J. A unified short-channel compact model for cylindrical surrounding-gate MOSFET // Solid State Electronics. 2011. V. 56. № 1. P. 40–46.
- Li C., Zhuang Y., Han R. Cylindrical surrounding-gate MOSFETs with electrically induced source/drain extension // Microelectronics J. 2011. V. 42. № 2. P. 341–346.
- 8. *Suh C*. Two-dimensional analytical model for deriving the threshold voltage of a short channel fully depleted

cylindrical/surrounding gate MOSFET // J. Semiconductor Technology and Science. 2011. V. 11. № 2. P. 111–120.

- 9. *Масальский Н.В.* Моделирование характеристик КМОП нанотранзистора с полностью охватывающим затвором и неравномерно легированной рабочей областью // Микроэлектроника. 2019. Т. 48. № 6. С. 436–444.
- 10. *Colinge J.P.* FinFETs and Other Multi-Gate Transistor. N.Y.: Springer-Verlag.
- 11. *He J., Chan M., Zhang X., Wang Y.* A carrier-based analytic model for the undoped (lightly doped) cylindrical surrounding-gate MOSFETs // Solid State Electron. 2006. V. 50. № 3. P. 416–421.
- 12. *Зи С.* Физика полупроводниковых приборов. М.: Мир, 1984.
- Sharma D., Vishvakarma S.K. Precise analytical model for short channel cylindrical gate (CylG) gate-allaround (GAA) MOSFET // Solid. State. Electron. 2013. V. 86. P. 68–74.
- Kumar M.R., Mohapatra S.K., Pradhan K.P., Sahu P.K. A simple analytical center potential model for cylindrical gate all around (CGAA) MOSFET // J. Electron Devices. 2014. V. 19. P. 1648–1653.
- 15. *Md. Arafat M., Samia S.* Two-dimensional analytical model of threshold voltage and drain current of a double-halo gate-stacked triple-material double-gate MOSFET // J. Comput Electron. 2016. V. 15. № 2. P. 525–536.
- Goel E., Kumar S., Singh K., Singh B., Kumar M., Jit S.
   2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs // IEEE Transactions on Electron Devices. 2016. V. 63.
   № 3. P. 966–973.
- 17. *Iniguez B., Jimenez D., Roig J., Hamidi H.-A., Marsal L.F., Pallares J.* Explicit continuous model for long-channel undoped surrounding-gate MOSFETs // IEEE Trans. Electron. Devices. 2005. V. 52. № 8. P. 1868–1873.
- Star-Hspice Quick Reference Guide, Release 2002.2, June 2002 (URL:https://manualzz.com/doc/6917552/ star-hspice-quick-reference-guide, access data 12.10.2018)
- Захаров С.М., Масальский Н.В., Шаффигуллин М.М. Проблемы схемотехнического моделирования интегральных схем // Успехи современной радиоэлектроники. 2005. № 2. С. 43–50.